E-mail Alert Rss
 
Quick Search
Highlights
More>>
Current Issue Just Accepted Archive Most Download Most Read
  20 December 2025, Volume 49 Issue 6 Previous Issue   
For Selected: View Abstracts Toggle Thumbnails
A novel method for determining magnetite ore-induced magnetic anomalies and its application
FAN Zheng-Guo, YANG Hai, GE Teng-Fei, HE Jing-Zi, JIA Zhi-Ye, FAN Zhen-Yu, LIU Qian-Kun, YANG Xue
Geophysical and Geochemical Exploration. 2025, 49 (6): 1251-1260.   DOI: 10.11720/wtyht.2025.0345
Abstract   HTML ( 6 )   PDF (3280KB)

Accurately and quickly determining the geological properties related to magnetic anomaly sources is a key technical challenge in magnetic prospecting, directly influencing the accuracy of geological interpretation using magnetic survey data. The induced magnetization varies with time, whereas the remanent magnetization typically remains constant over time. Therefore, there exists a theoretical basis for investigating the properties of magnetic anomaly source bodies by detecting the time variations of magnetic anomaly intensity. Despite geophysicists' relevant research in this field, practical technical methods have not been established. Hence, this study proposed a novel method for determining magnetite ore-induced magnetic anomalies. Based on the observational data of geomagnetic diurnal variations, the proposed method constructed parameters, including the variations (A), variation rate (η), and normalized variations (F) of magnetic anomaly intensity, to evaluate the properties of strong magnetic anomaly source bodies. Accordingly, the proposed method determined the possibility of magnetite ore-induced magnetic anomalies, showing critical significance for magnetite exploration.

Figures and Tables | References | Related Articles | Metrics
Extraction of geochemical anomalies from stream sediments in the giant granite-hosted lithium ore cluster within the middle segment of the Jiangnan Orogen
LIU Shuang, LU Ya-Xin, ZHOU Xue-Gui, WU Jun-Hua, FENG Jia-Xin, LI Yan-Jun
Geophysical and Geochemical Exploration. 2025, 49 (6): 1261-1270.   DOI: 10.11720/wtyht.2025.0067
Abstract   HTML ( 0 )   PDF (3380KB)

In recent years, the Yifeng-Fengxin area of Jiangxi Province has witnessed significant breakthroughs in the exploration of granite-hosted lithium deposits, making it one of China's significant lithium ore clusters. However, there have been few reports on the application and achievements of lithium-related techniques. Focusing on 2,343 stream sediment samples from a 1∶50,000 geochemical survey in the Yifeng-Fengxin area, this study statistically analyzed geochemical parameters of over 20 elements. Subsequently, beryllium (Be), lithium (Li), niobium (Nb), rubidium (Rb), and tin (Sn) were determined as elements related to the mineralization and association of lithium deposit. Among these, Li and Sn showed strong enrichment and significant differentiation. Using statistical methods such as cluster and factor analyses, the five elements were further grouped into three assemblages: Rb-Be, Li-Sn, and Nb. Besides, this study processed and analyzed the stream sediment data from the Yifeng-Fengxin area using the iterative method, determining the lower threshold of both geochemical anomalies. Then, single-element and multi-element geochemical anomalies were investigated, with lithium identified as the primary ore-forming element. These anomalies, featuring prominence and large scale, were primarily situated in the northern and northeastern parts of the survey area, with concentration centers located in muscovite granite outcrops. The Li-Sn assemblage, serving as an indicator for granite-hosted lithium deposits, coincides well with the distribution of ore bodies. This confirms that Li-Sn assemblage anomalies in stream sediments can effectively delineate granite-hosted lithium deposits. Based on the anomaly characteristics from the 1∶50,000 stream sediment survey, two prospect areas were delineated in the periphery, providing guidance for further lithium exploration.

Figures and Tables | References | Related Articles | Metrics
Seismic attribute-geomechanics integrated fracture modeling technology and fracture effectiveness analysis: A case study of the Jurassic shales in the Fuling area, Sichuan Basin
ZHOU Jiang-Hui, LIU Xiao-Jing, XIONG Chen-Hao, HU Xin, WU Yi-Ming
Geophysical and Geochemical Exploration. 2025, 49 (6): 1271-1280.   DOI: 10.11720/wtyht.2025.0051
Abstract   HTML ( 0 )   PDF (9288KB)

The distribution of fractures influences the trajectory design of shale gas horizontal wells and the stimulation effectiveness of hydraulic fractures. Faults and joints serve as two types of fractures. Accordingly, this study proposed the seismic attribute-geomechanics integrated fracture modeling technology. Specifically, fault modeling is conducted using seismic attributes, and joint prediction is performed using geomechanical structural restoration and Mohr-Coulomb theory. The obtained results of faults and joints are then integrated into the discrete fracture network (DFN) modeling for spatial characterization of natural tectonic fractures. The proposed technology was applied to the exploration of Jurassic lacustrine shales in the Fuling area within the Sichuan Basin. Its fracture modeling results were consistent with the imaging log interpretation results, confirming the development zones and spatial distribution patterns of fractures. Moreover, the stimulation effectiveness of fracturing was evaluated by comparing the fracture modeling results of typical wells with the actual fracturing performance. The evaluation results indicate that tensile fractures that are vertical or oblique to well trajectories are favorable for fracturing. Overall, the results of this study hold positive implications for predicting fracture development zones and guiding horizontal well trajectory design in the exploration stage, serving as a reference for subsequent exploration deployment.

Figures and Tables | References | Related Articles | Metrics
Geochemical characteristics and anomaly assessments of soils in the Songshunangou gold mining area, Qinghai Province
CHEN Geng-Hu, LANG Xing-Hai, WANG Zhao-Shuai, DONG Wei-Cai, WANG Deng-Ke, XIANG Zuo-Peng, LI Zhuang, YE Zi-Feng, WU Chang-Yi, WANG Xu-Hui, WU Tian-Wen, LUO Chao
Geophysical and Geochemical Exploration. 2025, 49 (6): 1281-1290.   DOI: 10.11720/wtyht.2025.0123
Abstract   HTML ( 0 )   PDF (3672KB)

The Songshunangou gold mining area in Qinghai Province is situated in the central part of the North Qilian metallogenic/orogenic belt. Two deposits have been identified in its eastern and western portions, with cumulative proven Au resources exceeding 34 t, establishing them as large-scale deposits. Moreover, the area holds significant potential for ore prospecting, necessitating an urgent need for research into prospecting orientations to support mineral exploration efforts. Hence, based on the anomaly analysis of 1∶10 000 soil geochemical survey data and employing the two-window moving average method, this study identified the anomaly distributions and enrichment patterns of 10 elements (i.e., Au, As, Sb, Hg, Cu, Pb, Zn, Ag, W, and Mo) in the area. By analyzing elemental geochemical anomaly data and integrating the geological conditions for mineralization, this study delineated composite anomaly zones in the area using the average contrast method, followed by anomaly assessments. The results indicate that Au is the primary ore-forming element in the area, characterized by strong enrichment and significant variability, suggesting high mineralization potential. Seven composite soil geochemical anomaly zones were delineated in the area, with zones HP-1, HP-2, and HP-5 demonstrating the greatest potential for mineral exploration. Engineering validation confirms the presence of two ore/mineralized bodies, with one exhibiting an ore thickness of 1.5 m and a gold grade of 0.57 g/t in zone HP-2 and the other featuring an ore thickness of 1.42 m and a gold grade of 1.67 g/t in zone HP-5. Overall, this study provides geochemical evidence for determining prospecting orientations in the Songshunangou gold mining area while offering a reference for the deployment of subsequent mineral exploration work in the area.

Figures and Tables | References | Related Articles | Metrics
Geochemical characteristics and anomaly assessments of stream sediments in the Xiongcun ore concentration area and its periphery, Xietongmen County, Tibet
GONG Jian-Sheng, LANG Xing-Hai, WANG Zhao-Shuai, DENG Yu-Lin, WU Chang-Yi, HE Qing, LI Zhi-Jun, DING Feng, ZHAN Hong-Yu, LOU Yu-Ming
Geophysical and Geochemical Exploration. 2025, 49 (6): 1291-1302.   DOI: 10.11720/wtyht.2025.0059
Abstract   HTML ( 2 )   PDF (14007KB)

The Xiongcun ore concentration area in Xietongmen County, Tibet, is situated in the central segment of the Gangdise metallogenic belt. This study aims to investigate the distribution characteristics and geochemical anomalies of ore-forming elements in the study area and its periphery. This will guide the deployment of mineral exploration work in the study area and its periphery and promote the construction of the Xiongcun large-scale copper-gold resource base. Through the assessment of 1∶50000 stream-sediment geochemical anomalies in the study area and its periphery, this study determined the geochemical anomaly distributions and enrichment patterns of five elements (i.e., Cu, Au, Pb, Zn, and Ag) in the study area. Based on the analytical results of element anomalies and the geological characteristics of the study area, this study delineated the composite anomaly zones in the study area. Furthermore, this study assessed the prospecting potential of the study area through follow-up geochemical surveys. The results indicate that Cu and Au serve as the principal ore-forming elements in the study area. Both elements are characterized by strong enrichment and strong variability, showing high mineralization and prospecting potential. Four composite geochemical anomaly zones of stream sediments were identified. Among them, zones HS-1 and HS-2 exhibit highly consistent composite anomalies. Both zones show the distribution of known ore deposits (occurrences) or significant mineralization shows, suggesting considerable potential for ore prospecting. Overall, this study provides geochemical evidence for geological prospecting in the Xiongcun ore concentration area and its periphery while also offering ideas and a reference for subsequent mineral exploration targets in the study area.

Figures and Tables | References | Related Articles | Metrics
Application of rapid infill-well optimization technology in fine-scale description of deep-water turbidite reservoirs in West Africa:A case study of the Bata oilfield
YUAN Shu-Jin, LI Fa-You, LU Wen-Ming
Geophysical and Geochemical Exploration. 2025, 49 (6): 1303-1310.   DOI: 10.11720/wtyht.2025.0097
Abstract   HTML ( 0 )   PDF (4922KB)

Differing from onshore oilfields,deep-water oilfields center their exploitation on economic efficiency, employing a strategy of achieving higher production via fewer wells while maintaining formation energy balance.Their exploitation plans are flexible and emphasize dynamic oilfield monitoring,allowing for adjustment and optimization during the exploitation,thereby achieving fast and efficient exploitation.Therefore,the placement of infill wells serves as a crucial step for stable production of deep-water oilfields in the middle and late exploitation stages.Considering oil reservoir characteristics and production well waterflooding,this study investigated the deep-water turbidite reservoirs in the Bata oilfield,West Africa.A rapid infill-well optimization plan was proposed based on a tectono-sedimentary study of the oil reservoirs.The proposed plan centers on predicting high-quality turbidite sand bodies using the prestack amplitude versus offset(AVO) attributes,identifying waterflooding fronts through time-lapse seismic surveys,performing a fine-scale description of turbidite sandstone reservoirs and predicting the distributions of residual oil in the reservoirs.The implementation of the proposed plan demonstrated satisfactory production performance.Specifically,the infill wells achieved daily crude oil production of 12,000 barrels,establishing them as a primary contributor to oilfield production.This result validates the effectiveness of rapid infill-well optimization technology.Overall,this study provides a significant reference for enhancing the oil recovery of deep-water reservoirs through the placement of infill wells for deep-water oilfields in the middle and late exploitation stages.

Figures and Tables | References | Related Articles | Metrics
Application of the CM4 model in reprocessing magnetic survey data of a study area in the southern South China Sea
ZHANG Xiang-Yu, ZHANG Yao, XING Cong-Cong
Geophysical and Geochemical Exploration. 2025, 49 (6): 1311-1318.   DOI: 10.11720/wtyht.2025.1336
Abstract   HTML ( 0 )   PDF (2275KB)

During the reorganization of historical magnetic survey data for the South China Sea, it was found that the processed magnetic survey data of a specific area in the southern South China Sea exhibited low accuracy, affecting the effectiveness of data use. Data analysis reveals that the low accuracy was primarily caused by the significant errors in diurnal correction. Therefore, it is necessary to modify the diurnal correction method and reprocess the data. Based on the recollected data from various available geomagnetic observation stations and the variations of the geomagnetic field, this study simulated the magnetic diurnal variations in the study area during the survey period using three algorithms: the CM4 model, regression analysis, and regression analysis based on the data sample control of the CM4 model. The historical magnetic survey data were recorrected for diurnal variations, with data affected by magnetic disturbances removed based on geomagnetic indices, significantly enhancing data accuracy. This study addresses the problem of low accuracy in historical magnetic survey data in the study area, providing a novel approach for the fine-scale reprocessing of magnetic survey data related to the South China Sea.

Figures and Tables | References | Related Articles | Metrics
A deep learning-based method for separating up- and down-going waves in zero-offset vertical seismic profiles
WANG Teng-Yu, DENG Ding-Ding, ZHENG Duo-Ming, LIU Yang, ZHANG Zhen, LUO Wen-Jun
Geophysical and Geochemical Exploration. 2025, 49 (6): 1319-1332.   DOI: 10.11720/wtyht.2025.0115
Abstract   HTML ( 0 )   PDF (10274KB)

Wavefield separation serves as a key step in processing the data of vertical seismic profiles (VSPs). Its accuracy directly influences seismic imaging, inversion of elastic parameters, lithology identification, and interpretation of hydrocarbon-bearing properties. Traditional methods face challenges in wavefield separation. For example, the median filtering requires manual intervention, often introducing errors and thus compromising separation accuracy; the FK filtering yields high accuracy but low efficiency. In contrast, deep learning techniques offer high automation, enabling both high accuracy and efficiency in wavefield separation. Hence, this study proposed a deep learning-based method for separating up- and down-going waves in zero-offset VSPs. First, the up- and down-going waves were separated through FK transform, generating a dataset. Second, a deep learning-based model, Unet++, was constructed for separating these waves in VSPs. Third, the relative down-going wavefield (obtained by subtracting the predicted up-going wavefield from the full wavefield) was incorporated into the loss function to mitigate the impacts of amplitude differences between up- and down-going waves on network updates. Moreover, the structural similarity index measure (SSIM) was employed as a regularization constraint to assist the network in learning the structural characteristics of the wavefield. The test results of actual VSP data demonstrate that the trained network can effectively learn the characteristics of the up- and down-going waves, achieving high accuracy and efficiency in wavefield separation.

Figures and Tables | References | Related Articles | Metrics
3D visualization modeling of shallow-surface geological and geophysical data in Xiong'an New Area
ZHU Shuai-Peng, QIU Yong, XU Zhi-Ping, LIU Qiao-Xia, LIN Ji-Yan, DUAN Yong-Hong, LI Ju-Hong
Geophysical and Geochemical Exploration. 2025, 49 (6): 1333-1342.   DOI: 10.11720/wtyht.2025.0101
Abstract   HTML ( 3 )   PDF (5671KB)

The construction of three-dimensional visualization models in key urban areas is important for multidisciplinary data integration and intuitive presentation of spatial stratigraphic distribution.However,existing models face limitations in integrated geological-geophysical interpretation and concrete visualization of results.In response to this,this study established a 3D visualization model based on comprehensive geophysical data,specifically including a 3D structural model and a 3D velocity model for the Xiong'an core area down to 5 km depth.It revealed the correspondence between the 3D S-wave velocity distribution and the spatial morphology of strata,and validated the structural framework of alternating uplifts and depressions.To be specific,within the depth range of 0~1 km,the lateral homogeneity of S-wave velocity reflects the stable sedimentary characteristics of Quaternary and Neogene strata.Between 1 km and 2.2 km,the velocity zoning is unclear,primarily due to fracture development in the Jixianian geothermal reservoir,which leads to a reduction in S-wave velocity.Below 2.2 km,the significant velocity contrast between the Xushui Depression and the Rongcheng Uplift is mainly attributed to lithological differences and unconformable contacts.The construction of the 3D velocity model helps overcome the limitations of sparse geological data and reveals the subsurface 3D structures in the Xiong'an core area from a physical property perspective.

Figures and Tables | References | Related Articles | Metrics
Synergistic optimization and on-site fine-tuning methods for sampling point arrangement for geochemical survey in an alpine gorge area, Southwest China
ZENG Liang, YANG Ming-Long, PANG Yong, HUANG Jia-Zhong, BAI Ping-Yan, WANG Bing-Jun
Geophysical and Geochemical Exploration. 2025, 49 (6): 1343-1352.   DOI: 10.11720/wtyht.2025.0085
Abstract   HTML ( 0 )   PDF (8568KB)

Stream sediment survey is the most widely applied method in regional geological surveys due to its simplicity, efficiency, low cost, and proven effectiveness in mineral exploration. This method shows promising application potential in Southwest China, characterized by well-developed hydrographic nets. Sampling quality directly determines the representativeness and accuracy of geochemical exploration data. However, sampling point arrangements in alpine gorge areas remain challenged by insufficient coverage of lower-order streams, omission of coarse-grained clastics in high-energy zones, and interference from human-induced contamination. To address these challenges, this study innovatively proposed an optimization strategy combining synergistic optimization and the on-site fine-tuning method for the 1∶50 000 stream sediment survey in the Fanshen Village area, Huize County, Yunnan Province. This strategy integrates critical technologies, including two-level dynamic grids (a 1 km×1 km basic grid and a 500 m infill grid), dynamic channel alignment offset (50 m to 100 m), and pre-set contamination buffer zones (200 m), for fieldwork. The results indicate that compared to traditional fixed-grid methods, the optimization strategy achieved a significantly increased coverage rate of 72% for tertiary tributaries, a capture rate of 82 % for coarse-grained clastics (>2 mm), and a reduced occurrence rate of 5% for human-induced pseudo-anomalies, with the overall cost increase controlled within 12%. Overall, the optimization strategy can effectively enhance the reliability of sampling data and the accuracy of anomaly delineation in complex topographic areas, providing an optimized solution for geochemical surveys in alpine gorge areas, Southwest China.

Figures and Tables | References | Related Articles | Metrics
Terrain correction technology for airborne gamma-ray spectrometry based on DEM data
XU Rui, DENG Zhi-Peng, WEN Long, YU Peng, LI Yuan-Dong, GE Liang-Quan
Geophysical and Geochemical Exploration. 2025, 49 (6): 1353-1362.   DOI: 10.11720/wtyht.2025.0359
Abstract   HTML ( 0 )   PDF (3742KB)

Aerial gamma spectroscopy measurement has important application value in mineral geological exploration, environmental radiation monitoring, and nuclear emergency response due to its advantages of high efficiency, flexibility, and avoidance of personnel radiation exposure risks. With the rapid development of drone technology, drones equipped with gamma-ray spectrometers have become a more flexible and cost-effective low altitude measurement method. However, drones typically fly at low altitudes below 40 meters, and complex terrain can significantly affect the solid angles of detection and the attenuation of gamma rays in the air, thereby reducing the accuracy of measurement results. This article proposes a terrain correction method for unmanned aerial vehicle (UAV) gamma spectroscopy measurement based on digital elevation model (DEM) data, targeting typical complex terrains such as mining pits, stepped mining faces, ore piles, and waste rock piles in open-pit rare earth mines. By establishing a micro element detection factor model and combining it with finite element discretization algorithm, quantitative correction of terrain undulations in the detection area can be achieved. The Monte Carlo simulation and field measurement results show that this method can effectively control the gamma ray intensity response error of terrain such as ridges, valleys, gentle slopes, and slopes within 10%, significantly improving the data quality of low altitude drone gamma spectrum measurement. The unmanned aerial vehicle (UAV) airborne gamma spectroscopy measurement in the open-pit mining area of rare earth mines shows that the relative error between the element content measured by UAV airborne gamma spectroscopy after terrain correction in the measurement area and the weighted average element content measured by surface gamma spectroscopy within 90% correction range is within 30% of the number of points, and the uranium content has increased from 53.2% without terrain correction to 74.3%; The thorium content has increased from 80.3% without terrain correction to 93.3%; The potassium content has increased from 94.7% without terrain correction to 97.2%. The terrain correction method has been verified to have strong practicality and reliability.

Figures and Tables | References | Related Articles | Metrics
Estimation of pre-stack Q-values in the radial trace transform domain
TANG Chuan-Zhang, WANG Jin-Kuan, WEI Tao, HUANG Xin-Ya, CHENG Wan-Li, WANG Shou-Dong, LI Ying
Geophysical and Geochemical Exploration. 2025, 49 (6): 1363-1371.   DOI: 10.11720/wtyht.2025.0117
Abstract   HTML ( 0 )   PDF (2483KB)

Accurate estimation of the quality factor(Q) is essential for enhancing seismic data resolution and reservoir characterization.Conventional Q estimation methods generally utilize post-stack data, which neglect the impacts of raypaths.Moreover,the average effect of stacking alters the attenuation of seismic data,reducing the accuracy of Q estimation.Compared to post-stack data,the pre-stack data more faithfully preserve the attenuation properties of subsurface media,enabling more accurate Q estimation.Therefore,this study converted pre-stack data into the apparent velocity and travel time(R-T) domain,using the radial trace(RT) transform.Combined with the logarithmic spectral area double difference(LSADD) method,a pre-stack Q estimation method named QVAV_LSADD was proposed.This method accounted for the impacts of raypaths under imprecise interval velocities.Its high accuracy and strong noise resistance were validated through the processing of both synthetic and real data.

Figures and Tables | References | Related Articles | Metrics
An imaging method integrating prismatic waves and seismic interferometry for high-steep structures
LUO Yu-Chen, LUO Zhang-Qing, LIU Sheng, OU Cheng-Hua, WANG Ze-Yu, LIU Chang
Geophysical and Geochemical Exploration. 2025, 49 (6): 1372-1379.   DOI: 10.11720/wtyht.2025.0138
Abstract   HTML ( 0 )   PDF (3991KB)

Conventional migration imaging,which only considers primary reflected waves,fails to effectively image subsurface high-steep geobodies.Compared to primary reflected waves,prismatic waves travel an additional path, enabling the imaging of high-steep structures.However,the additional travel path increases the computational load.Seismic interferometry can shift the surface observation system downward to an artificially selected subsurface calibration plane.Consequently,subsequent calculations only need to be performed on the model below the subsurface calibration plane,there by improving computational efficiency.Hence,this study proposed a novel imaging method integrating prismatic waves and seismic interferometry.In the proposed method,the acoustic wave equation was replaced by the prismatic wave equation.Virtual records were generated through cross-correlations between data from the surface and subsurface reference planes.These records were combined with reverse time migration(RTM) for imaging.The proposed method was verified using the horizontal layered, L-shaped, and salt dome models.Specifically,the horizontal layered model exhibited consistent imaging results with those below the global reference plane;the L-shaped model outperformed conventional methods in imaging steep structures;the salt dome model displayed enhanced pre-salt imaging resolution.Due to the downward shift of the surface observation system,the following imaging process entailed a reduced vertical depth and a shorter shot record time.The proposed method reduced the computational cost to 26.6% of that using the conventional RTM imaging.Overall,through the downward shift of the observation system and the utilization of multiples,the proposed method achieved both satisfactory accuracy and efficiency,overcoming the limitations of traditional interferometry and providing a novel solution for exploring high-steep structures.Notably,there still exist discrepancies between the simplified models and the actual heterogeneity,requiring further optimization of the computational cost.

Figures and Tables | References | Related Articles | Metrics
Determining five oxides in manganese ores using inductively coupled plasma-optical emission spectroscopy
ZHANG Peng-peng, XU Bing-xu, HU Meng-ying, Xu Jin-li, LIU Bin, ZHANG Ling-huo, BAI Jin-feng
Geophysical and Geochemical Exploration. 2025, 49 (6): 1380-1385.   DOI: 10.11720/wtyht.2025.2434
Abstract   HTML ( 0 )   PDF (422KB)

Manganese ores are significant raw materials in the iron and steel industry. Accurately determining their major components is critical for the analysis of manganese ore composition. Based on three acid dissolution systems, i.e., aqua regia (HNO3+HC), tetracid (HNO3+HF+HClO4+HCl), and pentaacid (HNO3+HF+H2SO4+HClO4+HCl) solutions, and three extraction conditions, i.e., hydrochloric acid, nitric acid, and aqua regia, this study determined five oxides in manganese ores using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The results indicate that the pentaacid or pentaacid solution and the extraction with hydrochloric acid achieved encouraging determination results. Spectral lines with wavelengths of 766.490 nm (K), 184.006 nm (Ca), 589.592 nm (Na), 279.553 nm (Mg), and 396.152 nm (Al) were analyzed. The possible interference in the determination process was eliminated based on the standard solution matrix matching principle. The detection limits of Na, Mg, K, Ca, and Al were 0.000 27%, 0.000 21%, 0.000 15%, 0.000 17%, and 0.000 23%, respectively. The determination results of all five oxides in two national primary reference materials for manganese ores showed relative standard deviations (RSD) not exceeding 5.0%, suggesting fair precision. The verification results of all five oxides in five reference materials showed relative errors (RE) below 10%, demonstrating high accuracy, with the measured values roughly consistent with the recommended values. The spiked determination of five oxides in five manganese ores with unknown content yielded recovery rates ranging from 90% to 110%, suggesting that the accuracy met the analytical requirements. Therefore, the ICP-OES method simplifies sample pretreatment, improves efficiency, and reduces costs, thereby applying to batch sample analysis. The verification using reference materials demonstrates that its accuracy and precision meet industrial standards, establishing the ICP-OES method as an effective approach for determining the five oxides in manganese ore samples.

Figures and Tables | References | Related Articles | Metrics
Application of the velocity picking method based on high-order normal-moveout correction in predicting overpressure distributions in marine areas
LIU Miao, XING Wen-Lin, YANG Yu-Song, REN Jing, ZHAO Xiu-Lian, LI Zhen-Wei, CHEN Lin-Zhi
Geophysical and Geochemical Exploration. 2025, 49 (6): 1386-1392.   DOI: 10.11720/wtyht.2025.0027
Abstract   HTML ( 0 )   PDF (2854KB)

Overpressured sedimentary basins are ubiquitous and extensively distributed in marine areas.They typically possess favorable conditions for hydrocarbon accumulation,thus holding considerable significance for guiding hydrocarbon resource evaluation and exploration deployment.Velocity serves as a key parameter for research on overpressure distributions.The increasing demands for higher accuracy in overpressure distribution prediction impose higher requirements on the accuracy and quality of seismic velocities.Compared to well patterns in land areas,the more sparse well patterns in marine areas lead to insufficient well constraints on seismic velocities,requiring a comprehensive reliability evaluation.Additionally,seismic velocities obtained from conventional velocity analysis or modeling often show insufficient resolution.Therefore,this study proposed a high-density bispectral velocity picking method under the theoretical framework of high-order normal-moveout(NMO) based on uncorrelated parameters.The proposed method can obtain higher-resolution seismic velocity volumes for favorable target areas,providing an effective approach to exploring overpressure distributions in marine basins.This study first presented the theoretical principles of high-order NMO correction.Subsequently,it demonstrated the application of the proposed method in a specific exploration area in the East China Sea.The practical application suggests that seismic velocity volumes subjected to high-order NMO correction can effectively reflect subsurface overpressure distributions,showing promising prospects in the research on overpressure distributions in marine areas.

Figures and Tables | References | Related Articles | Metrics
Analysis and removal of electromagnetic coupling effects in the large-depth induced polarization method
JI Zhen-Xing, QIN Hao-Jie, CHEN Ru-Jun, WANG Quan-Gong
Geophysical and Geochemical Exploration. 2025, 49 (6): 1393-1401.   DOI: 10.11720/wtyht.2025.1499
Abstract   HTML ( 0 )   PDF (5982KB)

With the gradual depletion of shallow mineral resources, deep mineral exploration has emerged as an essential development trend in the mining industry. Increasing the distance between receiver electrodes of induced polarization (IP) devices is the most direct and effective approach to enhance the exploration depth. However, a long distance can cause strong electromagnetic (EM) coupling effects, severely interfering with IP signals. Addressing this challenge, this study calculated the EM coupling effects of various measuring devices in homogeneous half-space and layered media using analytical methods. Furthermore, this study comparatively analyzed the impacts of various factors, including measuring device type, wiring layout, distance between receiver electrodes, earth resistivity, and frequency, on the EM coupling intensity. Based on the phase differences between IP and EM coupling effects in the frequency domain, this study derived the calculation equation of the relative phase spectrum, followed by a theoretical analysis of the decoupling effects in application scenarios. The results indicate that increasing distance between receiver electrodes, decreasing earth resistivity, and raising working frequency all significantly intensified the EM coupling interference. Under consistent conditions and detection depths, the Schlumberger array suffered from higher EM coupling interference compared to the pole-dipole array. Compared to the traditional IP phase spectrum, the relative phase spectrum enhanced the maximal working frequency of the pole-dipole and Schlumberger arrays by four and 10.6 times, respectively, suggesting the decoupling capability of the relative phase method in large-depth IP exploration. Overall, this study provides significant guidance for the field implementation of large-depth IP exploration.

Figures and Tables | References | Related Articles | Metrics
Log-based lithology identification using the SMOTE-LSTM hybrid model
HUANG Liang, CHEN Xuan-Yi, JIANG Zhen-Jiao, WANG Jin-Xin, ZHANG Chen-Yu, SONG Gen-Fa
Geophysical and Geochemical Exploration. 2025, 49 (6): 1402-1410.   DOI: 10.11720/wtyht.2025.1492
Abstract   HTML ( 1 )   PDF (3253KB)

Artificial intelligence algorithms have been developed to automatically identify the spatial structures of formation lithologies from multivariate log data. They represent a promising approach to reducing lithology logging costs and mitigating the subjectivity inherent in lithology identification. Considering the imbalanced distribution of lithology sample data and the spatialtemporal variability in the relationships between log attributes and lithologies, this study constructed a synthetic minority oversampling technique (SMOTE)-long short-term memory (LSTM) hybrid model. The SMOTE algorithm effectively balances the sample distributions of different lithologies, while the LSTM algorithm, using its deep learning architecture, extracts lithological characteristics from the log sequence data. With the borehole log data and lithology records from a sandstone uranium deposit as training data, the SMOTE-LSTM hybrid model achieved a prediction accuracy exceeding 85% in lithology classification. Compared to several other machine learning methods, the SMOTE-LSTM hybrid model demonstrated significantly improved accuracy and reliability in lithology identification.

Figures and Tables | References | Related Articles | Metrics
Reserve prediction method based on the dynamic information on the utilization status of mineral resources
YANG Pei
Geophysical and Geochemical Exploration. 2025, 49 (6): 1411-1417.   DOI: 10.11720/wtyht.2025.1370
Abstract   HTML ( 0 )   PDF (3159KB)

Due to the dynamic and multidimensional properties of mineral resource data, the information on the utilization status of mineral resources fails to accurately reflect the actual utilization status of mineral resources, leading to inaccurate predictions of mineral resources. Therefore, this study proposed a reserve prediction method based on the dynamic information on the utilization status of mineral resources. The exploration data of mineral resources, subjected to format conversion and encoding, were input into the geographic information system (GIS). They were categorized by the GIS into spatial and attribute data, thereby establishing a resource utilization status management system. A fully relational database was introduced to manage the utilization status of mineral resources. A 3D geological model was employed to calculate the ore-forming favorability and delineate the mineralization target area. Based on this, a grade-tonnage model was constructed. Finally, the statistical sampling theory was applied to predict the resource reserves in the mining area. The experimental results demonstrate that the mineral reserves predicted using the proposed method aligned with the actual reserves, indicating a relatively high prediction accuracy.

Figures and Tables | References | Related Articles | Metrics
Geochemical characteristics and utilization prospects of Zn in farmland soils, Jiangsu Province
WANG Zi-Yi, LIAO Qi-Lin, WANG Yuan-Yuan, CUI Xiao-Dan, LIU Wei-Jing, XU Hong-Ting, LI Wen-Ting
Geophysical and Geochemical Exploration. 2025, 49 (6): 1418-1429.   DOI: 10.11720/wtyht.2025.1489
Abstract   HTML ( 2 )   PDF (2627KB)

Based on the geochemical data of farmland soils in Jiangsu Province, obtained from regional eco-geochemical surveys and the geochemical assessment of land quality in past years, this study delved into the geochemical characteristics of Zn in soils, aiming to explore the prospects of producing natural zinc-rich food in Zn-rich soils. The results indicate that Zn in farmland soils in Jiangsu Province exhibited an uneven distribution, with an average Zn content of approximately 70 mg/kg. The available Zn accounted for about 20% of the total Zn in soils. The total Zn in soils dictated the distribution of available Zn, with a significant positive correlation between both. Significant factors influencing the enrichment and distribution of Zn in soils included soil texture, genetic type, total organic carbon (TOC) content, and Fe content. Among various soils, limestone soils were the most enriched in Zn in Jiangsu Province, while the Holocene marine silty soils served as soil parent materials most enriched in Zn. Zn in soils manifested (relatively) significant positive correlations with Se, Cu, Fe, Al, Mo, and TOC contents. Rice seeds showed an average Zn content of 18 mg/kg, with an average bio-concentration factor (BCF) value of 0.2. Zn in rice seeds was significantly positively correlated with Zn, Se, and TOC content in soils but significantly negatively correlated with soil pH. In contrast, wheat seeds showed an average Zn content of 28 mg/kg, with an average BCF value of 0.36. Zn in wheat seeds was significantly positively correlated with Zn, Se, B, and TOC content in soils. Additionally, a significant positive correlation between Zn and Se was observed in both rice and wheat seeds. According to the industrial standards, the proportions of zinc-rich soils, zinc-rich rice seeds, and zinc-rich wheat seeds in Jiangsu Province were 11.39%, 29%, and 13.69% respectively, suggesting promising prospects for the development and utilization of zinc-rich soil resources in Jiangsu Province. The development and utilization efficiency of zinc-rich soil resources can be significantly enhanced by combining the production of natural zinc-rich food and the amelioration of farmland soils (e.g., improving TOC content and pH in soils). Overall, the results of this study provide a basis for scientifically utilizing beneficial trace elements such as Zn in soils in Jiangsu Province.

Figures and Tables | References | Related Articles | Metrics
Geochemical characteristics and salinization mechanisms of shallow surface substrate in the Taonan area, western Songnen Plain
Siqinbilige , KONG Fan-Peng, LIU Hong-Bo, ZHANG Lei, ZHANG Ye, DONG Kai
Geophysical and Geochemical Exploration. 2025, 49 (6): 1430-1439.   DOI: 10.11720/wtyht.2025.0057
Abstract   HTML ( 1 )   PDF (3529KB)

This study investigated the shallow surface substrate in the Taonan area, western Songnen Plain. Accordingly, it revealed the elemental differentiation between surface (0~20 cm) and deeper (150~200 cm) soils in the shallow surface substrate layer, as well as the genetic mechanisms of salinization in this layer. The results show that compared to deeper soils, surface soils in the Taonan area are strongly enriched in organic carbon (Corg) and N and slightly enriched in Br, P, S, Se, and total carbon (TC). In contrast, no significant differences are identified in heavy metals, rare earth elements (REEs), and other trace elements. These findings suggest the primary causes of the enrichment of various element indicators in surface soils include agricultural activities, biogeochemical cycles, and water-salt migration. The factor analysis indicates that for surface soils, factor F1 is dominated by the heavy metal-REE combination (variance contribution rate: 26.66%), with its spatial distribution associated with fluvial deposition and agricultural activities. Furthermore, factor F2 for these soils is the salt-related element combination (including CaO and MgO; variance contribution rate: 11.24%), indicating the risk of salinization in low-lying zones. In contrast, for deeper soils, factor F1 is the combination of elements such as Al2O3, B, La, and Sc (variance contribution rate: 27.34%), reflecting the compositional characteristics of bedrocks or soil parent materials. Factor F2 for these soils is the combination of elements related to geological settings and salinity (variance contribution rate: 13.09%), indicating geological settings and salinization. The weathering and leaching coefficient, represented by the Ba value, shows significant spatial differentiation. Compared to deeper soils, surface soils manifest a larger range of high Ba values, primarily distributed in the zone south of Jubao Township and west of Datong Township, as well as the southern part of Erlong Township. This distribution, coinciding with the high-value zones of salt-related factor F2, is principally affected by topography and deep parent material types. In the low-lying plain area and the front of alluvial fans, the low-lying terrains, poor drainage, and intense evaporation lead to salt accumulation, causing a high risk of salinization. In the hilly area, the high values of factor F2 are associated with the bedrock lithology, with salts originating from weathered bedrocks. The results of this study will provide a geochemical basis for land resource optimization and ecological restoration in the Taonan area.

Figures and Tables | References | Related Articles | Metrics
Heavy metal transfer in the soil-rice system of Chongzuo and corresponding fitting models
CHEN Shang-Ren, ZHONG Xiao-Yu, LI Jie, YANG Min-Yun, HUANG Juan, CHEN Biao, HE Yao-Ye
Geophysical and Geochemical Exploration. 2025, 49 (6): 1440-1448.   DOI: 10.11720/wtyht.2025.0132
Abstract   HTML ( 0 )   PDF (2679KB)

The Chongzuo area, located in southwestern Guangxi, encompasses Jiangzhou District, Daxin County, and Longzhou County, with the majority featuring karst topography. This study focused on 242 samples of rice grains and their corresponding rhizosphere soils from contiguous farmland in the region. These samples were analyzed to measure the contents of 26 elements in the soils, including arsenic (As), cadmium (Cd), and chromium (Cr), as well as the contents of As, Cd, mercury (Hg), and lead (Pb) in rice grains, using inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), and atomic fluorescence spectrometry (AFS). By analyzing the characteristics of heavy metals in soils and rice grains, the influencing factors and fitting models of heavy metals from soils to rice grains were investigated. The results indicate that the content of oxides in soil was generally lower than the national average, while the content of heavy metals was relatively high, especially Cd and Hg. As and Cd in soils exhibited relatively high pollution risks. The contents of As, Cd, Hg, and Pb in rice grains from non-karst areas were generally higher than those from karst areas. The contents of As, Cd, Hg, and Pb in rice grains generally complied with food safety standards. As and Pb in rice grains showed significant correlations (dominated by negative correlations) with metal elements, non-metal elements, and oxides in rhizosphere soils, while Cd and Hg exhibited significant correlations with oxides in rhizosphere soils. Various fitting models of As in rice grains generally presented a coefficient of determination (R2) above 0.5, indicating better model performance than those for Cd, Hg, and Pb. After distinguishing between karst and non-karst areas, the R2 values of the fitting models were further improved. Among the factors influencing the contents of As, Cd, Hg, and Pb in rice grains, parent material played a more significant role than rice variety. This study preliminarily clarifies the key driving factors of heavy metal transfer in the soil-rice system in the karst area of Chongzuo, providing a theoretical and practical basis for the safe production of agricultural products, classification-based management of contaminated farmland, and policy formulation in similar karst areas of Southwest China.

Figures and Tables | References | Related Articles | Metrics
Application of adaptive synchrosqueezing transform in ground-penetrating radar-based advance geological prediction in tunnels
MA Wen-De, TIAN Ren-Fei, ZHENG Wei
Geophysical and Geochemical Exploration. 2025, 49 (6): 1449-1458.   DOI: 10.11720/wtyht.2025.0221
Abstract   HTML ( 0 )   PDF (4187KB)

Advance geological prediction in tunnels faces technical challenges,including strong non-stationarity of ground-penetrating radar(GPR) signals and insufficient resolution of conventional time-frequency analyses.Hence,this study proposed an improved method based on adaptive local maximum synchrosqueezing transform(LMSST).The proposed method significantly enhanced the time-frequency resolution and noise robustness of traditional LMSST through a dynamic bandwidth optimization algorithm and local extremum search strategies.Theoretical analysis and synthetic signal testing demonstrated the superior time-frequency energy concentration characteristics of the proposed method in analyzing cross-frequency modulation components.Furthermore,the proposed method was applied to the karst tunnel section of a high-speed railway in Southwest China.Combined with the GprMax forward modeling and GPR measurements,the proposed method successfully identified geological anomalies such as karst caves.Subsequent excavation verification confirmed the identification accuracy,with positional errors of anomaly boundaries below 0.3 m.Overall,the results of this study suggest the proposed method's efficiency in enhancing time-frequency resolution and substantial engineering applicability,offering reliable technical support for tunnel construction safety in karst areas.

Figures and Tables | References | Related Articles | Metrics
Application of the surface-to-borehole direct current method for subgrade investigations in karst terrain
YU Xiao-Qing, WEN Jin-Hao
Geophysical and Geochemical Exploration. 2025, 49 (6): 1459-1466.   DOI: 10.11720/wtyht.2025.1407
Abstract   HTML ( 0 )   PDF (2898KB)

In karst subgrade exploration engineering, the application of the surface multi-electrode resistivity method faces challenges: on the one hand, the limitation of electrode array length constrains the effective exploration depth of this method; on the other hand, as the exploration depth increases, the available current distribution information from deeper layers decreases, resulting in a gradual weakening of the method's resolution capability, particularly in accurately predicting small-scale karst development areas at depth. To address this issue, the article proposes a solution: introducing wellbore electrodes on the basis of traditional surface multi-electrode resistivity observations to achieve “surface-to-wellbore” resistivity data acquisition. This strategy aims to increase and obtain deep current distribution information by adding wellbore electrodes, thereby enhancing the local effective exploration depth and improving the resolution of inversion results. To evaluate the effectiveness of the “surface-to-wellbore” resistivity observation method in obtaining deep karst information, the article first conducts an in-depth analysis using numerical simulation methods. Subsequently, the practical application value and effectiveness of this method are further demonstrated through inversion results based on measured data from karst subgrades. The research results show that the multi-electrode resistivity measurement technique with wellbore electrodes can significantly improve the resolution for identifying deep anomalies, providing an effective path to overcome the limitations of multi-electrode resistivity methods in deep karst exploration.

Figures and Tables | References | Related Articles | Metrics
Application of an integrated geophysical prospecting method in pipeline leakage detection in a power plant
WANG Yan-Bing, JIN Yong-Jun, ZHU Shu
Geophysical and Geochemical Exploration. 2025, 49 (6): 1467-1472.   DOI: 10.11720/wtyht.2025.1445
Abstract   HTML ( 2 )   PDF (3344KB)

To reduce the economic losses caused by pipeline leakage, this paper applies a comprehensive geophysical exploration technology integrating ground-penetrating radar, multi-channel transient surface waves, and resistivity imaging to detect pipeline leakage at a power plant in Huainan, Anhui Province. The results show that the ground-penetrating radar oscillatory signals can reveal the leakage zone, the multi-channel transient surface wave can reflect the leakage severity within the detected area, and the electrical resistivity tomography can present the low-resistance morphology of the leakage zone. Demonstrated by the satisfactory outcomes, this integrated geophysical prospecting method proves to be an effective means to accurately locate the leakage positions for similar pipelines.

Figures and Tables | References | Related Articles | Metrics
Please wait a minute...
For Selected: Toggle Thumbnails
More...
2025 Vol.49 No.5 No.4 No.3 No.2 No.1
2024 Vol.48 No.6 No.5 No.4 No.3 No.2 No.1
2023 Vol.47 No.6 No.5 No.4 No.3 No.2 No.1
2022 Vol.46 No.6 No.5 No.4 No.3 No.2 No.1
2021 Vol.45 No.6 No.5 No.4 No.3 No.2 No.1
2020 Vol.44 No.6 No.5 No.4 No.3 No.2 No.1
2019 Vol.43 No.6 No.5 No.4 No.3 No.2 No.1
2018 Vol.42 No.6 No.5 No.4 No.3 No.2 No.1
2017 Vol.41 No.6 No.5 No.4 No.3 No.2 No.1
2016 Vol.40 No.6 No.5 No.4 No.3 No.2 No.1
2015 Vol.39 No.S1 No.6 No.5 No.4 No.3 No.2
No.1
2014 Vol.38 No.6 No.5 No.4 No.3 No.2 No.1
2013 Vol.37 No.6 No.5 No.4 No.3 No.2 No.1
2012 Vol.36 No.6 No.S1 No.5 No.4 No.3 No.2
No.1
2011 Vol.35 No.6 No.5 No.4 No.3 No.2 No.1
2010 Vol.34 No.6 No.5 No.4 No.3 No.2 No.1
2009 Vol.33 No.6 No.5 No.4 No.3 No.2 No.1
2008 Vol.32 No.6 No.5 No.4 No.3 No.2 No.1
2007 Vol.31 No.6 No.5 No.4 No.3 No.2 No.1
2006 Vol.30 No.6 No.5 No.4 No.3 No.2 No.1
2005 Vol.29 No.6 No.5 No.4 No.3 No.2 No.1
2004 Vol.28 No.6 No.5 No.4 No.3 No.2 No.1
2003 Vol.27 No.6 No.5 No.4 No.3 No.2 No.1
2002 Vol.26 No.6 No.5 No.4 No.3 No.2 No.1
2001 Vol.25 No.6 No.5 No.4 No.3 No.2 No.1
2000 Vol.24 No.6 No.5 No.4 No.3 No.2 No.1
1999 Vol.23 No.6 No.5 No.4 No.3 No.2 No.1
1998 Vol.22 No.6 No.5 No.4 No.3 No.2 No.1
1997 Vol.21 No.6 No.5 No.4 No.3 No.2 No.1
1996 Vol.20 No.6 No.5 No.4 No.3 No.2 No.1
1995 Vol.19 No.6 No.5 No.4 No.3 No.2 No.1
1994 Vol.18 No.6 No.5 No.4 No.3 No.2 No.1
1993 Vol.17 No.6 No.5 No.4 No.3 No.2 No.1
1992 Vol.16 No.6 No.5 No.4 No.3 No.2 No.1
1991 Vol.15 No.6 No.5 No.4 No.3 No.2 No.1
1990 Vol.14 No.6 No.5 No.4 No.3 No.2 No.1
1989 Vol.13 No.6 No.5 No.4 No.3 No.2 No.1
1988 Vol.12 No.6 No.5 No.4 No.3 No.2 No.1
1987 Vol.11 No.6 No.5 No.4 No.3 No.2 No.1
1986 Vol.10 No.6 No.5 No.4
1986 Vol.6 No.4
1986 Vol.10 No.3 No.2 No.1
1985 Vol.9 No.6 No.5 No.4 No.3 No.2 No.1
1984 Vol.8 No.6 No.5 No.4 No.3 No.2 No.1
1983 Vol.7 No.6 No.5 No.4 No.3 No.2 No.1
1982 Vol.6 No.6 No.5 No.4 No.3 No.2 No.1
1981 Vol.5 No.6 No.5 No.4 No.3 No.2 No.1
1980 Vol.4 No.6 No.5 No.4 No.3 No.2 No.1
1979 Vol.3 No.6 No.5 No.4 No.3 No.2 No.1
Please wait a minute...
For Selected: Toggle Thumbnails
Review on the study of grounded-source transient electromagnetic method
ZHANG Ying-Ying
Geophysical and Geochemical Exploration    2021, 45 (4): 809-823.   DOI: 10.11720/wtyht.2021.1513
Abstract1434)   HTML657)    PDF (729KB)(5540)      

Grounded-source transient electromagnetic method (TEM) has many advantages such as deep exploration, flexible arrangement in rough terrain and high working efficiency. Recently it has got much attention and a series of new methods are available, ranging from surface to airborne and borehole method. In this paper, the authors review the research history of long-offset TEM (LOTEM), short-offset TEM (SOTEM), multi-channel TEM(MTEM), grounded-source semi-airborne TEM and grounded-source surface to borehole TEM, and summarize their research status in forward modeling, system design, inversion, imaging and field working. The results show that, as a well-developed grounded-source TEM, LOTEM has accumulated many research achievements. Although some progress has been made, the researches on other grounded-source TEMs are still in a primary stage and still need further improvement. Valuable research results in LOTEM, for example, noise suppression technology, high dimensional inversion and point interpretation, can be introduced to these newly developed electromagnetic methods, which can help provide solutions for high working efficiency and high resolution deep exploration.

Reference | Related Articles | Metrics
AN ANALYSIS OF THE SPECIAL WAVE IMPACT ON THE INTERPRETATIONOF THE COALFIELD COLLAPSE COLUMN
YANG Xiao-Dong, YANG De-Xi
Geophysical and Geochemical Exploration    2010, 34 (5): 627-631.  
Abstract2770)      PDF (4180KB)(4986)      


In the light of typical coneshaped columns in the Lu'an mine of Shanxi Province, the authors

established a mathematical model for the collapse column, and used the wave equation model for

seismic ray tracing and wavefield simulation of collapse columns. The simulation results show that,

due to the special nature of the collapse columns, such waves as the normal reflected wave, the fault

point diffraction wave, the delay diffraction wave, the delay reflected wave and  the "diffraction

wave" consisting of Pwave field are formed around the collapse columns. On such a basis, the field

shot was simulated, and then a single shot record for routine processing  was generated to produce

stacking sections and migrated sections. The forward section and the actual data analysis reveal that

the fallen columns of the special wave constitute an important feature for recognizing collapse

columns; nevertheless, the resultant scale of the actual seismic data interpretation is often smaller

than the scale of actual collapse column. Some suggestions are also put forward for reference.

Related Articles | Metrics
The application of integrated geological, geochemical and geophysical techniques to the exploration of the Bogutu gold deposit
YAO Tie, ZHOU Yong, DU Zhan-Jun, ZHAO Zhen-Ming
Geophysical and Geochemical Exploration    2015, 39 (5): 877-884.   DOI: 10.11720/wtyht.2015.5.01
Abstract1549)   HTML155)    PDF (12833KB)(4389)      

Low density geochemical survey in Yishenjilike mountain area led to the discovery of a huge gold geochemical block, and the verification and evaluation of gold anomalies led to the discovery of the Bogutu gold deposit. In combination with the geological characteristics of the prospecting area, the authors carried out a series of geological-geophysical-geochemical exploration work, delineated quite a few geochemical and IP anomalies, and detected the characteristics of ore-bearing structural belt. Through trenching and drilling verification, the authors found more than 40 gold orebodies, thus achieving good ore-prospecting results.

Reference | Related Articles | Metrics
The application of integrated geophysical prospecting methods to the exploration of urban buried fault
LIU Wei, HUANG Tao, WANG Ting-Yong, LIU Yi, ZHANG Ji, LIU Wen-Tao, ZHANG Qi-Bin, LI Qiang
Geophysical and Geochemical Exploration    2021, 45 (4): 1077-1087.   DOI: 10.11720/wtyht.2021.1525
Abstract1046)   HTML413)    PDF (4078KB)(4174)      

The existing geological data show that there are several buried faults in the main urban area of Chengdu. However, the specific location and distribution of these faults are still unclear, which poses great security risks to the comprehensive and scientific exploitation and utilization of underground space resources and the optimization of urban construction planning and layout in Chengdu. In view of such a situation, four geophysical methods, namely, micromotion survey, high-density electrical method, transient electromagnetic method and soil radon measurement, were used in this paper to comprehensively explore the buried Baojiangqiao fault in the work area. The integrated geophysical prospecting methods not only identified the stratigraphic structure along the survey line, but also obtained the location, property, attitude and scale of the buried Baojiangqiao fault. This work indicates that the integrated geophysical prospecting methods can achieve better results in the exploration of urban buried fault.

Table and Figures | Reference | Related Articles | Metrics
THE PROGRESS AND PROSPECT OF THE ELECTRICAL RESISTIVITY IMAGING SURVEY
YAN Jia-yong, MENG Gui-xiang, LV Qing-tian, ZHANG Kun, CHEN Xiang-bin
Geophysical and Geochemical Exploration    2012, 36 (4): 576-584.   DOI: 10.11720/wtyht.2012.4.13
Abstract5424)      PDF (1427KB)(4163)      
This paper has summed up the progress of the ERI method over the past decade of years as well as its future development trend in the following aspects: ① A comparison of the performances of the main ERI instruments used at present shows that the ERI instruments tend to develop in the multi-channel, multi-parameter, multi-functional, high-power direction; ② ERI measurement environment has changed from surface measurement to water surface, underwater and cross-hole measurements, with the last three kinds of measurements analyzed in this paper; ③ On the basis of analyzing ERI data processing method and inverse development status, this paper describes three-dimensional and four-dimensional inversion theory of ERI with practical examples; ④ ERT applications are summed up, and several new applications are introduced. It is concluded that, with the improvement of the probing depth and observation precision as well as the diversification of the observation models, the application field of ERI will become broader and broader, and this technique will surely have wide development prospect.
Reference | Related Articles | Metrics
A NEW DEVELOPMENT PERIOD OF THE GRAVITY AND MAGNETIC EXPLORATION
ZHANG Chang-Da, DONG Hao-Bin
Geophysical and Geochemical Exploration    2010, 34 (1): 1-7.  
Abstract3501)      PDF (431KB)(3797)      

A review on the airborne gravity survey and airborne magnetic survey are given in this paper. The

authors hold that these techniques have entered into a new development period, as evidenced by the

emergence of such technologic indicators as airborne vector magnetometry, magnetic fulltensor LTSSQUID

and HTSSQUID gradiometry, airborne gravimetry, gravity gradiometry and geophysical survey by UAV.

Related Articles | Metrics
THE ADVANCES IN THE STUDY OF THE AIRBORNE GRAVIMETRY SYSTEM
WANG Jing-Bo, XIONG Sheng-Qing, ZHOU Xi-Hua, GUO Zhi-Hong
Geophysical and Geochemical Exploration    2009, 33 (4): 368-373.  
Abstract3056)      PDF (1014KB)(3671)      

This paper gives a brief review of the history of the airborne gravimetry. Based on the principle of the airborne gravimetry, the paper deals emphatically with the history, the present  research situation and the developments of the airborne scalar gravity survey system. Further development trends are also indicated.

Related Articles | Metrics
THE UTILIZATION OF EXCEL TO THE PERFORMANCE OF R-MODE CLUSTER ANALYSIS
CHUN Nei-ya
Geophysical and Geochemical Exploration    2007, 31 (4): 374-376.  
Abstract4798)      PDF (659KB)(3262)      

The R-mode cluster analysis is a mathematic statistical method for obtaining the quantitative similarity of several elements. Its procedure includes: the conversion of the original data; the solution of the relevant coefficient ; the clustering of the result. The above operation can be realized by using the data analysis tool of Excel. This method is quite suitable for field utilization.

Reference | Related Articles | Metrics
RECENT ADVANCES IN THE RESEARCH AND DEVELOPMENT OF QUANTUM MAGNETOMETERS
ZHANG Chang-da
Geophysical and Geochemical Exploration    2005, 29 (4): 283-287.  
Abstract1859)      PDF (376KB)(3210)      

In this paper, recent advances in the research and development of quantum magnetometers have been described together with some suggestions on further research work.

Reference | Related Articles | Metrics
3D DISPLAY FOR GROUND PENETRATING RADAR BASED ON Matlab
WU Bao-Jie, JI Mei-Xiu, YANG Hua
Geophysical and Geochemical Exploration    2009, 33 (3): 342-344.  
Abstract6920)      PDF (532KB)(3195)      

 With powerful Matlab image processing functions, this paper has realized the 3D display of ground penetrating radar data, whose procedures are simple to prepare and easy to learn. A detailed description of the code is given, and the three-dimensional test data show that, by setting transparency, the target can be displayed in an intuitive and visual way.

Related Articles | Metrics
THE PRESENT SITUATION AND RESEARCH ADVANCES OF EXPLORATION GEOCHEMISTRY FOR PORPHYRY COPPER DEPOSITS
HU Shu-qi, MA Sheng-ming, LIU Chong-min
Geophysical and Geochemical Exploration    2011, 35 (4): 431-437.  
Abstract3900)      PDF (643KB)(3109)      

Porphyry copper deposit is the most important copper deposit type in China. With the deepening of mineral exploitation, exploration geochemistry in mineral exploration has become increasingly important. Based on related literature, this paper sums up the exploration geochemical research results of porphyry copper deposits, which include such aspects as geochemical characteristics, exploration methods, anomaly evaluation and prospecting indicators. Exemplified by the Fujiawu copper deposit, this paper reports the latest advances in the study of porphyry copper deposits.

Reference | Related Articles | Metrics
CHEMICAL COMPOSITIONS OF CONTINENTAL CRUST AND ROCKS IN EASTERN CHINA
Yan Mingcai, Chi Qinghua, Gu Tiexin, Wang Chunshu
Geophysical and Geochemical Exploration    1997, 21 (6): 451-459.  
Abstract3182)      PDF (2969KB)(3038)      

Element abundances of the continental crust and rocks cited in the past and recent literature have been based on compilations of data from various studies. This leads to uncertainties in sample representativeness and data quality. The present study is based on systematic collection of 28 253 individual rock samples over an area of 3.3 million km2 in eastern China, east of eastern longitude of 105°.The sampling involves more than 800 igneous intrusive bodies and metamorphic complexes as well as more than 500 type stratigraphic sections. From the individual rock samples, 2 718 composite samples were made and analyzed for 77 elements by 15 specific methods, dominantly XRF and INAA. Analytical quality was controlled by international and national preliminary geochemical reference materials of GSR, GAu and GPt series. Synthetic results from geological, geochemical and geophysical studies were used to construct crustal constitution model, from which element abundances of the continental crust in the North China platform, the upper crust and exposed crust in eastern China, chemical composition of igneous rock in China and of sedimentary rock and metamorphic rock in eastern China were derived.

Reference | Related Articles | Metrics
THE APPLICATION OF ATOM INTERFEROMETER TO THE MEASUREMENT OF GRAVITATIONAL ACCELERATION
ZHANG Chang-da
Geophysical and Geochemical Exploration    2000, 24 (5): 321-326.  
Abstract1839)      PDF (673KB)(2947)      

This paper has described and reviewed the pinciples,expermental set up and observational results of applying atom interferometer to measuring the earth's gravitational acceleration.This method was developed by Nobelist Steven Chu,M.Kaservich,A.Peters et al.,who demonstrated a resolution of 10-10.The application of this technique to geophysics and the related problems are also discussed.

Reference | Related Articles | Metrics
THE CHOICE OF GRIDDING METHODS FOR GEOPHYSICAL DATA
LIU Zhao-Ping, YANG Jin, WU Wei
Geophysical and Geochemical Exploration    2010, 34 (1): 93-97.  
Abstract3283)      PDF (1939KB)(2926)      

In drawing the contour map of geophysical data, suitable gridding methods should be chosen according to objective

environment characteristics and characteristics of data themselves. With practical examples, this paper deals with some common

gridding methods such as inverse distance to a power, Kriging, Minimum Curvatrue, Nearest Neighbor, Polynomial Regression, Radial

Basis Function, and Triangulation/Liner Interpolation, probing into their choosing means, applicable fields and parameter

installment.

Related Articles | Metrics
CALCULATION OF THE ANOMALY AREA
Zhao Rongjun
Geophysical and Geochemical Exploration    2000, 24 (2): 154-156.  
Abstract1680)      PDF (346KB)(2897)      

This paper puts forward a new method for calculating anomaly area—the polygonous approximation method,and gives corresponding algorithm and precision controlling technique.With this method,one can calculate anomaly area rapidly and precisely,thus yielding relatively satisfactory results.

Reference | Related Articles | Metrics
THE EXTRACTION METHOD AND PROGRAM DESIGN FOR DISPERSION CURVE IN F-K DOMAIN
LI Jie, CHEN Xuan-hua, ZHANG Jiao-dong, ZHOU Qi, LIU Gang, LIU Zhi-qiang, XU Yan, LI Bing, YANG Jing
Geophysical and Geochemical Exploration    2011, 35 (5): 684-688.  
Abstract3872)      PDF (534KB)(2841)      

Based on two-dimensional Fourier transform and half-wave theory, this paper has studied the seismic Rayleigh wave dispersion curve extraction in f-k domain and made this theory fit in with a program by means of Delphi7.0. It is concluded that the f-k method overcomes the shortcomings of the one-dimensional digital processing technology and makes full use of multi-channel Rayleigh wave data record.

Reference | Related Articles | Metrics
A TENTATIVE DISCUSSION ON THE RESOLUTION OF THE GROUND-PENETRATING RADAR
YUAN Ming-de
Geophysical and Geochemical Exploration    2003, 27 (1): 28-32.  
Abstract2619)      PDF (512KB)(2719)      

In the light of the pulse width of the radar wave, this paper deals with the difference and the relationship between the vertical resolution and the transverse resolution of the ground-penetrating radar, indicates the influence of the noise upon the resolution and, with practical examples, points out that the digital handling of the signal can greatly improve the resolution of the radar.

Reference | Related Articles | Metrics
THE APPLICATION OF THE GRADIENT SOUNDING PROFILE METHOD TO THE GOLD PROSPECTING IN THE YINAN GOLD MINE
DU Li-ming, WU Jun-jie, YANG Jin-duo, WANG Peng, YU Bao-xian
Geophysical and Geochemical Exploration    2013, 37 (2): 225-228.   DOI: 10.11720/j.issn.1000-8918.2013.2.07
Abstract2534)      PDF (964KB)(2651)      
IP is an important method for mineral resources exploration, but it can only be applied in a few pivotal places because its difficult performance, and hence the information obtained from the survey area is very limited. The aim of this study is to find a simple and effective IP method with which we can get much valuable information form the survey area so as to improve the exploration effect. In the Yinan gold ore district, the authors applied the gradient sounding profile method, calculated 2D resistivity and obtained the IP model. The results show that the gradient sounding profile method is simple and effective.
Reference | Related Articles | Metrics
THE APPLICATION OF NEW GEOCHEMICAL EXPLORATION METHODSTO MINERAL EXPLORATION AND ITS GEOLOGICAL EFFECT
JIANG Yong-Jian, WEI Jun-Hao, ZHOU Jing-Ren, WANG Zhong-Ming, JI Zhao-Jia, WANG Fa-Yan
Geophysical and Geochemical Exploration    2010, 34 (2): 134-138.  
Abstract4394)      PDF (403KB)(2626)      

As an important prospecting technique and an effective means for obtaining mineralization data,

geochemical exploration has been proved to be very successful in mineral exploration. This paper focuses on

commenting the present research situation and application effect of some new methods such as structural

superimposed halos method, heat released mercury method, separatory electrogeochemistry method, enzyme leach, and

geogas and selective leaching of mobile metals method. It is emphasized that any one of these methods has its

unique applicability and that, in the practical application, we should pay attention to the cooperation of

geochemical exploration, geologicalgeophysical exploration and remote sensing and depend on the study of

geological background so as to demonstrate the usefulness and effectiveness of geochemical exploration.

Related Articles | Metrics
THE DISTRIBUTION AND LEVEL OF RADON GAS IN SOIL IN A HIGH RADIATION BACKGROUND CITY OF CHINA
WANG Nan-ping, XIAO Lei, LI Can-ping
Geophysical and Geochemical Exploration    2012, 36 (4): 646-650.   DOI: 10.11720/wtyht.2012.4.27
Abstract4015)      PDF (726KB)(2589)      
A soil gas radon survey was performed on a large scale to determine the distribution of radon in soil of Zhuhai City in Guangdong Province by means of a portable radon monitor of a semiconductor alpha spectroscopy. The survey sampled 469 sites covering an area of more than 100 km2. The average of soil radon concentration in the soil depth of 0.6 m is 55.94 ± 58.54 kBq/m3 in Zhuhai urban area, whereas the concentration is 7.14±8.75, 37.64±25.92, and 151.25±196.23 kBq/m3 in the Quaternary sediments, the mixtures of sediments and weathered grain of granite, and the weathered granite in Doumen District, respectively. The high radon potential areas are located within biotitic granites and new industrial districts, as indicated by the strong correlation between the radioactivity level and geological lithology. The mean value of soil gas radon concentration in Zhuhai urban area (ZUA) is about ten times as high as that in Guangzhou, Quanzhou and Jinjing City. The results show that Zhuhai area has higher radon potential, and hence protective measures against radon should be taken into account.
Reference | Related Articles | Metrics
THE AUTOMATIC FORMATION OF THE SUFFER SOFTWARECONTOUR LEVEL FILE BASED ON AREA STATISTICS
REN Lei, CHEN Hua-Gen
Geophysical and Geochemical Exploration    2009, 33 (5): 595-598.  
Abstract3739)      PDF (830KB)(2477)      

The implied contour level and color scheme in Surfer software fail to express the subtle difference of DEM and the effect

of color solid. In addition, the artificial setting of the levels and color values are timeconsuming and laborious, and the

results are sometimes not perfect. With the consideration of contour level and color scheme and on the basis of Surfer platform

automation technology, this paper presents a program that can automatically generate a level file with different intervals and

different colors, thus resulting in satisfactory effect and efficiency.

Related Articles | Metrics
A GENERALIZED DESCRIPTION OF THE DEVELOPMENT OF ELECTRIC EXPLORATION METHODS
Li Jinming
Geophysical and Geochemical Exploration    1996, 20 (4): 250-258,249.  
Abstract3975)      PDF (659KB)(2471)      

The present paper makes a brief description of the progress of several main electric methods which havebeen developed quite rspidly since 1980's.They include induced polarization method,frequency spectrum IPmethod,trandient electromagnetic method, controlled-source audio-frequency magnetotelluric method and GPR.

Reference | Related Articles | Metrics
Characteristics of gravity and magnetic fields in Ordos Basin and their geological significance
Bing LI, Yan-Bing SONG, Lei SHI, Qi WANG, Jiu-Ming JIANG, Jiu-Qiang JIN, De-Wen ZHOU, Ming XU, Gang-Yi XIAO, Min-Ying XIE
Geophysical and Geochemical Exploration    2019, 43 (4): 767-777.   DOI: 10.11720/wtyht.2019.1391
Abstract950)   HTML6)    PDF (3147KB)(2464)      

According to aeromagnetic and gravitational data, the boundary and range of Ordos basin were determined based on an analysis of the characteristics of gravity and magnetic fields. And on the basis of compiling depth map of the metamorphic basement and structuring zoning map, research was conducted on the basin’s basement structure, characteristics and features of depth change, structure framework, and caprock thickness. The research indicates that the metamorphic basement is composed of Proterozoic metamorphic series, and the buried depth of crystalline basement can reach 5 000 to 20 000 meters. The caprock is the layers of Ediacaran, Paleozoic, and Mesozoic. The occurrence and development of the basin are restricted by nearly NE-and NWW-trending structures, forming a pattern of four depressions and three uplifts. All the new understanding and conclusions provide a reference for further oil and gas exploration in the basin.

Table and Figures | Reference | Related Articles | Metrics
A study of transformation of the coordinate system from geophysical and geochemical results coordinate to CGCS2000 coordinate in ArcGIS
Hui DU, Tao GENG, Sheng-Rong LIU, Yun BAI
Geophysical and Geochemical Exploration    2018, 42 (5): 1076-1080.   DOI: 10.11720/wtyht.2018.1534
Abstract592)   HTML4)    PDF (528KB)(2463)      

Due to historical reasons, the present coordinate systems of the geological, geophysical and geochemical exploration results are basically WGS84, BJ54 or XA80 systems; nevertheless, according to the NASG requirements on the overall use of CGCS2000 coordinates, in the future the coordinates for all kinds of results should be CGCS2000 coordinates, which causes inconvenient situation in using the results and in comprehensive research work. As a professional geographic information system software, ArcGIS has a wide range of applications in various walks. In this paper, the authors briefly introduced the ArcGIS built-in coordinate system, studied and deduced the calculation formula of the MOLODENSKY coordinate conversion method in ArcGIS, put forward the method to get the conversion and precision evaluation of transformation parameters between different ellipsoids, and cited practical examples for verification. On such a basis, the specific ideas and points for attention were analyzed for each coordinate system in the conversion of ArcGIS software to CGCS2000.

Table and Figures | Reference | Related Articles | Metrics
Geophysical and Geochemical Exploration    1982, 6 (3): 154-156.  
Abstract1253)      PDF (190KB)(2459)      
Reference | Related Articles | Metrics
WAVE FIELD SEPARATION NUMERICAL MODELING OF SECOND ORDER ELASTIC WAVE EQUATION BY HIGH-PRECISIONSTAGGEREDGRID FINITE DIFFERENCE SCHEME
CHEN Ke-Yang, YANG Wei, LIU Hong-Lin, WU Qing-Ling
Geophysical and Geochemical Exploration    2009, 33 (6): 700-703.  
Abstract3270)      PDF (1060KB)(2394)      

This paper proposes an equivalent second order elastic wave equation to solve the problem of being unable to completely

separate the coupled P and S wave by full elastic wave equation. Through solving this equivalent wave equation by high-order

staggeredgrid finite difference scheme together with Flux Correction Technology (FCT) and separating wave fields of the

isotropic model and layered model, the authors accurately obtained the hybrid wave field and completely separated fields of pure

P wave and pure S wave fields. An analysis of the numerical results shows that the method is effective and reliable in isotropic

media, and there exists abundant energy transform information in separated pure P and pure S wave field. The result of the study

is of significance in understanding the propagating law and the elastic wave theory in the complex wave field.

Related Articles | Metrics
SOME PROBLEMS CONCERNING THE CONVERSIONOF MAPS BETWEEN SURFER AND MAPGIS
QIN Lin-Jiang
Geophysical and Geochemical Exploration    2010, 34 (5): 677-680.  
Abstract5615)      PDF (865KB)(2387)      

With the extensive adoption of computer technology in geology and geophysics, computer graphics becomes more and more important. For the purpose of improving quality and efficiency, several software should be combined in practical work. In this paper, some basic characteristics of Surfer and MapGIS are discussed, and their application in geological field is described from the angle of geological mapping, thus drawing forth the necessity of the conversion between Surfer and MapGIS. The general method and steps for the conversion of maps between Surfer and MapGIS are presented in detail, and several problems concerning the conversion and corresponding solutions are emphatically discussed.

Related Articles | Metrics
THE APPLICATION OF THE POST-OPERATION DIFFERENCE TECHNIQUE TO IMPROVE THE LOCATING PRECISION OF THE HAND-HELD GPS
GAO Jian-dong, LEI Yu-wen
Geophysical and Geochemical Exploration    2006, 30 (5): 446-449.  
Abstract2156)      PDF (359KB)(2364)      

The high-resolution position data in the centimeter grade are extracted from the binary output records of the hand-held GPS position indicator, and the multiple average measurement and post-operation position difference correction method are used so as to decrease the planar locating error of the portable and cheap hand-held GPS position indicator from several meters to 1 m or so. Thus the precision of the sub-meter grade can be attained.

Reference | Related Articles | Metrics
ABUNDANCE OF CHEMICAL ELEMENTS OF SOILS IN CHINA AND SUPERGENESIS GEOCHEMISTRY CHARACTERISTICS
Yan Mingcai, Gu Tiexin, Chi Qinghua, Wang Chunshu
Geophysical and Geochemical Exploration    1997, 21 (3): 161-167.  
Abstract2773)      PDF (2180KB)(2354)      

On the basis of accurate analysis of 154 composite soil samples collected from various landscape in China and other reference information, abundance of 79 elements and composition of soils in China have been given, chemical composition of soils under the influence of matrix rock and supergenesis geochemistry condition have been studied preliminarily.

Reference | Related Articles | Metrics
PARAMETER SELECTION IN VIBROSEIS SEISMIC EXPLORATION
XUE Hai-Fei, DONG Shou-Hua, TAO Wen-Peng
Geophysical and Geochemical Exploration    2010, 34 (2): 185-190.  
Abstract3583)      PDF (3477KB)(2346)      

 Vibroseis exploration, as an important method of seismic exploration, has become increasingly valued by geologists. During the field work, different geological conditions need different parameters, and the choice of suitable excitation parameters has become a very important problem. This paper mainly introduces six kinds of parameters, namely numbers of controlled seismic source, scanning bandwidth, vibration period, scanning length, scanning slopes, and vibration rate. The influence of these parameters on the quality of seismic records was studied in detail, and the simulation of the proper parameters was performed in Jiulishan area to enhance the resolution of vibroseis exploration and improve the signaltonoise ratio of seismic records.

Related Articles | Metrics
SOME BASIC PROBLEMS IN THE APPLICATION OF GROUND-PENETRATION RADAR
Lei Linyuan
Geophysical and Geochemical Exploration    1998, 22 (6): 408-414.  
Abstract2398)      PDF (1144KB)(2333)      

Four basic problems in the application of Ground penetrtion-radar are discussed in this paper:(1) the wave-impedance of electromagnetic wave transmission in strata; (2) the reflectivity and transmissivity of electromagnetic field at the subsurface of strata; (3) reflective phase and propagating velocity of electromagnetic wave in strta; (4) detection depth of the Ground-penetration radar.

Reference | Related Articles | Metrics
THE UTILIZATION OF SURFER TO CONDUCT THE DRAWING OF PROFILE-PLAN
SUN Zhong-ren, ZHAO Dong-liang
Geophysical and Geochemical Exploration    2006, 30 (2): 172-174.  
Abstract3691)      PDF (572KB)(2332)      

This paper has put forward the idea of utilizing Surfer to draw the initial data profile-plan. The programme compiled can realize the construction of Bln file. The profile-plans for regular net and irregular net have been constructed, and the results are satisfactory.

Related Articles | Metrics
PRESENT RESEARCH SITUTATION AND DEVELOPMENT TREND OF AIRBORNE GRAVITY GRADIOMETER
SHU Qing, ZHOU Jian-xin, YIN Hang
Geophysical and Geochemical Exploration    2007, 31 (6): 485-488.  
Abstract2308)      PDF (690KB)(2322)      

The development of the gravity gradiometer is described simply in this paper, and the measuring principle and development experience of the rotating accelerometer gravity gradiometer are emphatically discussed. On the basis of researches on the existing airborne gravity gradiometer, the prospects of the airborne gravity gradiometer are also presented.

Reference | Related Articles | Metrics
RESEARCH AND APPLICATION ON NUMERICAL INTEGRATIONOF HANKEL TRANSFORMS BY DIGITAL FILTERING
ZHANG Wei, WANG Xu-Ben, QIN Qing-Yan
Geophysical and Geochemical Exploration    2010, 34 (6): 753-755.  
Abstract3837)      PDF (363KB)(2320)      

 Numerical integration of Hankel transforms is effective tools for EM Sounding 's forward numerical simulation, this paper made out formula derivation of numerical integration of Hankel transforms by digital filtering, and use digital coefficients to do numerical compute which was put forward by Guptasama and Singh,finally contrasted to theoretical resolve expression and analyzed this algorithm's error distribution. The results show that the calculation of this algorithm continuously approximate its theoretical solution, it has no oscillation, high precision and great practical value in the numerical simulation study.

Related Articles | Metrics
THE CALCULATION METHOD OF EQUIVALENT DIELECTRIC CONSTANT OF MULTI-LAYER UNDERGROUND MEDIA
XIAO Min, CHEN Chang-yan, SU Zhao-feng, JIA Hui, ZHANG Hui
Geophysical and Geochemical Exploration    2013, 37 (2): 368-372.   DOI: 10.11720/j.issn.1000-8918.2013.2.37
Abstract4361)      PDF (780KB)(2285)      
Usually, city road consists of the surface layer and the subbase layer, and each layer contains several layers of different media with different relative dielectric constants. So using one relative dielectric constant to analyze the GPR data of all depths in city road detection is not accurate. This paper deduced the calculation formula of the equivalent dielectric constant of multi-layer underground media. Then the authors took two-layer media model and three-layer media model as examples to calculate the equivalent dielectric constant and the relation between the depth and the travel time. At last, theoretical modeling data of two-layer media were used to check the formula, and the results prove that the calculation formula of equivalent dielectric constant of multi-layer underground media is much better for practical GPR data analysis when there are multi-layer underground media.
Reference | Related Articles | Metrics
MIGRATION VELOCITY ANALYSIS AND MIGRATION IMAGING RESEARCH
YE Jing-Yan, YAO YA-Lin, WANG Yan-Qun, LI Qing
Geophysical and Geochemical Exploration    2009, 33 (6): 674-677.  
Abstract2934)      PDF (1927KB)(2282)      

Migration velocity analysis and migration imaging constitute two important parts in seismic data processing. At

present, time migration has become mature, and depth migration is getting more and more perfect. The common method for time

domain migration imaging is pre-stack time migration. By adopting stacking velocity analysis along the layer, exact layer

stacking velocity can be obtained. Through dip correction, pre-stack time migration and CRP de-migration velocity analysis, the

velocity is optimized step by step, and then a desired RMS velocity field that is up to the geological rule is acquired. In

addition, the method for building the accurate migration velocity field is summed up through the study of the depth migration

method. A new seismic data processing flow in combination of Kirchhoff arithmetic based on ray tracing and wave equation

arithmetic based on wave field extrapolation is presented. As a result, migration velocity analysis and migration imaging are

considerably improved.

Related Articles | Metrics
FEATURES OF GEOPHYSICAL COMPOSITE ANOMALIES AND ORE RESOURCES IN YIHUANG AREA, JIANGXI PROVINCE
WANG Wei-Beng, FANG Ying-Yao, TUN Cheng-Beng
Geophysical and Geochemical Exploration    2010, 34 (5): 573-578.  
Abstract3178)      PDF (2717KB)(2268)      

According to the data obtained from air-borne electromagnetic and magnetic survey and

ground two-frequency IP and magnetic survey, this paper discusses the relationship between the

features of air-borne and ground geophysical composite anomalies and the ore resource distribution.

On the basis of an integrated analysis, geophysical composite anomaly criteria in search for iron, zinc

and lead deposits were established, and 12 important ore-prospecting targets were delineated, which

provides very important clues for finding iron, zinc, lead and some other ore resources.

Related Articles | Metrics
PRESENT STATE AND REVIVAL OF GRAVITY GRADIOMETRY
Zeng Hualin
Geophysical and Geochemical Exploration    1999, 23 (1): 1-6.  
Abstract2330)      PDF (474KB)(2249)      

In this paper,a historical review of the gravity gradiometry is given, the application of this technique to oil exploration and some other fields is described,and its development in future is predicted.

Reference | Related Articles | Metrics
THE INVERSED PROBLEM IN GRAVITY AND MAGNETICEXPLORATION: A REVIEW
Zeng Hualin
Geophysical and Geochemical Exploration    1990, 14 (3): 182-190.  
Abstract2127)      PDF (737KB)(2249)      

On the basis of mote than230 English and Russian papers or monographsissued in the last 30 years as well as nearly 50 Chinese articles published overthe past 10 years on the inversed problem in g avity and magnetic explora-tion, combined with his practice in the study of the inversed problem, the all-thor expounds the inversed methods in gravity and magnetic exploration cur-rently used both at home and abroad, briefs the readers about the researchsituation in China and foreign countries, and makes a detailed review on achi-evements gained in China in comparison with the research levels abroad.Final-ly, suggestions are put forward concerning some subjects which are worthnoticing in future research work.

Related Articles | Metrics
CHAMP, GRACE AND GOCE: THREE SATELLITES FOR SENSING AND/OR MEASURING THE EARTH'S GRAVITY FIELD
ZHANG Chang-da
Geophysical and Geochemical Exploration    2005, 29 (5): 377-382.  
Abstract2218)      PDF (749KB)(2239)      

In this paper, the working principle of three satellites (CHAMP, GRACE and GOCE) has been described, and the important geopotential models and the newest geopotential models (EIGEN-CG01C, GGM02) have been introduced.

Reference | Related Articles | Metrics
More...
Please wait a minute...
For Selected: Toggle Thumbnails
Metallogenic prediction based on the deep interest evolution network: A case study of supergenetic calcrete-hosted uranium deposits in Western Australia
ZHANG Chang-Jiang, HE Jian-Feng, NIE Feng-Jun, XIA Fei, LI Wei-Dong, WANG Xue-Yuan, ZHANG Xin, ZHONG Guo-Yun
Geophysical and Geochemical Exploration    2025, 49 (2): 259-269.   DOI: 10.11720/wtyht.2025.1391
Abstract535)   HTML21)    PDF (9933KB)(251)      

Recommendation system algorithms, having recently garnered significant attention in the field of digital Earth science, are expected to be widely applied in metallogenic prediction. Traditional metallogenic prediction studies fail to fully mine the various types of semantic information in massive geoscience data. The deep interest evolution network (DIEN), as a recommendation system algorithm, can fully mine semantic information to predict user preferences. Therefore, this study employed the DIEN model as the prediction model and the semantic information extracted from bedrock interpretation as the ore-controlling elements according to the database provided by the Western Australian government. The model was trained to perform metallogenic prediction for the study area. The prediction results indicate that 92.95% of uranium ore occurrences fell within the medium-high probability zone in the prediction map, with some unknown zones also showing high prediction probabilities. After removing known uranium ore occurrences in some zones, the retrained model still yielded medium-high prediction probabilities in these zones. The results suggest that the DIEN can effectively mine semantic information in metallogenic prediction studies, and the DIEN model exhibits strong predictive capacity for the study area, providing a novel approach for metallogenic prediction studies.

Table and Figures | Reference | Related Articles | Metrics
Stocks and content of organic and inorganic carbon in soil of the Loess Plateau region
DUAN Xing-Xing, LIU Xiao-Long, HAN Bao-Hua, Adilai·Saitiniyazi , JIN Meng-Ting, LIU Tong
Geophysical and Geochemical Exploration    2025, 49 (1): 239-247.   DOI: 10.11720/wtyht.2025.3603
Abstract487)   HTML12)    PDF (4635KB)(224)      

Soil carbon pools play a significant role in regulating global carbon balance and mitigating greenhouse gases. Hence, estimating soil carbon stocks is critical for assessing the carbon cycle in terrestrial ecosystems. Based on the soil carbon data obtained from the land quality geochemical survey in the study area, this study estimated the stocks of total, organic, and inorganic carbon of various soil layers in Northwest China using the unit soil carbon amount (USCA) method. It analyzed the content characteristics of organic and inorganic carbon in soil under different soil, land use, and topographic types. The results of this study are as follows: (1) All the soil layers at depths ranging from 0 to 2 m in the study area exhibited total carbon of 10 099.4 Mt, including 1 224.8 Mt in the topsoil layer (0~0.2 m), 5 345.9 Mt in the upper soil layer (0~1.0 m), and 4 753.5 Mt in the lower soil layer (1.0~2.0 m). Inorganic carbon predominated in all the soil layers, with its proportion gradually increasing from top to bottom, whereas organic carbon was principally concentrated in the topsoil layer; (2) The high-value areas of inorganic carbon content were primarily distributed in the Huangshui Valley of Qinghai Province, and the Loess Plateau region covering the Longzhong area of Gansu Province, northern Shaanxi Province, and southern Ningxia Province. In contrast, the high-value areas of organic carbon content were chiefly distributed in the Qilian Mountains; (3) The aeolian sandy soil exhibited the lowest organic, inorganic, and total carbon contents in the topsoil and deep soil layers. The dark loessial soil and the loessal soil showed the highest inorganic carbon content in the topsoil layer. The dark felty soil and the dark loessial soil displayed the highest organic carbon contents in the topsoil and deep soil layers, respectively. Additionally, the dark felty soil had the highest total carbon content in the topsoil and deep soil layers; (4) Forests exhibited the highest organic carbon content in the topsoil and deep soil layers, and the highest total carbon content in the topsoil layer. Grasslands showed the highest inorganic and total carbon contents in the topsoil layer. Cultivated land had the highest inorganic carbon content in the deep soil layer. Bare land manifested the lowest inorganic, organic, and total carbon contents; (5) Mountains displayed the highest organic and total carbon contents in the topsoil and deep soil layers. Loess had the highest inorganic carbon content in the topsoil and deep soil layers. Plains showed intermediate carbon contents generally between those of loess and mountains. Besides, high-altitude areas manifested extremely high organic carbon content.

Table and Figures | Reference | Related Articles | Metrics
Total rare-earth oxides in stream sediments in the Dechang area: Geochemical characteristics and prospecting targets
ZHU You-Huan, NIE Fei, ZOU Jia-Zuo, LI Hong-Wei, ZHOU Xue-Cheng, RAN Guang-Hui, LEI Dong
Geophysical and Geochemical Exploration    2025, 49 (2): 270-280.   DOI: 10.11720/wtyht.2025.2571
Abstract416)   HTML26)    PDF (4186KB)(187)      

The Mianning-Dechang area in western Sichuan serves as the most important metallogenic belt of light rare earth elements (LREEs) in China. To make breakthroughs in the exploration of rare earth resources in the Dechang area, a 1:50 000 stream sediment survey was conducted in this study. The analysis of test data characteristics and the extraction of geochemical anomalies reveal that the total rare-earth oxides (REOs) in the area exhibit a pronounced enrichment pattern and that element anomalies largely overlap the spatial distribution of related geological bodies. Through comprehensive analysis using the cumulative frequency method and iterative method, this study determined the lower limits of anomalies and, accordingly, plotted element anomaly maps, with five main anomaly areas being delineated. The comprehensive evaluation of anomalies revealed four prospecting target areas: Huangjiaba, Jiaobacun, Yibasan, and Huajiaoyuan. The analysis of metallogenic geological conditions and the anomaly verification based on drilling in the Gannan area led to the discovery of three light rare earth deposits in the Huangjiaba prospecting target area, two heavy rare earth deposits in the Jiaobacun prospecting target area, two heavy rare earth deposits in the Yibasan prospecting target area, and two heavy rare earth deposits in the Huajiaoyuan prospecting target area. This study posits that the Triassic biotite moyite and biotite monzogranite in the study area are the metallogenic parent rocks of ion adsorption-type rare earth resources, with REEs primarily undergoing enrichment and mineralization in completely weathered layers. Therefore, a simple and effective prospecting pattern for "endogenous and exogenous" ion adsorption-type rare earth deposits in the Dechang area consists of analyzing the geochemical characteristics of the total REOs based on a 1:50 000 stream sediment survey, delineating metallogenic prospect areas that indicate parent rocks for REE enrichment, and selecting sections favorable for the formation and preservation of weathered crusts based on the hypergenic conditions of the enrichment areas, thus achieving the quick delineation of the prospecting target areas.

Table and Figures | Reference | Related Articles | Metrics
High-power-ultrahigh-power electromagnetic exploration technology: Progress and outlook
WANG Jun-Lu, CHEN Hui, LUO Xian-Zhong, ZHANG Xiao-Fei, LIN Pin-Rong, YU Bing, PANG Zhen-Shan
Geophysical and Geochemical Exploration    2025, 49 (4): 755-767.   DOI: 10.11720/wtyht.2025.0178
Abstract408)   HTML31)    PDF (5690KB)(324)      

Over the past century, electromagnetic exploration technology has evolved from direct current resistivity and induced polarization methods to a comprehensive geophysical system. Yet, in China's new mineral exploration phase, challenges like deep-mining needs, cultural noise, and weak 3D interpretation limit traditional methods. High-power-ultrahigh-power electromagnetic technology, by boosting transmission current, combats these issues. It enhances detection depth, enables 3D exploration, and drives technological and application innovation. This paper reviews the development of high-power-ultrahigh-power electromagnetic instruments and current research. It emphasizes that technologies like true 3D full-waveform IP collection and inversion, tensor CSAMT collection and inversion, and multi-parameter joint inversion of time-and frequency-domain EM methods can strengthen deep-target detection. Future research should tackle anisotropic 3D inversion, full-domain inversion with a field source, and extracting polarization and magnetization rates under complex constraints. These advances will propel electromagnetic methods toward greater depth, precision, and intelligence, supporting China's renewed mineral exploration efforts.

Table and Figures | Reference | Related Articles | Metrics
Stratigraphic architecture and activity of the alluvial fan in the eastern piedmont of the Liupan Mountains since the Late Pleistocene
YAO Zi-Heng, DONG Xiao-Peng, YANG Yong
Geophysical and Geochemical Exploration    2025, 49 (1): 1-13.   DOI: 10.11720/wtyht.2025.2257
Abstract390)   HTML18)    PDF (11949KB)(239)      

Many cities or urban residential areas in central and western China reside in alluvial plains formed from piedmont alluvial fans. Hence, revealing the stratigraphic architectures and stability of alluvial fans holds critical significance for urban construction planning and rational land use. The alluvial fan in the eastern piedmont of the Liupan Mountains hosts the urban residential areas and villages of Guyuan City, with a dense population. Moreover, the alluvial fan develops several event deposits recording the activity of the alluvial fan under tectonic movements and climatic changes. Through field geological survey, optically stimulated luminescence dating, controlled source audio-frequency magnetotellurics (CSAMT), and conventional radon measurement, this study revealed the stratigraphic architecture of the alluvial fan and its two-phase event deposits (~43.33 ka B.P. and 22.92~20.72 ka B.P) since the Late Pleistocene. As indicated by the CSAMT and conventional radon measurement results, the alluvial fan still exhibits high activity under the influence of the Haiyuan and Qingshuihe faults. The results of this study provide fundamental data for crustal stability assessment, prevention and control of geologic hazards, and engineering construction in the Liupanshan area.

Table and Figures | Reference | Related Articles | Metrics
Development and application of a quality monitoring platform for nodal seismic data acquisition
ZHANG Jian
Geophysical and Geochemical Exploration    2025, 49 (2): 451-461.   DOI: 10.11720/wtyht.2025.1107
Abstract337)   HTML12)    PDF (12776KB)(191)      

With the application of high-precision,high-density 3D seismic technology and significant improvements in acquisition efficiency,the volume of data from nodal seismic data acquisition has expanded sharply.This leads to growing demands for the quality monitoring of nodal seismic acquisition.Especially,the lag in the synthesis of common shot gather data in node data has affected the quality monitoring and processing efficiency of seismic data.Therefore,the demand for quality control technology has become increasingly prominent in nodal seismic data acquisition.By delving into technologies including the visual monitoring of pre-acquisition node states,node data synthesis,and seismic data quality monitoring,this study independently developed a quality monitoring platform for nodal seismic data acquisition,enabling quality control for the whole nodal seismic data acquisition,involving equipment status,data synthesis,and data quality control.This platform has achieved satisfactory application results in a practical seismic data acquisition project.

Table and Figures | Reference | Related Articles | Metrics
Regional geochemistry of China: History, achievements and future
Xi Xiao-Huan, Dai Yi-Yun, Wang Yong-Hua, Miao Guo-Wen, Zhuang Dao-Ze, Chen Hui-Qiang, Du Hai-Yan, Tang Wen-Chun, Wu Tian-Sheng, Yan Xin-Hua, Li Xu-Shan, Li Li-Hui, Kong Fan-Ji, Zeng Ming-Zhong, Li Ming-Hui, Yang Yi, Chen Xing-Shi, Fu Hai-Tao, Bai Rong-Jie, Yao Lan
Geophysical and Geochemical Exploration    2025, 49 (5): 989-1007.   DOI: 10.11720/wtyht.2025.1288
Abstract312)   HTML181)    PDF (1135KB)(414)      

China's complicated geological background and metallogenic environment have decided that the regional geochemical exploration can play an important role in the field of China's mineral resources prospecting. This is the strategic selection under special metallogenic conditions. The first round of regional geochemical exploration of China was carried out during mid-1950s. Since then, we carried out the second and third round of regional geochemical exploration. Until now, China's regional geochemical exploration has gone through a history of 70 years, and showed unique functions in fields of the exploration and development of nonferrous metals, precious metals as well as the rare minerals, rare earth and scattered minerals. According to incomplete statistics, during 36 years (1979~2015) of the second and third round of regional geochemical exploration, totally 182 different kinds of large to super-large scale deposits were discovered in China mainly by means of regional geochemical exploration. Of which, 61 deposits have nonferrous metals, 93 deposits have precious metals, 24 deposits have critical and scarce minerals, and 4 deposits have other kinds of minerals. On average, 5.06 large to super-large deposits were discovered each year, and one large to super-large deposit was discovered within every 37,000 square kilometers-Calculated on the basis that the second and third round of regional geochemical exploration covered 6.68 million square kilometers' area of China. Regional geochemical exploration has achieved outstanding results in the field of mineral prospecting, and made great contributions in terms of ensuring and promoting China's economic development. As our country's basic, public good and strategic geological work, regional geochemical exploration comes into the 21st century marked by big data and earth system science. Based on high precision and good quality big data, guided by metallogenic geochemical theories, and supported by modern science and technology, the regional geochemical exploration will start a new period of development. In the future, we'll continue to carry out the high technical standard and high quality regional geochemical exploration, achieve our goal of complete covering the whole area of mainland China with regional geochemical exploration, and provide more strategic prospective areas for our country's mineral resources exploration. On the basis of high-precision big data, metallogenic theories and modern science and technology, we'll establish AI and IT application system, so as to push forward the exploration and utilization of deep minerals, buried deposits as well as the critical and scarce minerals which are difficult to identify, and achieve greater breakthroughs in the geological exploration of mineral resources. By using big data technics, China's regional geochemical exploration team will continuously solve the mineral resources exploration and evaluation problems, and in this process, our geochemical exploration system will be gradually integrated into our country's science and technology advancement.

Table and Figures | Reference | Related Articles | Metrics
Application of time-frequency peak filtering with minimum mean cross-entropy in ground penetrating radar signal denoising
ZHENG Wei, TIAN Ren-Fei, GAO Yu-Han, WU Bin
Geophysical and Geochemical Exploration    2025, 49 (2): 404-410.   DOI: 10.11720/wtyht.2025.1300
Abstract302)   HTML8)    PDF (4113KB)(122)      

In practical detection operations using ground-penetrating radar (GPR), factors such as environmental noise and instrument errors frequently cause signals to be mixed with substantial noise, seriously reducing signal quality and the reliability of analytical results. To address this issue, this study proposed a time-frequency peak filtering method combined with minimum mean cross-entropy (TFPF-MMCE) for denoising GPR signals. This method combined time-frequency peak filtering with the cross-entropy function, enabling effective noise suppression and precise preservation of valid signals through precise optimization of the time-frequency representation, thereby significantly improving the quality of GPR signals. Numerical simulation and field GPR experiments validated that the TFPF-MMCE method exhibited a high noise removal capability and, thus, can effectively eliminate random noise while significantly improving signal clarity and reliability. Compared to traditional denoising methods, TFPF-MMCE shows significant advantages in denoising effectiveness and noise resistance stability, suggesting promising application potential and practical value in the field of GPR signal processing.

Table and Figures | Reference | Related Articles | Metrics
Exploration and play fairway prediction of the Jinchanshan mine in Inner Mongolia using electro-adsorption method
CHEN Qing-Yun, ZHANG Jiang-Bo, ZHONG Song-Shu, ZHOU Qi-Ming, SHI Yu-Jiao, LIU Yao-Hui, ZHAO Li-Ke, TAN Jie
Geophysical and Geochemical Exploration    2025, 49 (2): 281-287.   DOI: 10.11720/wtyht.2025.2494
Abstract292)   HTML16)    PDF (4491KB)(168)      

To evaluate the resource potential of the Jinchanshan mining area, this study conducted analysis and tests of metal element content in soil samples from two geochemical profiles using the electro-adsorption method. By combining the geological conditions of the mining area, this study revealed pronounced positive geochemical anomalies of Au, Ag, Cu, Pb, and Zn above the known gold deposits. The anomalous areas corresponded well with deposits, confirming the effectiveness and feasibility of the electro-adsorption method in the study area. The study identified geochemical anomalies Ⅰ and Ⅱ to the west of the Guaibanggou-Yangpo-Xiaoxigou mineralization zone in the first geochemical profile. Along the second profile, located between the Guaibanggou-Yangpo-Xiaoxigou and Nandawa-Limazigou-Loufengmao mineralization zones, anomalies Ⅲ and Ⅳ were observed at the westernmost end. The comprehensive geological analysis of the mining area indicates that the Ⅰ and Ⅲ anomaly zones exhibit favorable geological conditions for mineralization, serving as play fairways. The play fairway prediction conducted in this study provides targets for future exploration in the mining area.

Table and Figures | Reference | Related Articles | Metrics
Microtremor survey-based investigation of deep geothermal- and water-controlling structures in the Salt Lake geothermal field, Yuncheng City, Shanxi Province, China
WANG He-Yu, WU Guo-Peng, CHEN Guo-Xiong, CHAI Jian-Zhou, MAO Jie, WANG De-Tao
Geophysical and Geochemical Exploration    2025, 49 (1): 32-40.   DOI: 10.11720/wtyht.2025.1327
Abstract283)   HTML16)    PDF (4299KB)(280)      

The Salt Lake geothermal field in Yuncheng City, Shanxi Province, China lies beneath a densely populated urban area, posing significant challenges to further geothermal exploration and extraction. Based on the distribution of geothermal gradients in the geothermal field, which are higher in the southwest and lower in the northeast, a NE-trending microtremor survey profile was arranged in the southern part of Yuncheng City, aimed at investigating the deep geothermal reservoir structure and NW-trending structures in the geothermal field. The 2D velocity structure profile reveals a pronounced low-velocity anomaly in the eastern part, which is supposed to be induced by the fault fracture zone formed by multiple NW-striking tensional faults. Spatially, this concealed fault zone roughly corresponds to the low-geothermal gradient anomaly in the northeastern Salt Lake geothermal field, suggesting that this fault fracture zone might facilitate the rapid infiltration of cold surface water, thereby lowering the temperature of deep rocks in the northeastern part, leading to the formation of a large-scale low-temperature anomaly zone. Additionally, the faults identified by the microtremor survey can be traceable and confirmed in a controlled source reflection seismic profile in the study area, demonstrating the complementary nature of the two methods. This study further reveals the deep geothermal structures of the Salt Lake geothermal field based on previous efforts. This study provides more valuable bases and guidance for future exploration and resource evaluation of geothermal fields in the region while also demonstrating the effectiveness and superiority of the microtremor survey method in research on urban geothermal resources.

Table and Figures | Reference | Related Articles | Metrics
VMD-LSTM-based noise detection and predictive reconstruction for magnetotelluric signals
LI Bo, LI Chang-Wei, LUO Run-Lin, LU Yu-Zeng, WANG Zhan
Geophysical and Geochemical Exploration    2025, 49 (1): 100-117.   DOI: 10.11720/wtyht.2025.2309
Abstract283)   HTML4)    PDF (11043KB)(169)      

In thereconstruction of actual subsurface structures, strong noise limits the accuracy of the magnetotelluric (MT) method,causing adverse effects on later data interpretation. Given this and the characteristics of the MT time series,this study analyzed different types of noise in the MT time series,proposing a signal denoising technique based on variational mode decomposition (VMD) and long short-term memory (LSTM) predictive reconstruction. First, baseline drift correctionwas performed for the original MT datausing the VMD signal decomposition algorithm. Then, the time series was further decomposed into multiple different intrinsic mode functions (IMFs) through VMD. The LSTM time series detection model was trained using interference-free data in the RSE component, which was then identified. Afterward, the time intervals containing noise weremarked, the increasement of noise was calculated, and the noise information wastransmitted to the original signal for truncation and removal. Finally, an LSTM multi-dimensional prediction model was trained for the IMFs, followed by the prediction of missing values under various modes. The predicted results under all modes were combined to obtain the final predicted MT signals. After signal reconstruction, a secondary signal-noise separationwas performed for spike-pulse noise that was not effectively identified through VMD. TheVMD-LSTM-based signal denoisingtechnique can accurately identify strong noise in MT signals by merely processing the time series intervals containing noise, thuseffectively preserving interference-free data. Moreover, its prediction errors can berestricted within the allowable error range of the data processing for MT signals. Therefore, this technique enjoys significant denoising effects.

Table and Figures | Reference | Related Articles | Metrics
Investigating fault structure characteristics based on aeromagnetic data and precise relocation results of small earthquakes: A case study of the Panxi area
LI Jiao-Jiao, ZHANG Yong-Jun, HE Yi-Yuan, LI Yi-Chuan, LI Shi-Jun, CHEN Yao
Geophysical and Geochemical Exploration    2025, 49 (1): 206-214.   DOI: 10.11720/wtyht.2025.1082
Abstract282)   HTML5)    PDF (7402KB)(246)      

This study investigated the Panxi area as an example to delineate faults and determine their current activity levels using aeromagnetic data and precise relocation results of small earthquakes. A total of 42 faults were delineated in the study area. Among them, 21 faults were inferred to be active currently, including 10 newly inferred active faults. This study examined the three-dimensional structural characteristics of some local sections of major faults in the study area. The results indicate that precise relocation results of small earthquakes can identify highly active faults and characterize their deep structures. Additionally, based on the delineation of basement faults using aeromagnetic data, the locations of active faults were constrained, and concealed active faults within the sedimentary cover were also determined. The proposed method holds certain practical significance for promoting research on the spatial distribution and activity of fault structures using aeromagnetic data.

Table and Figures | Reference | Related Articles | Metrics
Prediction of heterogeneous,thin Triassic sandstone reservoirs in the Lunnan area,Tarim Basin
MI Xin-Wu, ZHOU Cheng-Gang, TIAN Jun, HAN Yao-Zu, LI Ya-Nan, XIAO Bing-Qing
Geophysical and Geochemical Exploration    2025, 49 (2): 321-329.   DOI: 10.11720/wtyht.2025.1357
Abstract280)   HTML20)    PDF (13788KB)(166)      

The Triassic strata in the Lunnan area of the Tarim Basin represent a continental deltaic sedimentary system,with sedimentary subfacies including deltaic plain,deltaic front,and prodelta.The rapid phase transition of reservoirs and the high-frequency sand-mudstone alternating deposition create thin,highly heterogeneous reservoirs,rendering high-precision reservoir prediction extremely challenging.Under the guidance of sedimentary petrology and seismic sequence stratigraphy,this study conducted comprehensive seismic and geological research.Then,based on isochronous sequence interpretation,as well as seismic facies analytical results,this study established a lithofacies model.By constraining the pre-stack geostatistical inversion process,this study determined the spatial distribution of sand bodies.The practical application demonstrates that the proposed method enhances the vertical resolution of heterogeneous,thin reservoirs while significantly reducing lateral uncertainty.The predicted results align with actual drilling and production performance data and thus can provide valuable support for the efficient exploitation of hydrocarbon reservoirs.

Table and Figures | Reference | Related Articles | Metrics
Application of microtremor survey technology in shield tunnels passing through urban karst formations
ZHANG Zhong, FENG Wen-Cheng, LIN Yang
Geophysical and Geochemical Exploration    2025, 49 (2): 520-528.   DOI: 10.11720/wtyht.2025.1146
Abstract278)   HTML15)    PDF (7289KB)(288)      

Due to dense buildings and structures and insufficient drilling surveys, the construction of shield tunnels passing through urban karst formations that host dense buildings faces significant risks of surface fracturing and subsidence caused by karst development. Hence, this study employed the microtremor survey technology with strong anti-interference capability in complex environments to address this challenge. Based on the technology, it analyzed the structural characteristics of wave velocities in underground rock formations through the inversion of the apparent shear-wave velocity profile. Combined with geological drilling data, it inferred the bedrock interface, highly weathered unconsolidated formations, and karst cave anomaly zones. Key findings are as follows: (1) The apparent shear-wave velocities in the study area gradually increased from the shallow to deep formations. Formations with wave velocities above and below 300 m/s were inferred to be limestone and Quaternary formations, respectively, with the rock-soil interface at depths approximately between 10~15 m; (2) Seven low-value anomaly zones of apparent shear-wave velocities ranging from 150~240 m/s were interpreted. They were presumed to be unconsolidated formations or karst caves at depths ranging from 8~30 m. Relying on strong anti-interference and high accuracy, the microtremor survey technology can accurately identify the shear-wave velocity structures of underground profiles, lithologic interfaces of formations, unconsolidated formations, and karst cave anomalies. Therefore, the technology is effective in the geological exploration of urban dense building areas with karst development.

Table and Figures | Reference | Related Articles | Metrics
Application of factor analysis in geochemical zoning and its implications: A case study of 1:50,000 stream sediment survey in the Juxian-Wulian area, Shandong Province
LU Wen-Dong, SUN Bin, LI Guang-Jie, WEI Wei, XIA Xiao-Xing, PAN Bing-Lei, SHA Qing, LYU Xiao-Hong, LI Yuan-Chun, QIAO Na
Geophysical and Geochemical Exploration    2025, 49 (2): 411-421.   DOI: 10.11720/wtyht.2025.2505
Abstract269)   HTML9)    PDF (4697KB)(228)      

This study investigated data from a 1:50,000 stream sediment survey in the Juxian-Wulian area, Shandong Province using factor analysis. By extracting eight representative factors, this study identified element assemblage types. Then, this study performed geochemical zoning based on the factor scores and discussed the relationships between various sub-zones and their geological background. Based on the geochemical zoning results, as well as geological conditions for mineralization, this study determined favorable geological bodies and prospecting targets and discovered new prospecting clues.The most significant mineralization combination in this area is Au-Cu-Ag-Mo-Bi, followed by Pb-Zn; The V-Ti-Co-Mn combination and Ni-Cr combination can serve as exploration elements, indicating that there may be favorable mineralization mechanisms in the center and deep parts of the combination anomaly zone. Finding volcanic craters and hidden explosive breccia tubes in the distribution areas of volcanic rocks in this region or area is an important direction for mineral exploration; In the area of Shichang Fangzi Village in the eastern part of the research area, there is a comprehensive zoning with a F2-F4-F1 three factor combination model. The Mesozoic Buliu sequence and Weideshan sequence rock bodies are favorable geological bodies for mineralization, and the NE trending structural belt is a favorable place for mineralization, indicating the direction of prospecting.

Table and Figures | Reference | Related Articles | Metrics
Extracting geological mineral information from regional geochemical exploration data: A case study of the Gaoqiao area in Huixian County, Gansu Province, China
TIAN Liao-Dong, LONG Deng-Hong, YANG Tao, LIU Hai, MA Min-Xiong, JIANG Hong-Ying
Geophysical and Geochemical Exploration    2025, 49 (4): 768-777.   DOI: 10.11720/wtyht.2025.1267
Abstract264)   HTML18)    PDF (6159KB)(196)      

The deep mining of geological mineral information from geochemical exploration data has been a hot research topic in mathematical geology and geological big data. Despite China's abundant regional geochemical exploration data, the deep mining of geological mineral information from these data remains limited, necessitating a scientific, efficient, simple, and feasible data processing workflow and analytical methodology. This study investigated the Gaoqiao area in Huixian County, Gansu Province, China. According to the geological background and the theories of element properties and geochemical behavior, this study processed relevant element data to mine the geological mineral information in geochemical exploration data. It established preliminary mathematical models for the boundary delineation and lithofacies classification of intermediate-acid rock masses, and the boundary delineation of mafic volcanic rocks in the Gaoqiao area to scientifically guide geological mapping. It preliminarily established the target delineation model for tectonic altered rock-hosted gold deposits. The model's effectiveness was substantiated by seven newly delineated target areas with promising prospecting potential. The mineral inspection identified five ore occurrences, including four reported for anomalies related to mineralization, with two currently under provincial geological exploration. The results of this study show that by calculating and processing data based on the geochemical properties of elements, the hidden information in regional geochemical exploration data can be further mined to effectively guide and modify geological mapping, thereby enhancing mapping efficiency and quality. High-quality anomaly information can be further extracted from geochemical exploration data to effectively guide mineral prospecting in new areas.

Table and Figures | Reference | Related Articles | Metrics
A Marchenko theory-based method for internal multiple suppression
LIAO Zhen, MA Ji-Tao, CHEN Xiao-Hong, LI Wen-Jin
Geophysical and Geochemical Exploration    2025, 49 (1): 52-62.   DOI: 10.11720/wtyht.2025.1213
Abstract262)   HTML7)    PDF (5190KB)(193)      

Seismic data processing reveals that internal multiples exhibit highly complex formation mechanisms,making their accurate identification and effective suppression a persistent challenge in geophysical exploration.Traditional methods for internal multiple suppression frequently require manual identification of subsurface reflection interfaces,making them difficult to apply to complex underground medium structures.Moreover,these methods are not only computationally cumbersome but also typically ensure only temporal and positional consistency when predicting internal multiples.The amplitude often deviates from observed values,requiring adaptive matching subtraction algorithms for effective suppression.This study developed an internal multiple suppression method based on Marchenko theory.Specifically,the wavefield relationships between the focusing function and Green’s function were constructed using the convolution and correlation reciprocity theorem of the Green’s function during data processing.The Green’s function was then solved using the focusing function,yielding either multiples or primaries constructed from the Green’s function.This method requires only the background velocity or the original data as operators during the iterative multidimensional correlation and convolution process,rendering it simple and computationally efficient. This study constructed an expression for the primary wave field using the Green’s function and the Marchenko equation.The tests using the SMAART model and actual data from the Gulf of Mexico demonstrate that the Marchenko method can effectively suppress internal multiples under the conditions of complex subsurface media.The iterative process requires no velocity information,providing significant advantages over conventional methods and great potential for application in complex underground environments where layers are difficult to distinguish.

Table and Figures | Reference | Related Articles | Metrics
Petrophysical modeling of tight sandstones of the Lianggaoshan Formation,Southeast Sichuan
ZHANG Zheng-Yu-Cheng, SU Jian-Long
Geophysical and Geochemical Exploration    2025, 49 (2): 288-298.   DOI: 10.11720/wtyht.2025.1356
Abstract244)   HTML8)    PDF (3907KB)(190)      

The exploration and exploitation practices in the Sichuan Basin in recent years indicate that breakthroughs have been achieved in the Jurassic continental tight sandstones.Nevertheless,due to the low porosity and permeability of tight sandstone,conventional post-stack inversion frequently exhibits limited resolution,failing to meet the accuracy requirements for the prediction of actual exploration reservoirs.This necessitates pre-stack inversion for detailed characterization of tight sandstones,while S-wave velocity is crucial to pre-stack inversion.Based on continental exploration wells drilled in the southeastern Sichuan Basin in recent years,this study developed a petrophysical modeling technique for dense sandstones in this region.Specifically,given the low permeability of tight sandstones and the uneven mixing of fluids in the pore space,the Domenico model was preferentially employed to calculate the pore fluid modulus.Although fluid modulus and density are inevitably variable under the actual subsurface conditions,previous studies typically use constant values to conduct petrophysical modeling for tight sandstones.In this study,depth-dependent values were applied.Tight sandstones in the southeastern Sichuan Basin generally exhibit a porosity of less than 10%.Therefore,calculations using the Nur and the Krief models will yield high errors.Given this,this study preferred using the Lee-Pride model to calculate the skeleton modulus and controlled the relationship between the rock matrix and the skeleton by introducing the value of the cementation parameter.The application of the established petrophysical model of tight sandstone to an actual survey area indicates high agreement with data from actual wells.Additionally,based on log statistics,Poisson's ratio,the most sensitive parameter is used for high-precision pre-stack inversion in the proposed technique,enabling detailed characterization and prediction of the internal structure of channel sandstones.

Table and Figures | Reference | Related Articles | Metrics
The indicators of tectonic superimposed halo for prediction and discrimination of denudation degree of deep and peripheral blind ore deposits of hydrothermal deposits and their application effect
WEI Zi-Xin, LI Hui, WEI Yang, REN Liang-Liang, WEI Jiang, WANG Xu, YU Bin, WANG Jun, PENG Wei, WANG Xi-Jun, XIE Zi-Chen, JIA Jin-Dian, YAO Yue-Wen, AN Na
Geophysical and Geochemical Exploration    2025, 49 (1): 14-21.   DOI: 10.11720/wtyht.2025.2580
Abstract234)   HTML10)    PDF (3456KB)(286)      

The method of structural superimposed halo to find blind ore is a new method to find blind ore, which is based on the study of the theory of primary halo to find blind ore-the axial zoning of primary halo, and puts forward two new theories of ‘primary superimposed halo theory’ and ‘structural superimposed halo theory’. The accuracy of blind ore prediction by superimposed halo of structure is determined by the correctness of prediction marks and indexes. Based on the summary of seven common signs of structural superimposed halos in the prediction of deep blind ore deposits in more than 100 hydrothermal deposits, four important quantitative qualitative prediction signs are upgraded to quantitative prediction indicators. The structural superimposed halo prediction signs and indicators of 17 different combinations of accurate prediction of blind ore and discrimination of ore body denudation degree in the deep and periphery of the mining area are described in detail, and a practical ideal model of structural superimposed halo for predicting blind ore and discriminating ore body denudation degree is established. The common prediction signs and indicators of the model have important guiding significance for the prediction of deep blind ore in typical hydrothermal deposits, and have achieved remarkable prospecting results in more than 100 mine applications.

Table and Figures | Reference | Related Articles | Metrics
3D seismic data splicing and its application to shallow sand bodies in the Bohai oilfield
LUO Teng-Teng, DUAN Xin-Yi, ZHANG Jin-Hui, MA Zhen
Geophysical and Geochemical Exploration    2025, 49 (2): 340-348.   DOI: 10.11720/wtyht.2025.1299
Abstract226)   HTML8)    PDF (11199KB)(197)      

Conventional splicing methods aim to serve structural interpretation and align the reflection energy and frequency of large strata based on seismic data themselves.They adopt seismic data only from one study area in processing data of overlap zones,failing to fully utilize the effective information in seismic data of all study areas.Consequently,the resulting low-fidelity seismic data in overlap zones severely affect subsequent discrimination of reservoir connectivity and hydrocarbon-bearing properties.This study proposed a weighted fusion-based data spicing method for overlap zones,where seismic data from different study areas are fused with corresponding weights to generate a trace of seismic data.The application of the proposed method to actual seismic data shows that the processing results based on the fusion and splicing of data in overlap zones can effectively improve the quality of seismic data,with high continuity of seismic events on the profile, contributing significantly to the discrimination of the connectivity of shallow sand bodies.

Table and Figures | Reference | Related Articles | Metrics
Characteristics and influencing factors of selenium content in soils and crops in typical high-selenium-content regions of western Hubei Province, China
QIN Hao-Lin, LI Ming-Long, ZHENG De-Shun, SUN Feng-Bo, ZHANG Kai
Geophysical and Geochemical Exploration    2025, 49 (2): 490-499.   DOI: 10.11720/wtyht.2025.2480
Abstract224)   HTML5)    PDF (3616KB)(194)      

Understanding the distribution patterns of selenium in soils and crops is critical to developing selenium-rich industries. Enshi City in Hubei Province is known for its extensive selenium-rich soils, establishing this city as a promising area for selenium-rich agriculture. This study investigated Xintang Township in Enshi. Based on the organization and analysis of the geochemical data of 2 469 soil samples and 237 crop samples of maize, potatoes, rice, radish, cabbage, and tea, this study offered a systematic summary of the selenium distribution in soils and factors influencing selenium content in crops in the study area. The results indicate that the topsoils exhibit selenium content ranging from 0.14×10-6 to 25.74×10-6, with a background value of 0.81×10-6, which is 3.7 times the national background of selenium content in soils. Selenium-rich soils cover 86.23% of the total area of the study area, and two NEE-directed selenium-rich belts are found. The spatial distribution of selenium in soils is closely related to soil-forming parent materials. Soils with Permian black rock series as parent materials exhibit notably higher selenium content, with an enrichment coefficient of 3.74. In high-selenium-content areas, rice, radish, and cabbage exhibit selenium enrichment rates exceeding 65%. Except for potatoes, crops display positive correlations between their selenium content and the selenium content in their root soils, with tea showing the highest correlation (P<0.01, R=0.84). This suggests a close relationship between the selenium content in crops and their root soils. The crops in cultivated areas with Permian black rock series and Triassic carbonate rock series as soil-forming parent materials exhibit high bioconcentration factors of selenium, with soils and crops with Permian black rock series as soil-forming parent materials presenting the highest average selenium content. This highlights the significant impacts of soil-forming parent materials on crop selenium content.

Table and Figures | Reference | Related Articles | Metrics
Grain size effect and chemical speciation of elements in tailings from the Han-Xing iron deposit: Implications for resource utilization and environmental protection
CHANG Hao, YUAN Zhao-Xian
Geophysical and Geochemical Exploration    2025, 49 (2): 470-478.   DOI: 10.11720/wtyht.2025.2422
Abstract223)   HTML5)    PDF (1837KB)(214)      

Despite bearing valuable recyclable elements, mine tailings pose environmental risks. However, there is a lack of studies on the geochemical characteristics of tailings in China and abroad, hindering their appropriate treatment and reuse. This study collected tailing samples from the Han-Xing Iron deposit in Hebei Province, China and conducted the analysis and tests of these samples. This study determined the concentrations and chemical speciation (i.e., exchangeable, carbonate-bound, Fe-Mn oxide-bound, organic-bound, and residual forms) of elements including Fe, Co, S, Cu, and Zn in tailing particles with varying grain sizes. Accordingly, it explored the implications for the exploitation and utilization of tailing resources, along with the assessment of environmental risks. This study provides deeper insights into the geochemical characteristics of tailings, producing positive impacts on the exploitation and utilization of tailing resources, as well as the prevention of environmental risks.

Table and Figures | Reference | Related Articles | Metrics
Comparison of error indicators for performance tests of gravimeters based on different specifications
CHANG Xiao-Peng, CHEN Liang, ZHANG Xiang, QIAO Yan-Yi, JIANG Cheng-Long
Geophysical and Geochemical Exploration    2025, 49 (2): 370-377.   DOI: 10.11720/wtyht.2025.1081
Abstract222)   HTML9)    PDF (703KB)(263)      

As an important part of gravity investigation, the performance tests of gravimeters are required throughout field surveys. In these tests, mean squared error (MSE), accuracy, and root mean squared error (RMSE) are commonly employedto quantitatively describe the test results. The comparison of the theoretical equations for dynamic and consistency tests in specifications on geological surveys, petroleum, and measurement reveals a pronounced confusion in the usage of MSE, accuracy, and RMSE. This issue is observed in the consistent equations forconsistency testsin these specifications. Through investigations into the equations used in the dynamic and consistency tests inthe threespecifications, this study analyzed the differences between mean MSE and RMSE, elucidated the normativity of RMSE relative to MSE, and determined the applicablerange of RMSE. To avoid confusion, it is recommended that accuracy be used for qualitative expression and RMSE for quantitative expression in these specifications.

Table and Figures | Reference | Related Articles | Metrics
A fine-scale prediction method for small-scale faults and fractures in shale gas reservoirs
LYU Qi-Biao, WU Qing-Jie, LI Shu-Guang, WANG Ren-Fu
Geophysical and Geochemical Exploration    2025, 49 (2): 299-311.   DOI: 10.11720/wtyht.2025.1278
Abstract209)   HTML7)    PDF (12919KB)(205)      

Small- and micro-scale faults fractures (fractures and faults with fault throw less than 10 m) that originally developed in shale strata have a significant impact on the probability of penetration, stimulation volume, and production capacity of high-quality reservoirs in horizontal well sections. Therefore, it is critical to conduct fine-scale fault and fracture prediction. However, any single method struggles to accurately identify and predict these faults and fractures. Based on the developmental conditions of small-and micro-scale faults and fractures in the shale gas reservoirs of the Longmaxi Formation in the southern Sichuan Basin, this study conducted forward modeling, response mechanism analysis, and characterization of fracture responses, developing a prediction method integrating predicting and modeling. Furthermore, this study preferentially investigated techniques including seismic data processing, small-scale fault and fracture prediction, multi-scale fracture modeling, and fusion characterization. The results of the proposed method were highly consistent with the geological anomalies including small and micro-scale faults, lost circulation, and inter-well pressure channeling observed during the drilling of horizontal wells in the shale gas reservoirs of the Longmaxi Formation. Furthermore, these results exhibit a strong positive correlation with the single-well production capacity. All these corroborate that it is feasible to use this method to predict small- and micro-scale faults and fractures. This study can serve as a reference for predicting small-scale faults and fractures in other strata of the same type.

Table and Figures | Reference | Related Articles | Metrics
3D seismic data reconstruction based on Shearlet transform
HUANG Wei-Hong, ZHANG Hua, WU Zhao-Qi, DAI Meng-Xue, BAO Xing-Yue, JIANG Wei-Long, QIU Xiu-Quan
Geophysical and Geochemical Exploration    2025, 49 (2): 394-403.   DOI: 10.11720/wtyht.2025.1271
Abstract208)   HTML7)    PDF (6054KB)(169)      

Seismic data collected in the field frequently suffer from missing values due to constraints of acquisition cost or terrain. Data reconstruction is a critical step in seismic data preprocessing. Based on the compressed sensing theoretical framework, this study subsampled synthesized data using the 2D random undersampling technique. Then, the 3D seismic data were divided into a series of time slices. By introducing the sparse Shearlet transform and using the convex set projection (POCS) algorithm, this study conducted sequential data reconstruction for various time slices. As a result, a Shearlet transform-based time-domain 3D seismic data reconstruction method was developed. Numerical experiments and measured results demonstrate that the proposed reconstruction method exhibits a higher signal-to-noise ratio, a higher computational speed, and better effects than a Curvelet transform-based approach.

Table and Figures | Reference | Related Articles | Metrics
Footprint analysis and footprint-FFT-based fast forward modeling of potential fields
SUN Si-Yuan, GAO Xiu-He, CAO Xue-Feng
Geophysical and Geochemical Exploration    2025, 49 (1): 63-72.   DOI: 10.11720/wtyht.2025.2424
Abstract208)   HTML3)    PDF (4276KB)(185)      

Conventional inversion and forward modeling of large-scale potential field data from gravity and magnetic exploration, demanding high computer performance, exhibit low efficiency. Hence, this study defined a footprint determination method for potential fields, analyzed the influencing factors, and innovatively proposed a footprint-FFT strategy for forward modeling of potential fields. The footprint-FFT algorithm improved the forward modeling process from three aspects: (1) Kernel matrices were calculated based on the potential field-derived properties, significantly reducing their size; (2) A footprint concept for potential fields was introduced and defined, decoupling data scales from kernel matrix sizes, thus improving the kernel matrix computing efficiency and reducing the hardware cost; (3) Based on the above, the computing area was divided into subspaces, and the footprint-FFT strategy was first proposed for the batch computing of potential fields in subspaces, accelerating the forward modeling process. By reducing the computational complexity and storage of the kernel matrix, the method proposed in this study significantly improved the operational speed while ensuring computational accuracy. This method enabled the fast forward modeling of potential fields with more than 1 billion grids on a laptop computer within a few minutes. Theoretical examples demonstrate that this method has high efficiency and moderate requirements for computer configuration, manifesting considerable potential in the forward modeling and inversion of large-scale potential field data.

Table and Figures | Reference | Related Articles | Metrics
Inversion imaging of petrophysical data
SU Ben-Yu, ZHANG Jia-Qi, TAN Deng-Pan, YU Jing-Cun, LI Zhi-Xiong
Geophysical and Geochemical Exploration    2025, 49 (1): 129-137.   DOI: 10.11720/wtyht.2025.1157
Abstract208)   HTML4)    PDF (5029KB)(228)      

The inversion of petrophysical data can image the microscopic fracture structures inside rocks, revealing the evolutionary patterns of fractures within rocks and soil with changes in external environments. Hence, it is an intuitive and reliable method for investigating the mechanisms of deep geotechnical disasters. This study presented a petrophysical data acquisition system and resistivity-based forward modeling and inversion algorithms. Based on the above, this study conducted numerical simulations of 2D and 3D inversion imaging of petrophysical data. As indicated by the numerical simulation results, 2D inversion imaging can characterize millimeter-scale rock fractures with high/low resistivities, whereas 3D inversion imaging can accurately locate and effectively identify millimeter-scale fractures and vugs with high/low resistivities. Moreover, data measurement and inversion imaging were conducted on rock samples subjected to microwave-induced fracturing in three states: heated sandstone before failure, sandstone heated to a molten state, and molten sandstone in a cooled state, preliminarily revealing the variation patterns of sandstone fractures under microwave heating. Overall, this study provides a novel method for exploring the mechanisms of deep geotechnical disasters.

Table and Figures | Reference | Related Articles | Metrics
Soil geochemical characteristics and prospecting orientations in the Bishan area, Xianghuang Banner, Inner Mongolia
CHAI Chen-Hui, QIN Yue-Qiang, LI Peng-Yuan, XIN Kai, WANG Jian-Min, YIN Jia-Le, LI Chao-Qun, YUAN Ning-Bo, GUO Dong, SUN Yu-Fei
Geophysical and Geochemical Exploration    2025, 49 (4): 778-789.   DOI: 10.11720/wtyht.2025.1382
Abstract200)   HTML12)    PDF (5190KB)(156)      

To determine the optimal prospecting target in the Bishan area, Xianghuang Banner, Inner Mongolia, this study conducted a geochemical survey at 1∶10,000 scale. Using multivariable statistical analysis, this study analyzed 14 elements (i.e., Au, Ag, Cu, Pb, Zn, Mn, Mo, Li, W, Sb, Bi, B, Hg, and As) in soil samples from the study area. The results indicate that six elements, including Au, Ag, Pb, Zn, Li, and As, exhibited high enrichment degrees, suggesting their significant metallogenic potential. The anomalies of high-content elements are principally dictated by the outer contact zone between tuffs/tuffaceous volcanic breccias and granites in the Lower Permian Sanmianjing Formation. The ore-forming elements are primarily controlled by the NW-trending fault zone. Alterations like silicification, binarite, pyrite, galena, and sphalerite alterations serve as principal prospecting markers. Based on the geological conditions for mineralization in the Bishan area, this study delineated three composite anomalies and two prospecting targets, with Ag ore bodies discovered through engineering validation. Soil geochemistry proves crucial for the successful identification of polymetallic ore bodies, thereby providing a significant foundation for subsequent mineral exploration efforts.

Table and Figures | Reference | Related Articles | Metrics
Pre-stack inversion for prediction of the Paleogene reservoirs in the Panyu 4 Sag
ZHANG Zhen-Bo, LIU Ling, LIU Dao-Li, YANG Deng-Feng
Geophysical and Geochemical Exploration    2025, 49 (2): 312-320.   DOI: 10.11720/wtyht.2025.1265
Abstract199)   HTML10)    PDF (7970KB)(182)      

To improve the inversion accuracy of reservoirs in the Paleogene strata with limited wells and sedimentary and structural complexity, two key technologies were used in seismic data processing: sparse pulse inversion for primary wave estimation and anisotropic Q-pre-stack depth migration (PSDM). This contributed to improved quality of seismic gathers and imaging. Then, the pre-stack simultaneous inversion method was applied as follows: (1) Stacking velocity and layer-constrained Dix inversion were employed to obtain a low-frequency model of P-wave impedance; (2) Elastic impedance inversion was performed using angle-stacked data and well-calibrated wavelets, yielding far, medium, and near elastic impedance; (3) Initial P- and S-wave impedance, as well as initial density, were obtained through Fatti inversion; (4) Pre-stack simultaneous inversion was performed to obtain the final P- and S-wave impedance and density; (5) Lithology and physical property inversion results were used to predict the reservoir distribution range. This method, driven by three-dimensional seismic data and exhibiting low dependence on logs, can serve as a reference for reservoir prediction under similar geological settings.

Table and Figures | Reference | Related Articles | Metrics
1:50,000 geochemical survey-based assessment of land quality and land development suggestions for the Yao'an Dam area, Yunnan Province, China
YANG Ming-Long, HUANG Jia-Zhong, ZHU Zhi-Ping, XU Lei, CHENG Yan-Xun, ZHAO Meng-Sheng, ZHANG Long
Geophysical and Geochemical Exploration    2025, 49 (2): 510-519.   DOI: 10.11720/wtyht.2025.2584
Abstract196)   HTML2)    PDF (7224KB)(181)      

Land emerges as the most fundamental resource for agricultural production, and addressing land quality-related issues is the key to ensuring high food quality. A comprehensive understanding of land quality is crucial to the scientific and sustainable utilization and development of land resources. This study conducted a 1:50,000 geochemical survey of land quality in the contiguous farmland in Dongchuan Town, Yao'an County, Yunnan Province. Accordingly, this study provided a comprehensive assessment of soil nutrients, environment, dry and wet atmospheric deposits, and agricultural irrigation water. Based on the assessment results, this study determined the production areas of green food and pollution-free agricultural products, aiming to provide a reference for the development and utilization of sustainable, green cultivated land. The results indicate that soils in the study area are nutrient-rich and enjoy a favorable environment, high-quality irrigation water, and an excellent atmospheric environment. The comprehensive grade assessment results of soil quality align with those of land quality, revealing that the first and second-grade high-quality soils account for 68.98% of the total area. A batch of production areas of pollution-free and green food were determined, and those that can be directly used to develop green, zinc- and copper-rich crops were delineated. These findings will provide geochemical data support for land use planning, food security, building agricultural products with plateau characteristics, and serving rural revitalization efforts.

Table and Figures | Reference | Related Articles | Metrics
A deep learning-based method for error correction of 2D slope tomography-based inversion models
GE Da-Ming
Geophysical and Geochemical Exploration    2025, 49 (2): 385-393.   DOI: 10.11720/wtyht.2025.1191
Abstract194)   HTML2)    PDF (3039KB)(152)      

Slope tomography is a method to estimate subsurface velocity macromodels from the slopes and traveltimes of local coherent reflection events. In geologically complex areas, the macromodels obtained from slope tomography tend to yield larger errors. To address this issue, this study proposed a method for error correction of the models using deep learning. Specifically, with macromodels determined using slope tomography-based inversion serving as input and corresponding theoretical models as labels, a neural network was trained, yielding a nonlinear mapping from the slope tomography-derived macromodel to the corresponding theoretical model. To ensure that the trained neural network was applicable to measured seismic data, the training samples were generated from the inversion model and migration profiles of measured seismic data. Tests based on the data synthesized using the theoratical model validated the accuracy and effectiveness of the proposed method. The proposed method was then applied to the 2D measured seismic data from beaches and shallow seas, yielding velocity models with elevated precision and depth migration imaging profiles with high quality.

Table and Figures | Reference | Related Articles | Metrics
Analysis of multi-component response characteristics of surface-to-borehole transient electromagnetic method with complex-shaped loop source
WANG Zhi-Xin, DENG Ju-Zhi, CHEN Hui, QIU Chang-Kai, YU Hui, YIN Min, FENG Min
Geophysical and Geochemical Exploration    2025, 49 (2): 360-369.   DOI: 10.11720/wtyht.2025.2486
Abstract194)   HTML5)    PDF (8203KB)(171)      

In actual exploration, the surface-to-borehole transient electromagnetic (TEM) method is prone to be affected by irregular transmitter loops and inclined boreholes, resulting in increased measurement errors of the three-component induced magnetic fields and decreased interpretation accuracy. By establishing surface-to-borehole TEM method-based three-component measurement models under the excitement of transmitter loops of various shapes, this study derived the calculation formulas for surface-to-borehole TEM responses under inclined boreholes through coordinate transformation. Then, it achieved one-dimensional forward modeling of the full-space TEM field using a numerical filtering algorithm. The calculation results of multiple typical models indicate that the three components of the transient magnetic fields were significantly influenced by the shapes of the transmitter loops, with the impacts on horizontal components x and y far more significant than those on vertical component z. The transmitter loops of regular polygons with even edges as the sources exhibited uniform and symmetric distribution of the TEM fields of the three components. Under the condition of the same perimeter, a greater number of edges of the transmitter loops associated with greater primary field energy excited by the loops. Therefore, rectangular transmitter loops as the sources prove the most cost-effective. The inclination and offset primarily affected the amplitude of the three-component responses. In contrast, the borehole azimuth mainly influenced the sign of the horizontal components, bearing rich information on location. Therefore, in the exploration using the surface-to-borehole TEM method, it is necessary to accurately determine source paths and the geometric morphologies of boreholes to make essential corrections, thus improving the accuracy and reliability of interpretations.

Table and Figures | Reference | Related Articles | Metrics
Application of an internal multiples suppression technique combined with modeling method and adaptive matching subtraction:A case study of the Yubei area in the Tarim Basin
PEI Yun-Long, YANG Jin-Long, ZHOU Yan, SONG Hui
Geophysical and Geochemical Exploration    2025, 49 (1): 41-51.   DOI: 10.11720/wtyht.2025.2501
Abstract194)   HTML3)    PDF (11647KB)(230)      

Areas with low exploration degrees in the Tarim Basin exhibit intricate seismic-geologic conditions and extensively developed multiples.The internal multiples generated by strong reflection interfaces involving Paleozoic gypsum rocks undermine the imaging of the Ordovician stratigraphic information,resulting in vague images for Ordovician fractured-vuggy carbonate reservoirs and thus affecting stratigraphic interpretation.Accurate prediction and suppression of internal multiples in the Yubei area is challenging,thus restricting the deployment of oil and gas exploration in the area.The conventional prediction method for internal multiples is computationally intensive and ineffective.Hence,this study proposed an internal multiples suppression technique combined with the modeling method and adaptive matching subtraction.Based on the principles of internal multiples prediction and the forward modeling results,the proposed technique takes the main reflection interfaces generating internal multiples as the model layers and follows the approach of layer-by-layer prediction and suppression.Finally,it employs adaptive matching subtraction for the suppression of internal multiples.As demonstrated by the processing results of actual data,the proposed technique can effectively predict and suppress the dominant internal multiples to eliminate their interference effects.It solves the problems of layer-crossing phenomenon and flat formation occurrence,improving the imaging accuracy of formation structures,faults,and fractured-vuggy reservoirs.

Table and Figures | Reference | Related Articles | Metrics
Carbon sink in farmland soils in Luoyang City, China
XIA Yan, WANG Run-Tao, DU Qian-Qian, WANG Xi-Kuan, Lyu Hong-Jie, HOU Jin-Kai, LI Bing-Hui
Geophysical and Geochemical Exploration    2025, 49 (1): 215-228.   DOI: 10.11720/wtyht.2025.2325
Abstract194)   HTML1)    PDF (7032KB)(193)      

This study investigates the spatial distribution characteristics, temporal changes, and influencing factors of total carbon density, organic carbon density, and reserves in the farmland soils in Luoyang City based on repeated sampling data from multi-purpose regional geochemical survey points over different periods. The results indicate that in 2005, the topsoils in the multi-purpose survey area exhibited an average total carbon content of 1.57%, an average total carbon density of 44.74 t/hm2, an average organic carbon content of 1.12%, and an average organic carbon density of 34.27 t/hm2. With annual average increases in the total carbon density and organic carbon density of 0.709 t/hm2 and 6.643 t/hm2, respectively, this year witnessed increases in the total carbon and organic carbon of 41.73 kg/(hm2·a) and 390.75 kg/(hm2·a), respectively. The respective reserves of total carbon and organic carbon were 12.511 3 million tons and 8.879 59 million tons, with respective increases of 198.28 thousand tons and 1.857 8 million tons. In 2018, the topsoils in the multi-purpose survey area displayed an average total carbon content of 1.18%, an average total carbon density of 34.27 t/hm2, an average organic carbon content of 1.07%, and an average organic carbon density of 30.94 t/hm2. With annual average increases in the total carbon density and organic carbon density of 9.642 t/hm2 and 4.727 t/hm2, respectively, this year witnessed increases in the total carbon and organic carbon of -2,410.5 kg/(hm2·a) and 1,181.75 kg/(hm2·a), respectively. The respective reserves of total carbon and organic carbon were 1.963 5 million tons and 1.772 61 million tons. The total carbon reserves in topsoils in the whole study area were 14.474 81 million tons, including organic carbon reserves of 10.652 2 million tons. The total carbon reserves decreased by 552.41 thousand tons, while the organic carbon reserve increased by 270.82 thousand tons. Overall, the study area experienced a total carbon decrease of 354.13 thousand tons and an increase in the organic carbon reserves of 2.128 62 million tons. The total carbon showed significant positive correlations with the contents of organic carbon, CaO, MgO, N, and P, the organic carbon displayed significant positive correlations with the contents of total carbon, N, and P, and there was a significant positive correlation between pH and the CaO content. Fertilization led to an increase in the organic carbon and total carbon contents in farmland soils, with total carbon being significantly affected by the CaO content. In the carbonate areas, alkaline soil environments exhibited carbon sink characteristics. In the southern regions with acidified soil environments, the decomposition of carbonates in soils led to carbon loss and reduced calcium content. The results of this study provide important scientific evidence for research on peak carbon dioxide emissions and carbon neutrality of Luoyang City.

Table and Figures | Reference | Related Articles | Metrics
Method and achievement of GPS waypoint generation for survey grid layout in geophysical and geochemical exploration
ZHANG Qi, LIU Duo-Zhao, ZHANG Wan-Ren
Geophysical and Geochemical Exploration    2025, 49 (1): 200-205.   DOI: 10.11720/wtyht.2025.1292
Abstract188)   HTML4)    PDF (3997KB)(268)      

Survey grid layout is a preliminary task of geophysical and geochemical exploration. The widespread use of handheld GPS has greatly facilitated navigation and positioning in small-to medium-scale geophysical and geochemical field surveys. This study, based on coordinate transformation theory, presented a method for generating large numbers of GPS waypoints for both regular and irregular survey grids for geophysical and geochemical exploration. Furthermore, an associated software program was developed. The software enjoys simple interfaces and convenient operations, enabling the quick generation of survey grids suitable for applications such as gravity, magnetic, and resistivity surveys, soil surveys, and stream sediment surveys. Therefore, this software can be used for field navigation.

Table and Figures | Reference | Related Articles | Metrics
Geochemical evaluation and related method of desertified land in Fujian Province,China
WANG Wen-Jun
Geophysical and Geochemical Exploration    2025, 49 (2): 479-489.   DOI: 10.11720/wtyht.2025.2409
Abstract188)   HTML7)    PDF (7312KB)(187)      

Based on high-precision, high-quality data on SiO2, Al2O3, Fe2O3, and organic matter in topsoils obtained from the 1:250,000-scale multi-purpose regional geochemical survey in Fujian Province, this study assessed topsoils and, for the first time, established a geochemical method-based geochemical assessment system for desertified land in the province. Specifically, this system involves methods for calculating the silicon-aluminum-iron ratio (Saf), carbon-silicon ratio (KSi), and their comprehensive index value (Szh_ f), which serves as the indicator for assessing the degree of land desertification. Specifically, a higher Szh_ f value indicates a higher degree of desertification, and vice versa. Furthermore, this study determined the statistics of geochemical classification parameters for desertified land in Fujian Province and delineated the distribution ranges of geochemical grades. This aims to assess the current status of desertified land in the province from the microscopic perspective of soil elements and to further ascertain the distribution characteristics of the land. The results indicate that the land with strong, moderate, slight, and very slight desertification in Fujian Province exhibits areas of 39 531 hectares (0.326%), 65,790 hectares (0.542%), 103 601 hectares (0.853%), and 360 329 hectares (2.968%), respectively, primarily distributed along the coastal zone to the south of the Minjiang River and in Changting County of Longyan City. Field verification demonstrates that this evaluation method is scientific and reliable and yields accurate classification results of desertification grades, thus objectively reflecting the distribution status of desertified land in Fujian Province.

Table and Figures | Reference | Related Articles | Metrics
Implicit generation of complex geological surface models based on scalar coordinates
LIU Pei-Gang, YUAN Hao, XUE Kai-Xin, LI Zhao-Liang, LI Zong-Min
Geophysical and Geochemical Exploration    2025, 49 (2): 349-359.   DOI: 10.11720/wtyht.2025.2573
Abstract186)   HTML2)    PDF (5374KB)(143)      

The construction and presentation of a geological modelprove to be ahot topic and challenge in research on 3D geological modelling. Given the large scale, involvement of complex surfaces, and insufficient geological constraints of geological body data, this study achieved the rapid construction of a large-scale geological surface model using the domain decomposition-based implicit generation method. Initially, implicit functionswere constructed by taking radial basis functions as the kernel functions.Then, the distribution functions of various domainswere solved in parallel usinganoverlapping domain decompositionmethod, reducing the spatiotemporalcost and accelerating the solving process.Subsequently, normal vectors were extracted to generate control pointsand formconstraints on surface fluctuation, thereby effectively controlling the model boundaries. The experimental results indicate that the method proposed in this study can significantly improve the efficiency associated with the solving of distribution functionswhile ensuring the high quality of the model. This study effectively solves the problem of balance between efficiency and precision in geological modeling and provides methodological support for the refinement of geological surfaces.

Table and Figures | Reference | Related Articles | Metrics
Fast first-arrival traveltime tomography of diving waves under rugged surface and its application to static correction
YANG Hua-Chen, GE Da-Ming, WANG Zhong-Cheng, WANG Lei, YUAN Yong-Qi
Geophysical and Geochemical Exploration    2025, 49 (2): 441-450.   DOI: 10.11720/wtyht.2025.1374
Abstract185)   HTML6)    PDF (8836KB)(160)      

Ray tracing-based first-arrival traveltime tomography is widely used to construct near-surface velocity models to achieve the static correction of seismic data from complex near surface.However,this method necessitates the calculation of ray paths for first-arrival traveltimes and the iterative updating of initial velocity models.As a result,significant computational time is required when applying this method to measured 3D high-density seismic data.To address this issue,this study proposed a method for quickly building 3D near-surface velocity models utilizing diving wave traveltimes under rugged surface.Specifically,based on the ray and traveltime equations of diving waves corresponding to velocities subjected to lateral and vertical changes under rugged surface,the velocity distribution from the observation surface downward was determined using common offset gathers.The proposed method eliminates the need for ray tracing and iterative updates of initial velocity models,offering high modeling efficiency.Tests based on data from theoretical models verified the effectiveness of the proposed method.When applied to measured 3D seismic data,the proposed method yielded static correction results comparable to those obtained using the Fresnel-volume first-arrival traveltime tomography while significantly improving computational efficiency.

Table and Figures | Reference | Related Articles | Metrics
Gridding of complex terrains based on cluster analysis for ModEM 3D inversion
HU Shi-Hui, MIN Gang, SUN Yi-Qin, CHEN Chun-Jiang, LI Chun-Ting, ZHANG Zhi-Hao
Geophysical and Geochemical Exploration    2025, 49 (1): 148-157.   DOI: 10.11720/wtyht.2025.2548
Abstract184)   HTML3)    PDF (5917KB)(195)      

The topographic factor significantly influences the 3D inversion results of magnetotelluric data. Despite extensive research results previously obtained in suppressing topographic effects, the gridding of complex terrains (with significant elevation changes) is still challenged by grid design complexity and difficulty in correcting data elevation points. Based on the mainstream 3D inversion module ModEM for magnetotelluric data, this study proposed a novel method for rapid automatic grid design and partitioning of terrains based on unsupervised learning, primarily involving the K-means++ algorithm and the assessment of clustering effects. Compared to the uniform and equal proportion-based hierarchical methods ignoring the topographic factor, the proposed method shows the following advantages: (1) The terrain grid generated by the clustering-based hierarchical method manifested higher terrain approximation, reducing the average error between the terrain grid and the actual terrain by 25%; (2) The matching calculation for terrain correction based on the digital elevation model was somewhat avoided; (3) The rapid design of terrain grids can be achieved, and the hierarchical characteristics can be referenced for gridding in other modeling software. The proposed method was employed to demonstrate the whole process of partitioning the elevation data of a complex terrain in a mining area, generating a resistivity structure model more representative of the actual terrain characteristics. Based on this model, finer-scale 3D inversion results were obtained. Theoretical and practical applications illustrate that the proposed method can significantly improve the topographic adaptability of gridding, holding critical significance for suppressing topographic effects on the 3D inversion of magnetotelluric data.

Table and Figures | Reference | Related Articles | Metrics
Application of Baidu Comate-based AI technology to the automatic numbering of sampling points in irregular geochemical networks
WANG Xuan, YANG Huan, WANG Ran, LI Ying, WANG Hai-Peng, LIU Yan-Song, LIAO Jun-Yu, ZHANG Cheng-Bin, ZHANG Xu-Dong
Geophysical and Geochemical Exploration    2025, 49 (2): 462-469.   DOI: 10.11720/wtyht.2025.1200
Abstract181)   HTML3)    PDF (2246KB)(145)      

In the era of rapid digitalization development, artificial intelligence (AI) technology has brought revolutionary changes to traditional work patterns. Based on Baidu Comate, this study proposed an automatic numbering method for sampling points in irregular geochemical networks. Automatic numbering tests, conducted on 12 000 geochemical sampling points, demonstrate that the method improved the efficiency by 99.8% and achieved 100% accuracy compared to the traditional manual method. This indicates that the proposed method is more efficient and accurate than traditional approaches, effectively avoiding human errors and improving work efficiency. This study also discussed the challenges AI faces in processing complex instructions, the importance of instruction clarity, the identification of complex logic, and the necessity of developing knowledge reserves. Although AI technology has significantly improved the efficiency and accuracy of the automatic numbering of sampling points in irregular geochemical networks, the early development of packaging tools requires personnel who can read codes to modify and verify the codes. Additionally, AI-assisted demand processing should be in phases, and ultimately, it is necessary to encapsulate verified codes into a tool for reuse.

Table and Figures | Reference | Related Articles | Metrics
Carbon stocks and carbon density distribution of soil in oases on the northern margin of the Tarim Basin
Adilai Saitiniyazi, DUAN Xing-Xing, HE Jun-Ling, WANG Cui-Cui, DONG Yue
Geophysical and Geochemical Exploration    2025, 49 (1): 229-238.   DOI: 10.11720/wtyht.2025.2341
Abstract178)   HTML4)    PDF (4219KB)(220)      

Soil carbon pools constitute a crucial part of global terrestrial carbon pools. Hence, investigating soil carbon pools is critical for understanding the global carbon cycle and changes. Based on the soil carbon data obtained from a multi-purpose regional geochemical survey, this study estimated the densities and stocks of organic and inorganic carbon of soil at depths ranging from 0 to 20 cm, 0 to 100 cm, and 0 to 180 cm in oases on the northern margin of the Tarim Basin. Moreover, it delved into the spatial distribution of carbon density. The results of this study are as follows: (1) The compositions of soil carbon pools varied with the soil depth in the study area. At depths ranging from 0 to 20 cm, the organic carbon stocks accounted for 20.66% of the total carbon stocks. With an increase in soil depth, the organic carbon stocks gradually decreased, while the inorganic carbon stocks gradually increased. At depths ranging from 0 to 180 cm, the inorganic carbon stocks represented 85.73% of the total, suggesting that inorganic carbon predominated in the compositions of soil carbon pools; (2) The soil in three depth ranges exhibited organic carbon densities of 1,956.45, 7,913.37, and 119,73.19 t/km2, which were all below the national average level, and inorganic carbon densities of 71,722.84, 37,605.54, and 71,914.93 t/km2; (3) The compositions of soil carbon pools varied somewhat across statistical units. In terms of soil types and land use types, the densities of organic and inorganic carbon were higher in fluvo-aquic soil, brown calcic soil, irrigation-silting soil, and solonchak but lower in aeolian sandy soil and irrigated desert soil. Cultivated land exhibited the highest densities of organic and inorganic carbon in the soil, whereas unused and construction land manifested the lowest carbon densities; (4) In terms of topography, undulating mountains manifested the highest soil organic carbon density, whereas alluvial-proluvial plains displayed relatively high inorganic carbon density; (5) The spatial distribution of soil carbon density in the study area was characterized by high organic carbon densities in the Yanqi Basin, medium organic carbon densities in part of Kashgar Delta (western and southern localities and eastern margin), and high inorganic carbon densities in the Aksu area. Overall, under the background of extreme drought, the oases on the northern margin of the Tarim Basin show high potential for inorganic carbon sink, with soil carbon sequestration significantly influenced by soil types, land use types, and geomorphologic landscapes.

Table and Figures | Reference | Related Articles | Metrics
Intelligent detection and suppression methodology for noise interference of oil well pumping units in seismic data processing
ZHANG Meng
Geophysical and Geochemical Exploration    2025, 49 (2): 378-384.   DOI: 10.11720/wtyht.2025.1395
Abstract175)   HTML3)    PDF (5244KB)(176)      

Noise detection and suppression of oil well pumping units pose challenges in data processing for mature exploration areas.The conventional method in the industry is to identify pumping unit noise through manual interactions and then suppress it as high-amplitude interference.However,manual identification wastes manpower and yields low detection accuracy,often resulting in missed detections.Hence,based on the noise characteristics of pumping units,this study conducted noise detection on seismic data containing pumping unit noise using deep learning methods.It then estimated the bandwidth of the detected noise using mathematical morphology techniques to determine the final position and distribution pattern of the noise.This allows for adaptive parameter support for the anomalous amplitude attenuation(AAA) method to achieve automatic detection and efficient suppression of pumping unit noise.The processing results of actual seismic data reveal that the methodology used in this study enables intelligent detection of pumping unit noise,significantly reducing the manual effort required for noise identification,improving the detection accuracy,and enhancing the fidelity and robustness of the AAA method.

Table and Figures | Reference | Related Articles | Metrics
Parameter inversion and application of the Cole-Cole model for time-domain induced polarization spectra based on the backpropagation neural network
YANG Hai-Ming, YAO Wei-Xing, TANG Su, PAN Zhan-Chao, GUAN Li-Wei
Geophysical and Geochemical Exploration    2025, 49 (2): 433-440.   DOI: 10.11720/wtyht.2025.1422
Abstract174)   HTML5)    PDF (3859KB)(165)      

The spectral parameters of the Cole-Cole model can improve the resolution of comprehensive interpretation of time-domain induced polarization (IP) data, contributing somewhat to the exploration of metal deposits. Applying the backpropagation neural network (BPNN) model to the prediction and inversion of spectral parameters can avoid high computational complexity to improve the inversion speed. Moreover, the BPNN model can fully explore the utilization efficiency of time-domain IP data to enrich the characteristic information of subsurface ore bodies. Based on this, this study derived the mathematical expression of the time-domain apparent polarizability attenuation curve using the digital filtering algorithm. With the mathematical expression as the forward/inverse model, this study comparatively analyzed the impacts of four factors-the sample size of the training set, the number of neurons in the input layer, the node number of hidden layers, and the number of hidden layers-on the training and inversion effects of the BPNN model, determining the optimal model. Furthermore, this study trained the BPNN model using time-domain IP data from eight time windows. Finally, this study applied the trained BPNN model for prediction and inversion based on the measured time-domain IP data. The results indicate that the BPNN model is feasible in inverting spectral parameters based on both theoretical and measured datasets, manifesting high inversion accuracy and minor errors. Overall, the results of this study can assist in distinguishing paragenetic and associated minerals and reducing misinterpretation.

Table and Figures | Reference | Related Articles | Metrics
A multiparameter fusion methodology of well depth design for seismic excitation in weakly elastic media
BAO Hong-Gang
Geophysical and Geochemical Exploration    2025, 49 (2): 330-339.   DOI: 10.11720/wtyht.2025.1361
Abstract172)   HTML3)    PDF (6026KB)(174)      

Due to numerous thin interbeds in weakly elastic media,seismic excitation typically yields rapidly attenuated seismic wave energy and a narrow dominant frequency band,resulting in low-resolution seismic data.Therefore,selecting a favorable lithology plays a crucial role in improving the seismic excitation effect.This study explored the dominant factors influencing the quality of seismic data obtained from the northern Jiangsu exploration area,a region with a dense river system.Specifically,this study determined the top boundary of the high-velocity layer based on microlog surveys and the dominant lithologic member using the cone penetration test and lithologic coring.It quantitatively analyzed seismic wavelet attributes,including octave band,resolution,main-to-side lobe energy ratio,and wavelet clarity,establishing their matching relationship with the lithology for seismic excitation.By selecting a lithologic surface featuring a high seismic wave propagation velocity,a favorable elastic property,and a wide frequency band in the study area,it plotted a surface lithology map for pointwise well depth design,ensuring wide-frequency excitation.The above techniques were applied to well depth design for seismic excitation in the YA and SDX areas,achieving well-normalized single-shot frequencies and widening the dominant frequency band of the target layer in the seismic profile by over 10 Hz,with an increase of 1.5 octave bands.The results show that the excitation strategy of "selecting the dominant lithology from weakly elastic media" in regions with dense river systems can effectively enhance the seismic excitation effect in weakly elastic media,thereby improving the imaging accuracy and resolution of seismic data.

Table and Figures | Reference | Related Articles | Metrics
Characteristics and source analysis of heavy metal contamination in the sediments of the Jinsha River Basin: A case study of the Qingling River
CHENG Yan-Xun, XU Lei, WU Liang, ZHAO Meng-Sheng, WANG Fu-Hua, QIAN Kun, ZHENG Hong-Fu, LI Wen-Hui, ZHANG Hong-Hui
Geophysical and Geochemical Exploration    2025, 49 (2): 500-509.   DOI: 10.11720/wtyht.2025.1043
Abstract166)   HTML2)    PDF (1908KB)(205)      

To understand the characteristics and sources of heavy metal contamination in the sediments of the Jinsha River basin, this study investigated the Qingling River basin-a primary tributary of Longchuan River on the south bank of the Jinsha River. Samples were collected from the sediments of 22 representative sections, and the concentrations of eight heavy metal elements, i.e., As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, were tested and analyzed. Statistical analysis was conducted on the distribution characteristics of these heavy metal elements in the sediments along the basin. The sources of these heavy metals were investigated using correlation analysis and principal component analysis, and the degree of heavy metal contamination in the sediments was assessed using the geo-accumulation index and the Nemero index. The results indicate that As, Cd, Cu, Hg, Ni, Pb, and Zn are primarily influenced by mining, agricultural, and industrial activities. Cr and Ni originate primarily from soil-forming parent materials. Besides natural sources, Ni is also affected by anthropogenic sources. The assessment results derived using the geo-accumulation and Nemero indices reveal that the eight heavy metal elements exhibit moderate or low contamination on average. However, partial elements, represented by Cd, Hg, Pb, and Zn, exhibit localized enrichment within the basin, primarily concentrated in the Laojiezi Au-Pb-Ag polymetallic mining area and the urban-rural junction in the lower reaches of the county.

Table and Figures | Reference | Related Articles | Metrics
Application of least-squares collocation to the gridding of magnetic anomaly data
GAO Xiao-Wei, LI Xiong-Wei, PANG Shao-Dong, LI Wen-Gang, YAO Wei-Hua, DU Jin-Song
Geophysical and Geochemical Exploration    2025, 49 (2): 422-432.   DOI: 10.11720/wtyht.2025.1286
Abstract165)   HTML4)    PDF (9890KB)(167)      

Traditional gridding methods struggle to balance computational accuracy and efficiency when processing irregularly distributed magnetic anomaly data. To address this issue, this study applied the classic least-squares collocation method from geodesy to the gridding of ground-based magnetic anomaly data. This application was verified through the test and analysis of the simulation data and the actual coalfield data. The results indicate that the computational accuracy of gridding based on least-squares collocation is dictated by the error estimation of discrete observational data and the selection and fitting of the covariance function. More accurate error estimation contributes to higher-accuracy interpolation. A polynomial function is a simple and effective empirical covariance function for processing magnetic anomaly data. The least-squares collocation method demonstrates more effective noise suppression compared to the Kriging, minimum curvature, and radial basis function methods. Overall, applying the least-squares collocation to the gridding of magnetic anomaly data can enhance the accuracy and efficiency of data processing.

Table and Figures | Reference | Related Articles | Metrics
Application of time-frequency analysis in the suppression of deep high-frequency noise in the Penglai gas area
HAN Song, TANG Cong, ZHANG Xuan, ZENG Ming, PENG Hao-Tian, LYU Wen-Zheng, TU Zhi-Hui, LI Ke-Rui, ZHU Hai-Hua
Geophysical and Geochemical Exploration    2025, 49 (4): 888-895.   DOI: 10.11720/wtyht.2025.2533
Abstract161)   HTML0)    PDF (7721KB)(128)      

Seismic waves, particularly their high-frequency components, will undergo energy attenuation during subsurface propagation. This results in a low signal-to-noise ratio (SNR) within the high-frequency band, significantly reducing the accuracy of seismic exploration for deep oil and gas. To enhance the SNR of deep seismic data, this study employed the time-frequency analysis technique to describe the time variations of signal frequency based on the non-stationary characteristics of seismic signals. Accordingly, this study proposed a method for suppressing deep high-frequency noise based on time-frequency analysis. Considering the stable and similar time-frequency characteristics of effective signals and the uncertain and random high-frequency interference, this study proposed an adaptive threshold selection strategy based on correlation analysis. This strategy involves extracting the time-frequency characteristics of effective signals from an advantageous frequency band and comparing them with the time-frequency characteristics within the high-frequency band. Subsequently, feature-constrained attenuation was applied to time-frequency spectra in the high-frequency band, thereby suppressing high-frequency noise. Theoretical models and actual data processing results demonstrate that the proposed method can effectively suppress high-frequency noise and significantly enhance the SNR of deep seismic data.

Table and Figures | Reference | Related Articles | Metrics
Adaptive prestack inversion method based on quadratic encoder-decoder network
SHAN Bo, XING Yu-Xin, ZHANG Fan-Chang, LI Zhi-Wei, CHEN Mo
Geophysical and Geochemical Exploration    2025, 49 (1): 158-165.   DOI: 10.11720/wtyht.2025.1245
Abstract160)   HTML0)    PDF (3712KB)(147)      

AVO inversion, based on the Zoeppritz equation, extracts various hidden petrophysical parameters from pre-stack seismic data. In seismic data, angle information is recorded in the form of offset values, and converting between offset values and angles is prone to generate errors. In addition, using the same approximate formula for different acreage types may lead to reduced applicability due to varying actual geological conditions. The exact Zoeppritz equation will lead to increased computational demands due to its high complexity. Therefore, this study developed an adaptive prestack inversion method based on the quadratic Encoder-Decoder network. This inversion method used the high feature and relationship extraction abilities of deep learning to replace traditional relationships, thereby reducing the angle errors and adapting to varying acreage types and geological conditions. The quadratic Encoder-Decoder network used a quadratic algorithm as the optimization method, maximizing the efficiency of the standard Encoder-Decoder structure. Additionally, the Xavier initialization method was incorporated to enhance the randomness of model initialization, thus improving the robustness of the network. The results indicate that the quadratic Encoder-Decoder network, selected through orthogonal experiments, outperforms the single-decoder network in prediction and exhibits greater consistency with actual log curves. The P-wave velocity, S-wave velocity, and density profiles obtained from inversion are consistent with the geological conditions of the study area, exhibit strong lateral continuity, and can effectively achieve high-precision prestack inversion.

Table and Figures | Reference | Related Articles | Metrics
Contamination characteristics and risk assessment of soil heavy metals in a typical industrial town in Shandong Province, China
ZENG Jiao, KONG Ling-Hao, LIU Shu-Liang, CHU Hong-Xian, ZHAO Zheng-Peng, YANG Kai-Li, GUO Xu-Jun, CHEN Liang
Geophysical and Geochemical Exploration    2025, 49 (4): 954-964.   DOI: 10.11720/wtyht.2025.1275
Abstract155)   HTML0)    PDF (2434KB)(97)      

To investigate the contamination, source, and ecological risk of soil heavy metals in a typical industrial town in Shandong Province, China, this study collected 499 topsoil samples from the study area from August to October 2022. The contents and spatial distributions of heavy metals like Hg, Cd, As, Pb, Cu, Cr, Zn, and Ni in the samples were analyzed using classical statistics and spatial interpolation methods. The source apportionment of heavy metals in the study area was explored through the principal component analysis (PCA). The contamination levels of heavy metals in the study area were assessed using the contamination index method. The results indicate that the average contents of Hg, Cd, As, and Pb in soils all exceeded their background values in Yantai City, and high-value zones were observed for all eight elements, indicating various degrees of enrichment. The analysis of coefficients of variation reveals that except for Ni, other heavy metals were significantly influenced by human activities. The PCA suggests that Cd, Pb, Cu, Zn, and Cr originated primarily from industrial and traffic sources. As and Hg were predominantly derived from industrial, agricultural, and domestic sources, while Ni was primarily from natural soil parent materials. The analyses based on the single-factor contamination index, geoaccumulation index, and Nemerow contamination index show that apart from Hg and Cd, other soil heavy metals in the study area exhibited no or slight contamination overall, demonstrating that the study area was principally contaminated by Hg and Cd. The potential ecological risk assessment suggests that the overall heavy metal contamination posed a minor risk level. A few sites with relatively severe contamination were primarily located around the industrial area. The waste gas, wastewater, and industrial residue generated by industrial activities constituted the dominant factor influencing the enrichment of heavy metals in surrounding soils. Overall, soil heavy metal contamination in the study area was at a moderate to low level, with some metals, particularly Hg and Cd, severely exceeding standard levels, warranting attention. It is recommended to strengthen the monitoring of heavy metals in soils around the industrial area, and adopt scientific and reasonable measures to ensure sustainable soil utilization.

Table and Figures | Reference | Related Articles | Metrics
A method for quality classification of tight sandstone reservoirs in the Ordos Basin based on pore structures and multiphase seepage capacity
XU Feng, SI Zhao-Wei, LIANG Zhong-Kui, TIAN Chao-Guo, LUO Lan, GUO Yu-Hang
Geophysical and Geochemical Exploration    2025, 49 (1): 138-147.   DOI: 10.11720/wtyht.2025.2425
Abstract153)   HTML0)    PDF (6188KB)(178)      

With the advancement of social economy and science and technology, the demand for oil and gas resources has been increasing in daily life and industry. Tight sandstone reservoirs have been the priority targets for the exploration and production of oil and gas resources. However, there still exist many challenges in assessing the parameters and quality of tight sandstone reservoirs. This study conducted experiments on the physical properties, pore structures, and electrical properties of rock samples from the Taiyuan Formation in the Shenmu gas field of the Ordos Basin. Based on this, it established a porosity-permeability relationship model, a capillary pressure prediction model, and a classification saturation assessment model. Besides, it obtained the relative permeability of gas and water phases, which varied point by point, from wells based on the I-Kr model. This study proposed the factors for assessing reservoir quality, which were applied to the target interval in the study area considering the physical properties, pore structures, and multiphase seepage capacity, yielding satisfactory assessment results. Therefore, the method of this study provides a reliable basis for the log-based assessment of the quality of tight sandstone reservoirs.

Table and Figures | Reference | Related Articles | Metrics
More...
Office Online
News
gfff
More>>
Information
Web: http://www.wutanyuhuatan.com
Editor in Chief: XIONG ShengQing
Published by:
The Geological Publishing House (31 Xueyuan Road,Beijing 100083,China)
Printer:
Beijing Changning Printing Co. Ltd.
Distributor: Beijing Post Office
Abroad Distributor:
China International Book Trading Corporation
Subscription Hander:
Local Post Offices of China
Sponsored by:
China Aero Geophysical Survey and Remote Sensing Center for Natural Resources
Edited by:
Editorial Office of Geophysical and Geochemical Exploration
Add:
29 Xueyuan Road, Beijing 100083,China
Tel: 86-010-62060192/62060193
Fax: 86-010-62060193
Email: whtbjb@sina.com ,
           whtbjb@163.com
Links
More>>
京ICP备05055290号-3
Copyright © 2021 Geophysical and Geochemical Exploration, All Rights Reserved.
Tel: (8610)62301569   Email: whtbjb@sina.com , whtbjb@163.com