E-mail Alert Rss
 
Quick Search
Highlights
More>>
Current Issue Just Accepted Archive Most Download Most Read
  20 April 2025, Volume 49 Issue 2 Previous Issue   
For Selected: View Abstracts Toggle Thumbnails
Metallogenic prediction based on the deep interest evolution network: A case study of supergenetic calcrete-hosted uranium deposits in Western Australia
ZHANG Chang-Jiang, HE Jian-Feng, NIE Feng-Jun, XIA Fei, LI Wei-Dong, WANG Xue-Yuan, ZHANG Xin, ZHONG Guo-Yun
Geophysical and Geochemical Exploration. 2025, 49 (2): 259-269.   DOI: 10.11720/wtyht.2025.1391
Abstract   HTML ( 4 )   PDF (9933KB)

Recommendation system algorithms, having recently garnered significant attention in the field of digital Earth science, are expected to be widely applied in metallogenic prediction. Traditional metallogenic prediction studies fail to fully mine the various types of semantic information in massive geoscience data. The deep interest evolution network (DIEN), as a recommendation system algorithm, can fully mine semantic information to predict user preferences. Therefore, this study employed the DIEN model as the prediction model and the semantic information extracted from bedrock interpretation as the ore-controlling elements according to the database provided by the Western Australian government. The model was trained to perform metallogenic prediction for the study area. The prediction results indicate that 92.95% of uranium ore occurrences fell within the medium-high probability zone in the prediction map, with some unknown zones also showing high prediction probabilities. After removing known uranium ore occurrences in some zones, the retrained model still yielded medium-high prediction probabilities in these zones. The results suggest that the DIEN can effectively mine semantic information in metallogenic prediction studies, and the DIEN model exhibits strong predictive capacity for the study area, providing a novel approach for metallogenic prediction studies.

Figures and Tables | References | Related Articles | Metrics
Total rare-earth oxides in stream sediments in the Dechang area: Geochemical characteristics and prospecting targets
ZHU You-Huan, NIE Fei, ZOU Jia-Zuo, LI Hong-Wei, ZHOU Xue-Cheng, RAN Guang-Hui, LEI Dong
Geophysical and Geochemical Exploration. 2025, 49 (2): 270-280.   DOI: 10.11720/wtyht.2025.2571
Abstract   HTML ( 6 )   PDF (4186KB)

The Mianning-Dechang area in western Sichuan serves as the most important metallogenic belt of light rare earth elements (LREEs) in China. To make breakthroughs in the exploration of rare earth resources in the Dechang area, a 1:50 000 stream sediment survey was conducted in this study. The analysis of test data characteristics and the extraction of geochemical anomalies reveal that the total rare-earth oxides (REOs) in the area exhibit a pronounced enrichment pattern and that element anomalies largely overlap the spatial distribution of related geological bodies. Through comprehensive analysis using the cumulative frequency method and iterative method, this study determined the lower limits of anomalies and, accordingly, plotted element anomaly maps, with five main anomaly areas being delineated. The comprehensive evaluation of anomalies revealed four prospecting target areas: Huangjiaba, Jiaobacun, Yibasan, and Huajiaoyuan. The analysis of metallogenic geological conditions and the anomaly verification based on drilling in the Gannan area led to the discovery of three light rare earth deposits in the Huangjiaba prospecting target area, two heavy rare earth deposits in the Jiaobacun prospecting target area, two heavy rare earth deposits in the Yibasan prospecting target area, and two heavy rare earth deposits in the Huajiaoyuan prospecting target area. This study posits that the Triassic biotite moyite and biotite monzogranite in the study area are the metallogenic parent rocks of ion adsorption-type rare earth resources, with REEs primarily undergoing enrichment and mineralization in completely weathered layers. Therefore, a simple and effective prospecting pattern for "endogenous and exogenous" ion adsorption-type rare earth deposits in the Dechang area consists of analyzing the geochemical characteristics of the total REOs based on a 1:50 000 stream sediment survey, delineating metallogenic prospect areas that indicate parent rocks for REE enrichment, and selecting sections favorable for the formation and preservation of weathered crusts based on the hypergenic conditions of the enrichment areas, thus achieving the quick delineation of the prospecting target areas.

Figures and Tables | References | Related Articles | Metrics
Exploration and play fairway prediction of the Jinchanshan mine in Inner Mongolia using electro-adsorption method
CHEN Qing-Yun, ZHANG Jiang-Bo, ZHONG Song-Shu, ZHOU Qi-Ming, SHI Yu-Jiao, LIU Yao-Hui, ZHAO Li-Ke, TAN Jie
Geophysical and Geochemical Exploration. 2025, 49 (2): 281-287.   DOI: 10.11720/wtyht.2025.2494
Abstract   HTML ( 6 )   PDF (4491KB)

To evaluate the resource potential of the Jinchanshan mining area, this study conducted analysis and tests of metal element content in soil samples from two geochemical profiles using the electro-adsorption method. By combining the geological conditions of the mining area, this study revealed pronounced positive geochemical anomalies of Au, Ag, Cu, Pb, and Zn above the known gold deposits. The anomalous areas corresponded well with deposits, confirming the effectiveness and feasibility of the electro-adsorption method in the study area. The study identified geochemical anomalies Ⅰ and Ⅱ to the west of the Guaibanggou-Yangpo-Xiaoxigou mineralization zone in the first geochemical profile. Along the second profile, located between the Guaibanggou-Yangpo-Xiaoxigou and Nandawa-Limazigou-Loufengmao mineralization zones, anomalies Ⅲ and Ⅳ were observed at the westernmost end. The comprehensive geological analysis of the mining area indicates that the Ⅰ and Ⅲ anomaly zones exhibit favorable geological conditions for mineralization, serving as play fairways. The play fairway prediction conducted in this study provides targets for future exploration in the mining area.

Figures and Tables | References | Related Articles | Metrics
Petrophysical modeling of tight sandstones of the Lianggaoshan Formation,Southeast Sichuan
ZHANG Zheng-Yu-Cheng, SU Jian-Long
Geophysical and Geochemical Exploration. 2025, 49 (2): 288-298.   DOI: 10.11720/wtyht.2025.1356
Abstract   HTML ( 3 )   PDF (3907KB)

The exploration and exploitation practices in the Sichuan Basin in recent years indicate that breakthroughs have been achieved in the Jurassic continental tight sandstones.Nevertheless,due to the low porosity and permeability of tight sandstone,conventional post-stack inversion frequently exhibits limited resolution,failing to meet the accuracy requirements for the prediction of actual exploration reservoirs.This necessitates pre-stack inversion for detailed characterization of tight sandstones,while S-wave velocity is crucial to pre-stack inversion.Based on continental exploration wells drilled in the southeastern Sichuan Basin in recent years,this study developed a petrophysical modeling technique for dense sandstones in this region.Specifically,given the low permeability of tight sandstones and the uneven mixing of fluids in the pore space,the Domenico model was preferentially employed to calculate the pore fluid modulus.Although fluid modulus and density are inevitably variable under the actual subsurface conditions,previous studies typically use constant values to conduct petrophysical modeling for tight sandstones.In this study,depth-dependent values were applied.Tight sandstones in the southeastern Sichuan Basin generally exhibit a porosity of less than 10%.Therefore,calculations using the Nur and the Krief models will yield high errors.Given this,this study preferred using the Lee-Pride model to calculate the skeleton modulus and controlled the relationship between the rock matrix and the skeleton by introducing the value of the cementation parameter.The application of the established petrophysical model of tight sandstone to an actual survey area indicates high agreement with data from actual wells.Additionally,based on log statistics,Poisson's ratio,the most sensitive parameter is used for high-precision pre-stack inversion in the proposed technique,enabling detailed characterization and prediction of the internal structure of channel sandstones.

Figures and Tables | References | Related Articles | Metrics
A fine-scale prediction method for small-scale faults and fractures in shale gas reservoirs
LYU Qi-Biao, WU Qing-Jie, LI Shu-Guang, WANG Ren-Fu
Geophysical and Geochemical Exploration. 2025, 49 (2): 299-311.   DOI: 10.11720/wtyht.2025.1278
Abstract   HTML ( 2 )   PDF (12919KB)

Small- and micro-scale faults fractures (fractures and faults with fault throw less than 10 m) that originally developed in shale strata have a significant impact on the probability of penetration, stimulation volume, and production capacity of high-quality reservoirs in horizontal well sections. Therefore, it is critical to conduct fine-scale fault and fracture prediction. However, any single method struggles to accurately identify and predict these faults and fractures. Based on the developmental conditions of small-and micro-scale faults and fractures in the shale gas reservoirs of the Longmaxi Formation in the southern Sichuan Basin, this study conducted forward modeling, response mechanism analysis, and characterization of fracture responses, developing a prediction method integrating predicting and modeling. Furthermore, this study preferentially investigated techniques including seismic data processing, small-scale fault and fracture prediction, multi-scale fracture modeling, and fusion characterization. The results of the proposed method were highly consistent with the geological anomalies including small and micro-scale faults, lost circulation, and inter-well pressure channeling observed during the drilling of horizontal wells in the shale gas reservoirs of the Longmaxi Formation. Furthermore, these results exhibit a strong positive correlation with the single-well production capacity. All these corroborate that it is feasible to use this method to predict small- and micro-scale faults and fractures. This study can serve as a reference for predicting small-scale faults and fractures in other strata of the same type.

Figures and Tables | References | Related Articles | Metrics
Pre-stack inversion for prediction of the Paleogene reservoirs in the Panyu 4 Sag
ZHANG Zhen-Bo, LIU Ling, LIU Dao-Li, YANG Deng-Feng
Geophysical and Geochemical Exploration. 2025, 49 (2): 312-320.   DOI: 10.11720/wtyht.2025.1265
Abstract   HTML ( 3 )   PDF (7970KB)

To improve the inversion accuracy of reservoirs in the Paleogene strata with limited wells and sedimentary and structural complexity, two key technologies were used in seismic data processing: sparse pulse inversion for primary wave estimation and anisotropic Q-pre-stack depth migration (PSDM). This contributed to improved quality of seismic gathers and imaging. Then, the pre-stack simultaneous inversion method was applied as follows: (1) Stacking velocity and layer-constrained Dix inversion were employed to obtain a low-frequency model of P-wave impedance; (2) Elastic impedance inversion was performed using angle-stacked data and well-calibrated wavelets, yielding far, medium, and near elastic impedance; (3) Initial P- and S-wave impedance, as well as initial density, were obtained through Fatti inversion; (4) Pre-stack simultaneous inversion was performed to obtain the final P- and S-wave impedance and density; (5) Lithology and physical property inversion results were used to predict the reservoir distribution range. This method, driven by three-dimensional seismic data and exhibiting low dependence on logs, can serve as a reference for reservoir prediction under similar geological settings.

Figures and Tables | References | Related Articles | Metrics
Prediction of heterogeneous,thin Triassic sandstone reservoirs in the Lunnan area,Tarim Basin
MI Xin-Wu, ZHOU Cheng-Gang, TIAN Jun, HAN Yao-Zu, LI Ya-Nan, XIAO Bing-Qing
Geophysical and Geochemical Exploration. 2025, 49 (2): 321-329.   DOI: 10.11720/wtyht.2025.1357
Abstract   HTML ( 13 )   PDF (13788KB)

The Triassic strata in the Lunnan area of the Tarim Basin represent a continental deltaic sedimentary system,with sedimentary subfacies including deltaic plain,deltaic front,and prodelta.The rapid phase transition of reservoirs and the high-frequency sand-mudstone alternating deposition create thin,highly heterogeneous reservoirs,rendering high-precision reservoir prediction extremely challenging.Under the guidance of sedimentary petrology and seismic sequence stratigraphy,this study conducted comprehensive seismic and geological research.Then,based on isochronous sequence interpretation,as well as seismic facies analytical results,this study established a lithofacies model.By constraining the pre-stack geostatistical inversion process,this study determined the spatial distribution of sand bodies.The practical application demonstrates that the proposed method enhances the vertical resolution of heterogeneous,thin reservoirs while significantly reducing lateral uncertainty.The predicted results align with actual drilling and production performance data and thus can provide valuable support for the efficient exploitation of hydrocarbon reservoirs.

Figures and Tables | References | Related Articles | Metrics
A multiparameter fusion methodology of well depth design for seismic excitation in weakly elastic media
BAO Hong-Gang
Geophysical and Geochemical Exploration. 2025, 49 (2): 330-339.   DOI: 10.11720/wtyht.2025.1361
Abstract   HTML ( 3 )   PDF (6026KB)

Due to numerous thin interbeds in weakly elastic media,seismic excitation typically yields rapidly attenuated seismic wave energy and a narrow dominant frequency band,resulting in low-resolution seismic data.Therefore,selecting a favorable lithology plays a crucial role in improving the seismic excitation effect.This study explored the dominant factors influencing the quality of seismic data obtained from the northern Jiangsu exploration area,a region with a dense river system.Specifically,this study determined the top boundary of the high-velocity layer based on microlog surveys and the dominant lithologic member using the cone penetration test and lithologic coring.It quantitatively analyzed seismic wavelet attributes,including octave band,resolution,main-to-side lobe energy ratio,and wavelet clarity,establishing their matching relationship with the lithology for seismic excitation.By selecting a lithologic surface featuring a high seismic wave propagation velocity,a favorable elastic property,and a wide frequency band in the study area,it plotted a surface lithology map for pointwise well depth design,ensuring wide-frequency excitation.The above techniques were applied to well depth design for seismic excitation in the YA and SDX areas,achieving well-normalized single-shot frequencies and widening the dominant frequency band of the target layer in the seismic profile by over 10 Hz,with an increase of 1.5 octave bands.The results show that the excitation strategy of "selecting the dominant lithology from weakly elastic media" in regions with dense river systems can effectively enhance the seismic excitation effect in weakly elastic media,thereby improving the imaging accuracy and resolution of seismic data.

Figures and Tables | References | Related Articles | Metrics
3D seismic data splicing and its application to shallow sand bodies in the Bohai oilfield
LUO Teng-Teng, DUAN Xin-Yi, ZHANG Jin-Hui, MA Zhen
Geophysical and Geochemical Exploration. 2025, 49 (2): 340-348.   DOI: 10.11720/wtyht.2025.1299
Abstract   HTML ( 2 )   PDF (11199KB)

Conventional splicing methods aim to serve structural interpretation and align the reflection energy and frequency of large strata based on seismic data themselves.They adopt seismic data only from one study area in processing data of overlap zones,failing to fully utilize the effective information in seismic data of all study areas.Consequently,the resulting low-fidelity seismic data in overlap zones severely affect subsequent discrimination of reservoir connectivity and hydrocarbon-bearing properties.This study proposed a weighted fusion-based data spicing method for overlap zones,where seismic data from different study areas are fused with corresponding weights to generate a trace of seismic data.The application of the proposed method to actual seismic data shows that the processing results based on the fusion and splicing of data in overlap zones can effectively improve the quality of seismic data,with high continuity of seismic events on the profile, contributing significantly to the discrimination of the connectivity of shallow sand bodies.

Figures and Tables | References | Related Articles | Metrics
Implicit generation of complex geological surface models based on scalar coordinates
LIU Pei-Gang, YUAN Hao, XUE Kai-Xin, LI Zhao-Liang, LI Zong-Min
Geophysical and Geochemical Exploration. 2025, 49 (2): 349-359.   DOI: 10.11720/wtyht.2025.2573
Abstract   HTML ( 1 )   PDF (5374KB)

The construction and presentation of a geological modelprove to be ahot topic and challenge in research on 3D geological modelling. Given the large scale, involvement of complex surfaces, and insufficient geological constraints of geological body data, this study achieved the rapid construction of a large-scale geological surface model using the domain decomposition-based implicit generation method. Initially, implicit functionswere constructed by taking radial basis functions as the kernel functions.Then, the distribution functions of various domainswere solved in parallel usinganoverlapping domain decompositionmethod, reducing the spatiotemporalcost and accelerating the solving process.Subsequently, normal vectors were extracted to generate control pointsand formconstraints on surface fluctuation, thereby effectively controlling the model boundaries. The experimental results indicate that the method proposed in this study can significantly improve the efficiency associated with the solving of distribution functionswhile ensuring the high quality of the model. This study effectively solves the problem of balance between efficiency and precision in geological modeling and provides methodological support for the refinement of geological surfaces.

Figures and Tables | References | Related Articles | Metrics
Analysis of multi-component response characteristics of surface-to-borehole transient electromagnetic method with complex-shaped loop source
WANG Zhi-Xin, DENG Ju-Zhi, CHEN Hui, QIU Chang-Kai, YU Hui, YIN Min, FENG Min
Geophysical and Geochemical Exploration. 2025, 49 (2): 360-369.   DOI: 10.11720/wtyht.2025.2486
Abstract   HTML ( 2 )   PDF (8203KB)

In actual exploration, the surface-to-borehole transient electromagnetic (TEM) method is prone to be affected by irregular transmitter loops and inclined boreholes, resulting in increased measurement errors of the three-component induced magnetic fields and decreased interpretation accuracy. By establishing surface-to-borehole TEM method-based three-component measurement models under the excitement of transmitter loops of various shapes, this study derived the calculation formulas for surface-to-borehole TEM responses under inclined boreholes through coordinate transformation. Then, it achieved one-dimensional forward modeling of the full-space TEM field using a numerical filtering algorithm. The calculation results of multiple typical models indicate that the three components of the transient magnetic fields were significantly influenced by the shapes of the transmitter loops, with the impacts on horizontal components x and y far more significant than those on vertical component z. The transmitter loops of regular polygons with even edges as the sources exhibited uniform and symmetric distribution of the TEM fields of the three components. Under the condition of the same perimeter, a greater number of edges of the transmitter loops associated with greater primary field energy excited by the loops. Therefore, rectangular transmitter loops as the sources prove the most cost-effective. The inclination and offset primarily affected the amplitude of the three-component responses. In contrast, the borehole azimuth mainly influenced the sign of the horizontal components, bearing rich information on location. Therefore, in the exploration using the surface-to-borehole TEM method, it is necessary to accurately determine source paths and the geometric morphologies of boreholes to make essential corrections, thus improving the accuracy and reliability of interpretations.

Figures and Tables | References | Related Articles | Metrics
Comparison of error indicators for performance tests of gravimeters based on different specifications
CHANG Xiao-Peng, CHEN Liang, ZHANG Xiang, QIAO Yan-Yi, JIANG Cheng-Long
Geophysical and Geochemical Exploration. 2025, 49 (2): 370-377.   DOI: 10.11720/wtyht.2025.1081
Abstract   HTML ( 2 )   PDF (703KB)

As an important part of gravity investigation, the performance tests of gravimeters are required throughout field surveys. In these tests, mean squared error (MSE), accuracy, and root mean squared error (RMSE) are commonly employedto quantitatively describe the test results. The comparison of the theoretical equations for dynamic and consistency tests in specifications on geological surveys, petroleum, and measurement reveals a pronounced confusion in the usage of MSE, accuracy, and RMSE. This issue is observed in the consistent equations forconsistency testsin these specifications. Through investigations into the equations used in the dynamic and consistency tests inthe threespecifications, this study analyzed the differences between mean MSE and RMSE, elucidated the normativity of RMSE relative to MSE, and determined the applicablerange of RMSE. To avoid confusion, it is recommended that accuracy be used for qualitative expression and RMSE for quantitative expression in these specifications.

Figures and Tables | References | Related Articles | Metrics
Intelligent detection and suppression methodology for noise interference of oil well pumping units in seismic data processing
ZHANG Meng
Geophysical and Geochemical Exploration. 2025, 49 (2): 378-384.   DOI: 10.11720/wtyht.2025.1395
Abstract   HTML ( 1 )   PDF (5244KB)

Noise detection and suppression of oil well pumping units pose challenges in data processing for mature exploration areas.The conventional method in the industry is to identify pumping unit noise through manual interactions and then suppress it as high-amplitude interference.However,manual identification wastes manpower and yields low detection accuracy,often resulting in missed detections.Hence,based on the noise characteristics of pumping units,this study conducted noise detection on seismic data containing pumping unit noise using deep learning methods.It then estimated the bandwidth of the detected noise using mathematical morphology techniques to determine the final position and distribution pattern of the noise.This allows for adaptive parameter support for the anomalous amplitude attenuation(AAA) method to achieve automatic detection and efficient suppression of pumping unit noise.The processing results of actual seismic data reveal that the methodology used in this study enables intelligent detection of pumping unit noise,significantly reducing the manual effort required for noise identification,improving the detection accuracy,and enhancing the fidelity and robustness of the AAA method.

Figures and Tables | References | Related Articles | Metrics
A deep learning-based method for error correction of 2D slope tomography-based inversion models
GE Da-Ming
Geophysical and Geochemical Exploration. 2025, 49 (2): 385-393.   DOI: 10.11720/wtyht.2025.1191
Abstract   HTML ( 2 )   PDF (3039KB)

Slope tomography is a method to estimate subsurface velocity macromodels from the slopes and traveltimes of local coherent reflection events. In geologically complex areas, the macromodels obtained from slope tomography tend to yield larger errors. To address this issue, this study proposed a method for error correction of the models using deep learning. Specifically, with macromodels determined using slope tomography-based inversion serving as input and corresponding theoretical models as labels, a neural network was trained, yielding a nonlinear mapping from the slope tomography-derived macromodel to the corresponding theoretical model. To ensure that the trained neural network was applicable to measured seismic data, the training samples were generated from the inversion model and migration profiles of measured seismic data. Tests based on the data synthesized using the theoratical model validated the accuracy and effectiveness of the proposed method. The proposed method was then applied to the 2D measured seismic data from beaches and shallow seas, yielding velocity models with elevated precision and depth migration imaging profiles with high quality.

Figures and Tables | References | Related Articles | Metrics
3D seismic data reconstruction based on Shearlet transform
HUANG Wei-Hong, ZHANG Hua, WU Zhao-Qi, DAI Meng-Xue, BAO Xing-Yue, JIANG Wei-Long, QIU Xiu-Quan
Geophysical and Geochemical Exploration. 2025, 49 (2): 394-403.   DOI: 10.11720/wtyht.2025.1271
Abstract   HTML ( 2 )   PDF (6054KB)

Seismic data collected in the field frequently suffer from missing values due to constraints of acquisition cost or terrain. Data reconstruction is a critical step in seismic data preprocessing. Based on the compressed sensing theoretical framework, this study subsampled synthesized data using the 2D random undersampling technique. Then, the 3D seismic data were divided into a series of time slices. By introducing the sparse Shearlet transform and using the convex set projection (POCS) algorithm, this study conducted sequential data reconstruction for various time slices. As a result, a Shearlet transform-based time-domain 3D seismic data reconstruction method was developed. Numerical experiments and measured results demonstrate that the proposed reconstruction method exhibits a higher signal-to-noise ratio, a higher computational speed, and better effects than a Curvelet transform-based approach.

Figures and Tables | References | Related Articles | Metrics
Application of time-frequency peak filtering with minimum mean cross-entropy in ground penetrating radar signal denoising
ZHENG Wei, TIAN Ren-Fei, GAO Yu-Han, WU Bin
Geophysical and Geochemical Exploration. 2025, 49 (2): 404-410.   DOI: 10.11720/wtyht.2025.1300
Abstract   HTML ( 2 )   PDF (4113KB)

In practical detection operations using ground-penetrating radar (GPR), factors such as environmental noise and instrument errors frequently cause signals to be mixed with substantial noise, seriously reducing signal quality and the reliability of analytical results. To address this issue, this study proposed a time-frequency peak filtering method combined with minimum mean cross-entropy (TFPF-MMCE) for denoising GPR signals. This method combined time-frequency peak filtering with the cross-entropy function, enabling effective noise suppression and precise preservation of valid signals through precise optimization of the time-frequency representation, thereby significantly improving the quality of GPR signals. Numerical simulation and field GPR experiments validated that the TFPF-MMCE method exhibited a high noise removal capability and, thus, can effectively eliminate random noise while significantly improving signal clarity and reliability. Compared to traditional denoising methods, TFPF-MMCE shows significant advantages in denoising effectiveness and noise resistance stability, suggesting promising application potential and practical value in the field of GPR signal processing.

Figures and Tables | References | Related Articles | Metrics
Application of factor analysis in geochemical zoning and its implications: A case study of 1:50,000 stream sediment survey in the Juxian-Wulian area, Shandong Province
LU Wen-Dong, SUN Bin, LI Guang-Jie, WEI Wei, XIA Xiao-Xing, PAN Bing-Lei, SHA Qing, LYU Xiao-Hong, LI Yuan-Chun, QIAO Na
Geophysical and Geochemical Exploration. 2025, 49 (2): 411-421.   DOI: 10.11720/wtyht.2025.2505
Abstract   HTML ( 1 )   PDF (4697KB)

This study investigated data from a 1:50,000 stream sediment survey in the Juxian-Wulian area, Shandong Province using factor analysis. By extracting eight representative factors, this study identified element assemblage types. Then, this study performed geochemical zoning based on the factor scores and discussed the relationships between various sub-zones and their geological background. Based on the geochemical zoning results, as well as geological conditions for mineralization, this study determined favorable geological bodies and prospecting targets and discovered new prospecting clues.The most significant mineralization combination in this area is Au-Cu-Ag-Mo-Bi, followed by Pb-Zn; The V-Ti-Co-Mn combination and Ni-Cr combination can serve as exploration elements, indicating that there may be favorable mineralization mechanisms in the center and deep parts of the combination anomaly zone. Finding volcanic craters and hidden explosive breccia tubes in the distribution areas of volcanic rocks in this region or area is an important direction for mineral exploration; In the area of Shichang Fangzi Village in the eastern part of the research area, there is a comprehensive zoning with a F2-F4-F1 three factor combination model. The Mesozoic Buliu sequence and Weideshan sequence rock bodies are favorable geological bodies for mineralization, and the NE trending structural belt is a favorable place for mineralization, indicating the direction of prospecting.

Figures and Tables | References | Related Articles | Metrics
Application of least-squares collocation to the gridding of magnetic anomaly data
GAO Xiao-Wei, LI Xiong-Wei, PANG Shao-Dong, LI Wen-Gang, YAO Wei-Hua, DU Jin-Song
Geophysical and Geochemical Exploration. 2025, 49 (2): 422-432.   DOI: 10.11720/wtyht.2025.1286
Abstract   HTML ( 1 )   PDF (9890KB)

Traditional gridding methods struggle to balance computational accuracy and efficiency when processing irregularly distributed magnetic anomaly data. To address this issue, this study applied the classic least-squares collocation method from geodesy to the gridding of ground-based magnetic anomaly data. This application was verified through the test and analysis of the simulation data and the actual coalfield data. The results indicate that the computational accuracy of gridding based on least-squares collocation is dictated by the error estimation of discrete observational data and the selection and fitting of the covariance function. More accurate error estimation contributes to higher-accuracy interpolation. A polynomial function is a simple and effective empirical covariance function for processing magnetic anomaly data. The least-squares collocation method demonstrates more effective noise suppression compared to the Kriging, minimum curvature, and radial basis function methods. Overall, applying the least-squares collocation to the gridding of magnetic anomaly data can enhance the accuracy and efficiency of data processing.

Figures and Tables | References | Related Articles | Metrics
Parameter inversion and application of the Cole-Cole model for time-domain induced polarization spectra based on the backpropagation neural network
YANG Hai-Ming, YAO Wei-Xing, TANG Su, PAN Zhan-Chao, GUAN Li-Wei
Geophysical and Geochemical Exploration. 2025, 49 (2): 433-440.   DOI: 10.11720/wtyht.2025.1422
Abstract   HTML ( 3 )   PDF (3859KB)

The spectral parameters of the Cole-Cole model can improve the resolution of comprehensive interpretation of time-domain induced polarization (IP) data, contributing somewhat to the exploration of metal deposits. Applying the backpropagation neural network (BPNN) model to the prediction and inversion of spectral parameters can avoid high computational complexity to improve the inversion speed. Moreover, the BPNN model can fully explore the utilization efficiency of time-domain IP data to enrich the characteristic information of subsurface ore bodies. Based on this, this study derived the mathematical expression of the time-domain apparent polarizability attenuation curve using the digital filtering algorithm. With the mathematical expression as the forward/inverse model, this study comparatively analyzed the impacts of four factors-the sample size of the training set, the number of neurons in the input layer, the node number of hidden layers, and the number of hidden layers-on the training and inversion effects of the BPNN model, determining the optimal model. Furthermore, this study trained the BPNN model using time-domain IP data from eight time windows. Finally, this study applied the trained BPNN model for prediction and inversion based on the measured time-domain IP data. The results indicate that the BPNN model is feasible in inverting spectral parameters based on both theoretical and measured datasets, manifesting high inversion accuracy and minor errors. Overall, the results of this study can assist in distinguishing paragenetic and associated minerals and reducing misinterpretation.

Figures and Tables | References | Related Articles | Metrics
Fast first-arrival traveltime tomography of diving waves under rugged surface and its application to static correction
YANG Hua-Chen, GE Da-Ming, WANG Zhong-Cheng, WANG Lei, YUAN Yong-Qi
Geophysical and Geochemical Exploration. 2025, 49 (2): 441-450.   DOI: 10.11720/wtyht.2025.1374
Abstract   HTML ( 1 )   PDF (8836KB)

Ray tracing-based first-arrival traveltime tomography is widely used to construct near-surface velocity models to achieve the static correction of seismic data from complex near surface.However,this method necessitates the calculation of ray paths for first-arrival traveltimes and the iterative updating of initial velocity models.As a result,significant computational time is required when applying this method to measured 3D high-density seismic data.To address this issue,this study proposed a method for quickly building 3D near-surface velocity models utilizing diving wave traveltimes under rugged surface.Specifically,based on the ray and traveltime equations of diving waves corresponding to velocities subjected to lateral and vertical changes under rugged surface,the velocity distribution from the observation surface downward was determined using common offset gathers.The proposed method eliminates the need for ray tracing and iterative updates of initial velocity models,offering high modeling efficiency.Tests based on data from theoretical models verified the effectiveness of the proposed method.When applied to measured 3D seismic data,the proposed method yielded static correction results comparable to those obtained using the Fresnel-volume first-arrival traveltime tomography while significantly improving computational efficiency.

Figures and Tables | References | Related Articles | Metrics
Development and application of a quality monitoring platform for nodal seismic data acquisition
ZHANG Jian
Geophysical and Geochemical Exploration. 2025, 49 (2): 451-461.   DOI: 10.11720/wtyht.2025.1107
Abstract   HTML ( 2 )   PDF (12776KB)

With the application of high-precision,high-density 3D seismic technology and significant improvements in acquisition efficiency,the volume of data from nodal seismic data acquisition has expanded sharply.This leads to growing demands for the quality monitoring of nodal seismic acquisition.Especially,the lag in the synthesis of common shot gather data in node data has affected the quality monitoring and processing efficiency of seismic data.Therefore,the demand for quality control technology has become increasingly prominent in nodal seismic data acquisition.By delving into technologies including the visual monitoring of pre-acquisition node states,node data synthesis,and seismic data quality monitoring,this study independently developed a quality monitoring platform for nodal seismic data acquisition,enabling quality control for the whole nodal seismic data acquisition,involving equipment status,data synthesis,and data quality control.This platform has achieved satisfactory application results in a practical seismic data acquisition project.

Figures and Tables | References | Related Articles | Metrics
Application of Baidu Comate-based AI technology to the automatic numbering of sampling points in irregular geochemical networks
WANG Xuan, YANG Huan, WANG Ran, LI Ying, WANG Hai-Peng, LIU Yan-Song, LIAO Jun-Yu, ZHANG Cheng-Bin, ZHANG Xu-Dong
Geophysical and Geochemical Exploration. 2025, 49 (2): 462-469.   DOI: 10.11720/wtyht.2025.1200
Abstract   HTML ( 2 )   PDF (2246KB)

In the era of rapid digitalization development, artificial intelligence (AI) technology has brought revolutionary changes to traditional work patterns. Based on Baidu Comate, this study proposed an automatic numbering method for sampling points in irregular geochemical networks. Automatic numbering tests, conducted on 12 000 geochemical sampling points, demonstrate that the method improved the efficiency by 99.8% and achieved 100% accuracy compared to the traditional manual method. This indicates that the proposed method is more efficient and accurate than traditional approaches, effectively avoiding human errors and improving work efficiency. This study also discussed the challenges AI faces in processing complex instructions, the importance of instruction clarity, the identification of complex logic, and the necessity of developing knowledge reserves. Although AI technology has significantly improved the efficiency and accuracy of the automatic numbering of sampling points in irregular geochemical networks, the early development of packaging tools requires personnel who can read codes to modify and verify the codes. Additionally, AI-assisted demand processing should be in phases, and ultimately, it is necessary to encapsulate verified codes into a tool for reuse.

Figures and Tables | References | Related Articles | Metrics
Grain size effect and chemical speciation of elements in tailings from the Han-Xing iron deposit: Implications for resource utilization and environmental protection
CHANG Hao, YUAN Zhao-Xian
Geophysical and Geochemical Exploration. 2025, 49 (2): 470-478.   DOI: 10.11720/wtyht.2025.2422
Abstract   HTML ( 1 )   PDF (1837KB)

Despite bearing valuable recyclable elements, mine tailings pose environmental risks. However, there is a lack of studies on the geochemical characteristics of tailings in China and abroad, hindering their appropriate treatment and reuse. This study collected tailing samples from the Han-Xing Iron deposit in Hebei Province, China and conducted the analysis and tests of these samples. This study determined the concentrations and chemical speciation (i.e., exchangeable, carbonate-bound, Fe-Mn oxide-bound, organic-bound, and residual forms) of elements including Fe, Co, S, Cu, and Zn in tailing particles with varying grain sizes. Accordingly, it explored the implications for the exploitation and utilization of tailing resources, along with the assessment of environmental risks. This study provides deeper insights into the geochemical characteristics of tailings, producing positive impacts on the exploitation and utilization of tailing resources, as well as the prevention of environmental risks.

Figures and Tables | References | Related Articles | Metrics
Geochemical evaluation and related method of desertified land in Fujian Province,China
WANG Wen-Jun
Geophysical and Geochemical Exploration. 2025, 49 (2): 479-489.   DOI: 10.11720/wtyht.2025.2409
Abstract   HTML ( 5 )   PDF (7312KB)

Based on high-precision, high-quality data on SiO2, Al2O3, Fe2O3, and organic matter in topsoils obtained from the 1:250,000-scale multi-purpose regional geochemical survey in Fujian Province, this study assessed topsoils and, for the first time, established a geochemical method-based geochemical assessment system for desertified land in the province. Specifically, this system involves methods for calculating the silicon-aluminum-iron ratio (Saf), carbon-silicon ratio (KSi), and their comprehensive index value (Szh_ f), which serves as the indicator for assessing the degree of land desertification. Specifically, a higher Szh_ f value indicates a higher degree of desertification, and vice versa. Furthermore, this study determined the statistics of geochemical classification parameters for desertified land in Fujian Province and delineated the distribution ranges of geochemical grades. This aims to assess the current status of desertified land in the province from the microscopic perspective of soil elements and to further ascertain the distribution characteristics of the land. The results indicate that the land with strong, moderate, slight, and very slight desertification in Fujian Province exhibits areas of 39 531 hectares (0.326%), 65,790 hectares (0.542%), 103 601 hectares (0.853%), and 360 329 hectares (2.968%), respectively, primarily distributed along the coastal zone to the south of the Minjiang River and in Changting County of Longyan City. Field verification demonstrates that this evaluation method is scientific and reliable and yields accurate classification results of desertification grades, thus objectively reflecting the distribution status of desertified land in Fujian Province.

Figures and Tables | References | Related Articles | Metrics
Characteristics and influencing factors of selenium content in soils and crops in typical high-selenium-content regions of western Hubei Province, China
QIN Hao-Lin, LI Ming-Long, ZHENG De-Shun, SUN Feng-Bo, ZHANG Kai
Geophysical and Geochemical Exploration. 2025, 49 (2): 490-499.   DOI: 10.11720/wtyht.2025.2480
Abstract   HTML ( 2 )   PDF (3616KB)

Understanding the distribution patterns of selenium in soils and crops is critical to developing selenium-rich industries. Enshi City in Hubei Province is known for its extensive selenium-rich soils, establishing this city as a promising area for selenium-rich agriculture. This study investigated Xintang Township in Enshi. Based on the organization and analysis of the geochemical data of 2 469 soil samples and 237 crop samples of maize, potatoes, rice, radish, cabbage, and tea, this study offered a systematic summary of the selenium distribution in soils and factors influencing selenium content in crops in the study area. The results indicate that the topsoils exhibit selenium content ranging from 0.14×10-6 to 25.74×10-6, with a background value of 0.81×10-6, which is 3.7 times the national background of selenium content in soils. Selenium-rich soils cover 86.23% of the total area of the study area, and two NEE-directed selenium-rich belts are found. The spatial distribution of selenium in soils is closely related to soil-forming parent materials. Soils with Permian black rock series as parent materials exhibit notably higher selenium content, with an enrichment coefficient of 3.74. In high-selenium-content areas, rice, radish, and cabbage exhibit selenium enrichment rates exceeding 65%. Except for potatoes, crops display positive correlations between their selenium content and the selenium content in their root soils, with tea showing the highest correlation (P<0.01, R=0.84). This suggests a close relationship between the selenium content in crops and their root soils. The crops in cultivated areas with Permian black rock series and Triassic carbonate rock series as soil-forming parent materials exhibit high bioconcentration factors of selenium, with soils and crops with Permian black rock series as soil-forming parent materials presenting the highest average selenium content. This highlights the significant impacts of soil-forming parent materials on crop selenium content.

Figures and Tables | References | Related Articles | Metrics
Characteristics and source analysis of heavy metal contamination in the sediments of the Jinsha River Basin: A case study of the Qingling River
CHENG Yan-Xun, XU Lei, WU Liang, ZHAO Meng-Sheng, WANG Fu-Hua, QIAN Kun, ZHENG Hong-Fu, LI Wen-Hui, ZHANG Hong-Hui
Geophysical and Geochemical Exploration. 2025, 49 (2): 500-509.   DOI: 10.11720/wtyht.2025.1043
Abstract   HTML ( 2 )   PDF (1908KB)

To understand the characteristics and sources of heavy metal contamination in the sediments of the Jinsha River basin, this study investigated the Qingling River basin-a primary tributary of Longchuan River on the south bank of the Jinsha River. Samples were collected from the sediments of 22 representative sections, and the concentrations of eight heavy metal elements, i.e., As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, were tested and analyzed. Statistical analysis was conducted on the distribution characteristics of these heavy metal elements in the sediments along the basin. The sources of these heavy metals were investigated using correlation analysis and principal component analysis, and the degree of heavy metal contamination in the sediments was assessed using the geo-accumulation index and the Nemero index. The results indicate that As, Cd, Cu, Hg, Ni, Pb, and Zn are primarily influenced by mining, agricultural, and industrial activities. Cr and Ni originate primarily from soil-forming parent materials. Besides natural sources, Ni is also affected by anthropogenic sources. The assessment results derived using the geo-accumulation and Nemero indices reveal that the eight heavy metal elements exhibit moderate or low contamination on average. However, partial elements, represented by Cd, Hg, Pb, and Zn, exhibit localized enrichment within the basin, primarily concentrated in the Laojiezi Au-Pb-Ag polymetallic mining area and the urban-rural junction in the lower reaches of the county.

Figures and Tables | References | Related Articles | Metrics
1:50,000 geochemical survey-based assessment of land quality and land development suggestions for the Yao'an Dam area, Yunnan Province, China
YANG Ming-Long, HUANG Jia-Zhong, ZHU Zhi-Ping, XU Lei, CHENG Yan-Xun, ZHAO Meng-Sheng, ZHANG Long
Geophysical and Geochemical Exploration. 2025, 49 (2): 510-519.   DOI: 10.11720/wtyht.2025.2584
Abstract   HTML ( 2 )   PDF (7224KB)

Land emerges as the most fundamental resource for agricultural production, and addressing land quality-related issues is the key to ensuring high food quality. A comprehensive understanding of land quality is crucial to the scientific and sustainable utilization and development of land resources. This study conducted a 1:50,000 geochemical survey of land quality in the contiguous farmland in Dongchuan Town, Yao'an County, Yunnan Province. Accordingly, this study provided a comprehensive assessment of soil nutrients, environment, dry and wet atmospheric deposits, and agricultural irrigation water. Based on the assessment results, this study determined the production areas of green food and pollution-free agricultural products, aiming to provide a reference for the development and utilization of sustainable, green cultivated land. The results indicate that soils in the study area are nutrient-rich and enjoy a favorable environment, high-quality irrigation water, and an excellent atmospheric environment. The comprehensive grade assessment results of soil quality align with those of land quality, revealing that the first and second-grade high-quality soils account for 68.98% of the total area. A batch of production areas of pollution-free and green food were determined, and those that can be directly used to develop green, zinc- and copper-rich crops were delineated. These findings will provide geochemical data support for land use planning, food security, building agricultural products with plateau characteristics, and serving rural revitalization efforts.

Figures and Tables | References | Related Articles | Metrics
Application of microtremor survey technology in shield tunnels passing through urban karst formations
ZHANG Zhong, FENG Wen-Cheng, LIN Yang
Geophysical and Geochemical Exploration. 2025, 49 (2): 520-528.   DOI: 10.11720/wtyht.2025.1146
Abstract   HTML ( 3 )   PDF (7289KB)

Due to dense buildings and structures and insufficient drilling surveys, the construction of shield tunnels passing through urban karst formations that host dense buildings faces significant risks of surface fracturing and subsidence caused by karst development. Hence, this study employed the microtremor survey technology with strong anti-interference capability in complex environments to address this challenge. Based on the technology, it analyzed the structural characteristics of wave velocities in underground rock formations through the inversion of the apparent shear-wave velocity profile. Combined with geological drilling data, it inferred the bedrock interface, highly weathered unconsolidated formations, and karst cave anomaly zones. Key findings are as follows: (1) The apparent shear-wave velocities in the study area gradually increased from the shallow to deep formations. Formations with wave velocities above and below 300 m/s were inferred to be limestone and Quaternary formations, respectively, with the rock-soil interface at depths approximately between 10~15 m; (2) Seven low-value anomaly zones of apparent shear-wave velocities ranging from 150~240 m/s were interpreted. They were presumed to be unconsolidated formations or karst caves at depths ranging from 8~30 m. Relying on strong anti-interference and high accuracy, the microtremor survey technology can accurately identify the shear-wave velocity structures of underground profiles, lithologic interfaces of formations, unconsolidated formations, and karst cave anomalies. Therefore, the technology is effective in the geological exploration of urban dense building areas with karst development.

Figures and Tables | References | Related Articles | Metrics
Please wait a minute...
For Selected: Toggle Thumbnails
More...
2025 Vol.49 No.1
2024 Vol.48 No.6 No.5 No.4 No.3 No.2 No.1
2023 Vol.47 No.6 No.5 No.4 No.3 No.2 No.1
2022 Vol.46 No.6 No.5 No.4 No.3 No.2 No.1
2021 Vol.45 No.6 No.5 No.4 No.3 No.2 No.1
2020 Vol.44 No.6 No.5 No.4 No.3 No.2 No.1
2019 Vol.43 No.6 No.5 No.4 No.3 No.2 No.1
2018 Vol.42 No.6 No.5 No.4 No.3 No.2 No.1
2017 Vol.41 No.6 No.5 No.4 No.3 No.2 No.1
2016 Vol.40 No.6 No.5 No.4 No.3 No.2 No.1
2015 Vol.39 No.S1 No.6 No.5 No.4 No.3 No.2
No.1
2014 Vol.38 No.6 No.5 No.4 No.3 No.2 No.1
2013 Vol.37 No.6 No.5 No.4 No.3 No.2 No.1
2012 Vol.36 No.6 No.S1 No.5 No.4 No.3 No.2
No.1
2011 Vol.35 No.6 No.5 No.4 No.3 No.2 No.1
2010 Vol.34 No.6 No.5 No.4 No.3 No.2 No.1
2009 Vol.33 No.6 No.5 No.4 No.3 No.2 No.1
2008 Vol.32 No.6 No.5 No.4 No.3 No.2 No.1
2007 Vol.31 No.6 No.5 No.4 No.3 No.2 No.1
2006 Vol.30 No.6 No.5 No.4 No.3 No.2 No.1
2005 Vol.29 No.6 No.5 No.4 No.3 No.2 No.1
2004 Vol.28 No.6 No.5 No.4 No.3 No.2 No.1
2003 Vol.27 No.6 No.5 No.4 No.3 No.2 No.1
2002 Vol.26 No.6 No.5 No.4 No.3 No.2 No.1
2001 Vol.25 No.6 No.5 No.4 No.3 No.2 No.1
2000 Vol.24 No.6 No.5 No.4 No.3 No.2 No.1
1999 Vol.23 No.6 No.5 No.4 No.3 No.2 No.1
1998 Vol.22 No.6 No.5 No.4 No.3 No.2 No.1
1997 Vol.21 No.6 No.5 No.4 No.3 No.2 No.1
1996 Vol.20 No.6 No.5 No.4 No.3 No.2 No.1
1995 Vol.19 No.6 No.5 No.4 No.3 No.2 No.1
1994 Vol.18 No.6 No.5 No.4 No.3 No.2 No.1
1993 Vol.17 No.6 No.5 No.4 No.3 No.2 No.1
1992 Vol.16 No.6 No.5 No.4 No.3 No.2 No.1
1991 Vol.15 No.6 No.5 No.4 No.3 No.2 No.1
1990 Vol.14 No.6 No.5 No.4 No.3 No.2 No.1
1989 Vol.13 No.6 No.5 No.4 No.3 No.2 No.1
1988 Vol.12 No.6 No.5 No.4 No.3 No.2 No.1
1987 Vol.11 No.6 No.5 No.4 No.3 No.2 No.1
1986 Vol.10 No.6 No.5 No.4
1986 Vol.6 No.4
1986 Vol.10 No.3 No.2 No.1
1985 Vol.9 No.6 No.5 No.4 No.3 No.2 No.1
1984 Vol.8 No.6 No.5 No.4 No.3 No.2 No.1
1983 Vol.7 No.6 No.5 No.4 No.3 No.2 No.1
1982 Vol.6 No.6 No.5 No.4 No.3 No.2 No.1
1981 Vol.5 No.6 No.5 No.4 No.3 No.2 No.1
1980 Vol.4 No.6 No.5 No.4 No.3 No.2 No.1
1979 Vol.3 No.6 No.5 No.4 No.3 No.2 No.1
Please wait a minute...
For Selected: Toggle Thumbnails
AN ANALYSIS OF THE SPECIAL WAVE IMPACT ON THE INTERPRETATIONOF THE COALFIELD COLLAPSE COLUMN
YANG Xiao-Dong, YANG De-Xi
Geophysical and Geochemical Exploration    2010, 34 (5): 627-631.  
Abstract2713)      PDF (4180KB)(4966)      


In the light of typical coneshaped columns in the Lu'an mine of Shanxi Province, the authors

established a mathematical model for the collapse column, and used the wave equation model for

seismic ray tracing and wavefield simulation of collapse columns. The simulation results show that,

due to the special nature of the collapse columns, such waves as the normal reflected wave, the fault

point diffraction wave, the delay diffraction wave, the delay reflected wave and  the "diffraction

wave" consisting of Pwave field are formed around the collapse columns. On such a basis, the field

shot was simulated, and then a single shot record for routine processing  was generated to produce

stacking sections and migrated sections. The forward section and the actual data analysis reveal that

the fallen columns of the special wave constitute an important feature for recognizing collapse

columns; nevertheless, the resultant scale of the actual seismic data interpretation is often smaller

than the scale of actual collapse column. Some suggestions are also put forward for reference.

Related Articles | Metrics
The application of integrated geological, geochemical and geophysical techniques to the exploration of the Bogutu gold deposit
YAO Tie, ZHOU Yong, DU Zhan-Jun, ZHAO Zhen-Ming
Geophysical and Geochemical Exploration    2015, 39 (5): 877-884.   DOI: 10.11720/wtyht.2015.5.01
Abstract1448)   HTML151)    PDF (12833KB)(4373)      

Low density geochemical survey in Yishenjilike mountain area led to the discovery of a huge gold geochemical block, and the verification and evaluation of gold anomalies led to the discovery of the Bogutu gold deposit. In combination with the geological characteristics of the prospecting area, the authors carried out a series of geological-geophysical-geochemical exploration work, delineated quite a few geochemical and IP anomalies, and detected the characteristics of ore-bearing structural belt. Through trenching and drilling verification, the authors found more than 40 gold orebodies, thus achieving good ore-prospecting results.

Reference | Related Articles | Metrics
The application of integrated geophysical prospecting methods to the exploration of urban buried fault
LIU Wei, HUANG Tao, WANG Ting-Yong, LIU Yi, ZHANG Ji, LIU Wen-Tao, ZHANG Qi-Bin, LI Qiang
Geophysical and Geochemical Exploration    2021, 45 (4): 1077-1087.   DOI: 10.11720/wtyht.2021.1525
Abstract929)   HTML408)    PDF (4078KB)(4071)      

The existing geological data show that there are several buried faults in the main urban area of Chengdu. However, the specific location and distribution of these faults are still unclear, which poses great security risks to the comprehensive and scientific exploitation and utilization of underground space resources and the optimization of urban construction planning and layout in Chengdu. In view of such a situation, four geophysical methods, namely, micromotion survey, high-density electrical method, transient electromagnetic method and soil radon measurement, were used in this paper to comprehensively explore the buried Baojiangqiao fault in the work area. The integrated geophysical prospecting methods not only identified the stratigraphic structure along the survey line, but also obtained the location, property, attitude and scale of the buried Baojiangqiao fault. This work indicates that the integrated geophysical prospecting methods can achieve better results in the exploration of urban buried fault.

Table and Figures | Reference | Related Articles | Metrics
Review on the study of grounded-source transient electromagnetic method
ZHANG Ying-Ying
Geophysical and Geochemical Exploration    2021, 45 (4): 809-823.   DOI: 10.11720/wtyht.2021.1513
Abstract1295)   HTML653)    PDF (729KB)(3841)      

Grounded-source transient electromagnetic method (TEM) has many advantages such as deep exploration, flexible arrangement in rough terrain and high working efficiency. Recently it has got much attention and a series of new methods are available, ranging from surface to airborne and borehole method. In this paper, the authors review the research history of long-offset TEM (LOTEM), short-offset TEM (SOTEM), multi-channel TEM(MTEM), grounded-source semi-airborne TEM and grounded-source surface to borehole TEM, and summarize their research status in forward modeling, system design, inversion, imaging and field working. The results show that, as a well-developed grounded-source TEM, LOTEM has accumulated many research achievements. Although some progress has been made, the researches on other grounded-source TEMs are still in a primary stage and still need further improvement. Valuable research results in LOTEM, for example, noise suppression technology, high dimensional inversion and point interpretation, can be introduced to these newly developed electromagnetic methods, which can help provide solutions for high working efficiency and high resolution deep exploration.

Reference | Related Articles | Metrics
A NEW DEVELOPMENT PERIOD OF THE GRAVITY AND MAGNETIC EXPLORATION
ZHANG Chang-Da, DONG Hao-Bin
Geophysical and Geochemical Exploration    2010, 34 (1): 1-7.  
Abstract3441)      PDF (431KB)(3647)      

A review on the airborne gravity survey and airborne magnetic survey are given in this paper. The

authors hold that these techniques have entered into a new development period, as evidenced by the

emergence of such technologic indicators as airborne vector magnetometry, magnetic fulltensor LTSSQUID

and HTSSQUID gradiometry, airborne gravimetry, gravity gradiometry and geophysical survey by UAV.

Related Articles | Metrics
THE ADVANCES IN THE STUDY OF THE AIRBORNE GRAVIMETRY SYSTEM
WANG Jing-Bo, XIONG Sheng-Qing, ZHOU Xi-Hua, GUO Zhi-Hong
Geophysical and Geochemical Exploration    2009, 33 (4): 368-373.  
Abstract3003)      PDF (1014KB)(3556)      

This paper gives a brief review of the history of the airborne gravimetry. Based on the principle of the airborne gravimetry, the paper deals emphatically with the history, the present  research situation and the developments of the airborne scalar gravity survey system. Further development trends are also indicated.

Related Articles | Metrics
3D DISPLAY FOR GROUND PENETRATING RADAR BASED ON Matlab
WU Bao-Jie, JI Mei-Xiu, YANG Hua
Geophysical and Geochemical Exploration    2009, 33 (3): 342-344.  
Abstract6867)      PDF (532KB)(3177)      

 With powerful Matlab image processing functions, this paper has realized the 3D display of ground penetrating radar data, whose procedures are simple to prepare and easy to learn. A detailed description of the code is given, and the three-dimensional test data show that, by setting transparency, the target can be displayed in an intuitive and visual way.

Related Articles | Metrics
THE UTILIZATION OF EXCEL TO THE PERFORMANCE OF R-MODE CLUSTER ANALYSIS
CHUN Nei-ya
Geophysical and Geochemical Exploration    2007, 31 (4): 374-376.  
Abstract4717)      PDF (659KB)(2922)      

The R-mode cluster analysis is a mathematic statistical method for obtaining the quantitative similarity of several elements. Its procedure includes: the conversion of the original data; the solution of the relevant coefficient ; the clustering of the result. The above operation can be realized by using the data analysis tool of Excel. This method is quite suitable for field utilization.

Reference | Related Articles | Metrics
CALCULATION OF THE ANOMALY AREA
Zhao Rongjun
Geophysical and Geochemical Exploration    2000, 24 (2): 154-156.  
Abstract1631)      PDF (346KB)(2804)      

This paper puts forward a new method for calculating anomaly area—the polygonous approximation method,and gives corresponding algorithm and precision controlling technique.With this method,one can calculate anomaly area rapidly and precisely,thus yielding relatively satisfactory results.

Reference | Related Articles | Metrics
THE APPLICATION OF ATOM INTERFEROMETER TO THE MEASUREMENT OF GRAVITATIONAL ACCELERATION
ZHANG Chang-da
Geophysical and Geochemical Exploration    2000, 24 (5): 321-326.  
Abstract1797)      PDF (673KB)(2798)      

This paper has described and reviewed the pinciples,expermental set up and observational results of applying atom interferometer to measuring the earth's gravitational acceleration.This method was developed by Nobelist Steven Chu,M.Kaservich,A.Peters et al.,who demonstrated a resolution of 10-10.The application of this technique to geophysics and the related problems are also discussed.

Reference | Related Articles | Metrics
THE CHOICE OF GRIDDING METHODS FOR GEOPHYSICAL DATA
LIU Zhao-Ping, YANG Jin, WU Wei
Geophysical and Geochemical Exploration    2010, 34 (1): 93-97.  
Abstract3226)      PDF (1939KB)(2787)      

In drawing the contour map of geophysical data, suitable gridding methods should be chosen according to objective

environment characteristics and characteristics of data themselves. With practical examples, this paper deals with some common

gridding methods such as inverse distance to a power, Kriging, Minimum Curvatrue, Nearest Neighbor, Polynomial Regression, Radial

Basis Function, and Triangulation/Liner Interpolation, probing into their choosing means, applicable fields and parameter

installment.

Related Articles | Metrics
RECENT ADVANCES IN THE RESEARCH AND DEVELOPMENT OF QUANTUM MAGNETOMETERS
ZHANG Chang-da
Geophysical and Geochemical Exploration    2005, 29 (4): 283-287.  
Abstract1807)      PDF (376KB)(2779)      

In this paper, recent advances in the research and development of quantum magnetometers have been described together with some suggestions on further research work.

Reference | Related Articles | Metrics
THE PROGRESS AND PROSPECT OF THE ELECTRICAL RESISTIVITY IMAGING SURVEY
YAN Jia-yong, MENG Gui-xiang, LV Qing-tian, ZHANG Kun, CHEN Xiang-bin
Geophysical and Geochemical Exploration    2012, 36 (4): 576-584.   DOI: 10.11720/wtyht.2012.4.13
Abstract5160)      PDF (1427KB)(2770)      
This paper has summed up the progress of the ERI method over the past decade of years as well as its future development trend in the following aspects: ① A comparison of the performances of the main ERI instruments used at present shows that the ERI instruments tend to develop in the multi-channel, multi-parameter, multi-functional, high-power direction; ② ERI measurement environment has changed from surface measurement to water surface, underwater and cross-hole measurements, with the last three kinds of measurements analyzed in this paper; ③ On the basis of analyzing ERI data processing method and inverse development status, this paper describes three-dimensional and four-dimensional inversion theory of ERI with practical examples; ④ ERT applications are summed up, and several new applications are introduced. It is concluded that, with the improvement of the probing depth and observation precision as well as the diversification of the observation models, the application field of ERI will become broader and broader, and this technique will surely have wide development prospect.
Reference | Related Articles | Metrics
CHEMICAL COMPOSITIONS OF CONTINENTAL CRUST AND ROCKS IN EASTERN CHINA
Yan Mingcai, Chi Qinghua, Gu Tiexin, Wang Chunshu
Geophysical and Geochemical Exploration    1997, 21 (6): 451-459.  
Abstract3126)      PDF (2969KB)(2742)      

Element abundances of the continental crust and rocks cited in the past and recent literature have been based on compilations of data from various studies. This leads to uncertainties in sample representativeness and data quality. The present study is based on systematic collection of 28 253 individual rock samples over an area of 3.3 million km2 in eastern China, east of eastern longitude of 105°.The sampling involves more than 800 igneous intrusive bodies and metamorphic complexes as well as more than 500 type stratigraphic sections. From the individual rock samples, 2 718 composite samples were made and analyzed for 77 elements by 15 specific methods, dominantly XRF and INAA. Analytical quality was controlled by international and national preliminary geochemical reference materials of GSR, GAu and GPt series. Synthetic results from geological, geochemical and geophysical studies were used to construct crustal constitution model, from which element abundances of the continental crust in the North China platform, the upper crust and exposed crust in eastern China, chemical composition of igneous rock in China and of sedimentary rock and metamorphic rock in eastern China were derived.

Reference | Related Articles | Metrics
THE PRESENT SITUATION AND RESEARCH ADVANCES OF EXPLORATION GEOCHEMISTRY FOR PORPHYRY COPPER DEPOSITS
HU Shu-qi, MA Sheng-ming, LIU Chong-min
Geophysical and Geochemical Exploration    2011, 35 (4): 431-437.  
Abstract3817)      PDF (643KB)(2655)      

Porphyry copper deposit is the most important copper deposit type in China. With the deepening of mineral exploitation, exploration geochemistry in mineral exploration has become increasingly important. Based on related literature, this paper sums up the exploration geochemical research results of porphyry copper deposits, which include such aspects as geochemical characteristics, exploration methods, anomaly evaluation and prospecting indicators. Exemplified by the Fujiawu copper deposit, this paper reports the latest advances in the study of porphyry copper deposits.

Reference | Related Articles | Metrics
THE EXTRACTION METHOD AND PROGRAM DESIGN FOR DISPERSION CURVE IN F-K DOMAIN
LI Jie, CHEN Xuan-hua, ZHANG Jiao-dong, ZHOU Qi, LIU Gang, LIU Zhi-qiang, XU Yan, LI Bing, YANG Jing
Geophysical and Geochemical Exploration    2011, 35 (5): 684-688.  
Abstract3810)      PDF (534KB)(2627)      

Based on two-dimensional Fourier transform and half-wave theory, this paper has studied the seismic Rayleigh wave dispersion curve extraction in f-k domain and made this theory fit in with a program by means of Delphi7.0. It is concluded that the f-k method overcomes the shortcomings of the one-dimensional digital processing technology and makes full use of multi-channel Rayleigh wave data record.

Reference | Related Articles | Metrics
THE APPLICATION OF THE GRADIENT SOUNDING PROFILE METHOD TO THE GOLD PROSPECTING IN THE YINAN GOLD MINE
DU Li-ming, WU Jun-jie, YANG Jin-duo, WANG Peng, YU Bao-xian
Geophysical and Geochemical Exploration    2013, 37 (2): 225-228.   DOI: 10.11720/j.issn.1000-8918.2013.2.07
Abstract2431)      PDF (964KB)(2600)      
IP is an important method for mineral resources exploration, but it can only be applied in a few pivotal places because its difficult performance, and hence the information obtained from the survey area is very limited. The aim of this study is to find a simple and effective IP method with which we can get much valuable information form the survey area so as to improve the exploration effect. In the Yinan gold ore district, the authors applied the gradient sounding profile method, calculated 2D resistivity and obtained the IP model. The results show that the gradient sounding profile method is simple and effective.
Reference | Related Articles | Metrics
THE APPLICATION OF NEW GEOCHEMICAL EXPLORATION METHODSTO MINERAL EXPLORATION AND ITS GEOLOGICAL EFFECT
JIANG Yong-Jian, WEI Jun-Hao, ZHOU Jing-Ren, WANG Zhong-Ming, JI Zhao-Jia, WANG Fa-Yan
Geophysical and Geochemical Exploration    2010, 34 (2): 134-138.  
Abstract4357)      PDF (403KB)(2545)      

As an important prospecting technique and an effective means for obtaining mineralization data,

geochemical exploration has been proved to be very successful in mineral exploration. This paper focuses on

commenting the present research situation and application effect of some new methods such as structural

superimposed halos method, heat released mercury method, separatory electrogeochemistry method, enzyme leach, and

geogas and selective leaching of mobile metals method. It is emphasized that any one of these methods has its

unique applicability and that, in the practical application, we should pay attention to the cooperation of

geochemical exploration, geologicalgeophysical exploration and remote sensing and depend on the study of

geological background so as to demonstrate the usefulness and effectiveness of geochemical exploration.

Related Articles | Metrics
A TENTATIVE DISCUSSION ON THE RESOLUTION OF THE GROUND-PENETRATING RADAR
YUAN Ming-de
Geophysical and Geochemical Exploration    2003, 27 (1): 28-32.  
Abstract2576)      PDF (512KB)(2472)      

In the light of the pulse width of the radar wave, this paper deals with the difference and the relationship between the vertical resolution and the transverse resolution of the ground-penetrating radar, indicates the influence of the noise upon the resolution and, with practical examples, points out that the digital handling of the signal can greatly improve the resolution of the radar.

Reference | Related Articles | Metrics
Characteristics of gravity and magnetic fields in Ordos Basin and their geological significance
Bing LI, Yan-Bing SONG, Lei SHI, Qi WANG, Jiu-Ming JIANG, Jiu-Qiang JIN, De-Wen ZHOU, Ming XU, Gang-Yi XIAO, Min-Ying XIE
Geophysical and Geochemical Exploration    2019, 43 (4): 767-777.   DOI: 10.11720/wtyht.2019.1391
Abstract765)   HTML3)    PDF (3147KB)(2377)      

According to aeromagnetic and gravitational data, the boundary and range of Ordos basin were determined based on an analysis of the characteristics of gravity and magnetic fields. And on the basis of compiling depth map of the metamorphic basement and structuring zoning map, research was conducted on the basin’s basement structure, characteristics and features of depth change, structure framework, and caprock thickness. The research indicates that the metamorphic basement is composed of Proterozoic metamorphic series, and the buried depth of crystalline basement can reach 5 000 to 20 000 meters. The caprock is the layers of Ediacaran, Paleozoic, and Mesozoic. The occurrence and development of the basin are restricted by nearly NE-and NWW-trending structures, forming a pattern of four depressions and three uplifts. All the new understanding and conclusions provide a reference for further oil and gas exploration in the basin.

Table and Figures | Reference | Related Articles | Metrics
ABUNDANCE OF CHEMICAL ELEMENTS OF SOILS IN CHINA AND SUPERGENESIS GEOCHEMISTRY CHARACTERISTICS
Yan Mingcai, Gu Tiexin, Chi Qinghua, Wang Chunshu
Geophysical and Geochemical Exploration    1997, 21 (3): 161-167.  
Abstract2703)      PDF (2180KB)(2314)      

On the basis of accurate analysis of 154 composite soil samples collected from various landscape in China and other reference information, abundance of 79 elements and composition of soils in China have been given, chemical composition of soils under the influence of matrix rock and supergenesis geochemistry condition have been studied preliminarily.

Reference | Related Articles | Metrics
PARAMETER SELECTION IN VIBROSEIS SEISMIC EXPLORATION
XUE Hai-Fei, DONG Shou-Hua, TAO Wen-Peng
Geophysical and Geochemical Exploration    2010, 34 (2): 185-190.  
Abstract3546)      PDF (3477KB)(2314)      

 Vibroseis exploration, as an important method of seismic exploration, has become increasingly valued by geologists. During the field work, different geological conditions need different parameters, and the choice of suitable excitation parameters has become a very important problem. This paper mainly introduces six kinds of parameters, namely numbers of controlled seismic source, scanning bandwidth, vibration period, scanning length, scanning slopes, and vibration rate. The influence of these parameters on the quality of seismic records was studied in detail, and the simulation of the proper parameters was performed in Jiulishan area to enhance the resolution of vibroseis exploration and improve the signaltonoise ratio of seismic records.

Related Articles | Metrics
RESEARCH AND APPLICATION ON NUMERICAL INTEGRATIONOF HANKEL TRANSFORMS BY DIGITAL FILTERING
ZHANG Wei, WANG Xu-Ben, QIN Qing-Yan
Geophysical and Geochemical Exploration    2010, 34 (6): 753-755.  
Abstract3779)      PDF (363KB)(2314)      

 Numerical integration of Hankel transforms is effective tools for EM Sounding 's forward numerical simulation, this paper made out formula derivation of numerical integration of Hankel transforms by digital filtering, and use digital coefficients to do numerical compute which was put forward by Guptasama and Singh,finally contrasted to theoretical resolve expression and analyzed this algorithm's error distribution. The results show that the calculation of this algorithm continuously approximate its theoretical solution, it has no oscillation, high precision and great practical value in the numerical simulation study.

Related Articles | Metrics
Geophysical and Geochemical Exploration    1982, 6 (3): 154-156.  
Abstract1224)      PDF (190KB)(2312)      
Reference | Related Articles | Metrics
THE AUTOMATIC FORMATION OF THE SUFFER SOFTWARECONTOUR LEVEL FILE BASED ON AREA STATISTICS
REN Lei, CHEN Hua-Gen
Geophysical and Geochemical Exploration    2009, 33 (5): 595-598.  
Abstract3695)      PDF (830KB)(2294)      

The implied contour level and color scheme in Surfer software fail to express the subtle difference of DEM and the effect

of color solid. In addition, the artificial setting of the levels and color values are timeconsuming and laborious, and the

results are sometimes not perfect. With the consideration of contour level and color scheme and on the basis of Surfer platform

automation technology, this paper presents a program that can automatically generate a level file with different intervals and

different colors, thus resulting in satisfactory effect and efficiency.

Related Articles | Metrics
THE UTILIZATION OF SURFER TO CONDUCT THE DRAWING OF PROFILE-PLAN
SUN Zhong-ren, ZHAO Dong-liang
Geophysical and Geochemical Exploration    2006, 30 (2): 172-174.  
Abstract3637)      PDF (572KB)(2265)      

This paper has put forward the idea of utilizing Surfer to draw the initial data profile-plan. The programme compiled can realize the construction of Bln file. The profile-plans for regular net and irregular net have been constructed, and the results are satisfactory.

Related Articles | Metrics
FEATURES OF GEOPHYSICAL COMPOSITE ANOMALIES AND ORE RESOURCES IN YIHUANG AREA, JIANGXI PROVINCE
WANG Wei-Beng, FANG Ying-Yao, TUN Cheng-Beng
Geophysical and Geochemical Exploration    2010, 34 (5): 573-578.  
Abstract3134)      PDF (2717KB)(2255)      

According to the data obtained from air-borne electromagnetic and magnetic survey and

ground two-frequency IP and magnetic survey, this paper discusses the relationship between the

features of air-borne and ground geophysical composite anomalies and the ore resource distribution.

On the basis of an integrated analysis, geophysical composite anomaly criteria in search for iron, zinc

and lead deposits were established, and 12 important ore-prospecting targets were delineated, which

provides very important clues for finding iron, zinc, lead and some other ore resources.

Related Articles | Metrics
WAVE FIELD SEPARATION NUMERICAL MODELING OF SECOND ORDER ELASTIC WAVE EQUATION BY HIGH-PRECISIONSTAGGEREDGRID FINITE DIFFERENCE SCHEME
CHEN Ke-Yang, YANG Wei, LIU Hong-Lin, WU Qing-Ling
Geophysical and Geochemical Exploration    2009, 33 (6): 700-703.  
Abstract3221)      PDF (1060KB)(2210)      

This paper proposes an equivalent second order elastic wave equation to solve the problem of being unable to completely

separate the coupled P and S wave by full elastic wave equation. Through solving this equivalent wave equation by high-order

staggeredgrid finite difference scheme together with Flux Correction Technology (FCT) and separating wave fields of the

isotropic model and layered model, the authors accurately obtained the hybrid wave field and completely separated fields of pure

P wave and pure S wave fields. An analysis of the numerical results shows that the method is effective and reliable in isotropic

media, and there exists abundant energy transform information in separated pure P and pure S wave field. The result of the study

is of significance in understanding the propagating law and the elastic wave theory in the complex wave field.

Related Articles | Metrics
MIGRATION VELOCITY ANALYSIS AND MIGRATION IMAGING RESEARCH
YE Jing-Yan, YAO YA-Lin, WANG Yan-Qun, LI Qing
Geophysical and Geochemical Exploration    2009, 33 (6): 674-677.  
Abstract2893)      PDF (1927KB)(2189)      

Migration velocity analysis and migration imaging constitute two important parts in seismic data processing. At

present, time migration has become mature, and depth migration is getting more and more perfect. The common method for time

domain migration imaging is pre-stack time migration. By adopting stacking velocity analysis along the layer, exact layer

stacking velocity can be obtained. Through dip correction, pre-stack time migration and CRP de-migration velocity analysis, the

velocity is optimized step by step, and then a desired RMS velocity field that is up to the geological rule is acquired. In

addition, the method for building the accurate migration velocity field is summed up through the study of the depth migration

method. A new seismic data processing flow in combination of Kirchhoff arithmetic based on ray tracing and wave equation

arithmetic based on wave field extrapolation is presented. As a result, migration velocity analysis and migration imaging are

considerably improved.

Related Articles | Metrics
PRESENT RESEARCH SITUTATION AND DEVELOPMENT TREND OF AIRBORNE GRAVITY GRADIOMETER
SHU Qing, ZHOU Jian-xin, YIN Hang
Geophysical and Geochemical Exploration    2007, 31 (6): 485-488.  
Abstract2260)      PDF (690KB)(2163)      

The development of the gravity gradiometer is described simply in this paper, and the measuring principle and development experience of the rotating accelerometer gravity gradiometer are emphatically discussed. On the basis of researches on the existing airborne gravity gradiometer, the prospects of the airborne gravity gradiometer are also presented.

Reference | Related Articles | Metrics
THE INVERSED PROBLEM IN GRAVITY AND MAGNETICEXPLORATION: A REVIEW
Zeng Hualin
Geophysical and Geochemical Exploration    1990, 14 (3): 182-190.  
Abstract2101)      PDF (737KB)(2156)      

On the basis of mote than230 English and Russian papers or monographsissued in the last 30 years as well as nearly 50 Chinese articles published overthe past 10 years on the inversed problem in g avity and magnetic explora-tion, combined with his practice in the study of the inversed problem, the all-thor expounds the inversed methods in gravity and magnetic exploration cur-rently used both at home and abroad, briefs the readers about the researchsituation in China and foreign countries, and makes a detailed review on achi-evements gained in China in comparison with the research levels abroad.Final-ly, suggestions are put forward concerning some subjects which are worthnoticing in future research work.

Related Articles | Metrics
THE DISTRIBUTION AND LEVEL OF RADON GAS IN SOIL IN A HIGH RADIATION BACKGROUND CITY OF CHINA
WANG Nan-ping, XIAO Lei, LI Can-ping
Geophysical and Geochemical Exploration    2012, 36 (4): 646-650.   DOI: 10.11720/wtyht.2012.4.27
Abstract3894)      PDF (726KB)(2142)      
A soil gas radon survey was performed on a large scale to determine the distribution of radon in soil of Zhuhai City in Guangdong Province by means of a portable radon monitor of a semiconductor alpha spectroscopy. The survey sampled 469 sites covering an area of more than 100 km2. The average of soil radon concentration in the soil depth of 0.6 m is 55.94 ± 58.54 kBq/m3 in Zhuhai urban area, whereas the concentration is 7.14±8.75, 37.64±25.92, and 151.25±196.23 kBq/m3 in the Quaternary sediments, the mixtures of sediments and weathered grain of granite, and the weathered granite in Doumen District, respectively. The high radon potential areas are located within biotitic granites and new industrial districts, as indicated by the strong correlation between the radioactivity level and geological lithology. The mean value of soil gas radon concentration in Zhuhai urban area (ZUA) is about ten times as high as that in Guangzhou, Quanzhou and Jinjing City. The results show that Zhuhai area has higher radon potential, and hence protective measures against radon should be taken into account.
Reference | Related Articles | Metrics
PRESENT STATE AND REVIVAL OF GRAVITY GRADIOMETRY
Zeng Hualin
Geophysical and Geochemical Exploration    1999, 23 (1): 1-6.  
Abstract2296)      PDF (474KB)(2134)      

In this paper,a historical review of the gravity gradiometry is given, the application of this technique to oil exploration and some other fields is described,and its development in future is predicted.

Reference | Related Articles | Metrics
THE APPLICATION OF SEISMIC REFRACTION WAVE METHOD ANDHIGHDENSITY RESISTIVITY METHOD TO TUNNEL INVESTIGATION
ZENG Guo, CUI De-Hai, LIU Jie, LI Kai
Geophysical and Geochemical Exploration    2009, 33 (5): 608-612.  
Abstract3268)      PDF (1351KB)(2073)      

 Basic principles and techniques for the shallow seismic refraction wave method and the highdensity resistivity method

are described in this paper in combination with engineering practice to explain the results of the refraction wave method and the

high-density resistivity method in railroad and highway tunnel exploration. The application effects of the combination of these two

methods in detecting positions, sizes, natures and characteristics of such harmful geological bodies as concealed faults and shatter

zones are also discussed. Some measures for improving the investigation accuracy of these two methods are put forward.

Related Articles | Metrics
SOME PROBLEMS CONCERNING THE CONVERSIONOF MAPS BETWEEN SURFER AND MAPGIS
QIN Lin-Jiang
Geophysical and Geochemical Exploration    2010, 34 (5): 677-680.  
Abstract5557)      PDF (865KB)(2060)      

With the extensive adoption of computer technology in geology and geophysics, computer graphics becomes more and more important. For the purpose of improving quality and efficiency, several software should be combined in practical work. In this paper, some basic characteristics of Surfer and MapGIS are discussed, and their application in geological field is described from the angle of geological mapping, thus drawing forth the necessity of the conversion between Surfer and MapGIS. The general method and steps for the conversion of maps between Surfer and MapGIS are presented in detail, and several problems concerning the conversion and corresponding solutions are emphatically discussed.

Related Articles | Metrics
THE COMPARATIVE STUDY AND APPLICATION OF SEVERALTIMEFREQUENCY ANALYSIS METHODS IN THE COAL FIELD
HU Ming-Shun, PAN Dong-Ming, XU Hong-Li, ZHAO Li-Gui
Geophysical and Geochemical Exploration    2009, 33 (6): 691-695.  
Abstract2533)      PDF (2110KB)(2058)      

In the light of the characteristic time-frequency properties of different time-frequency analysis methods, it is

important to select an optimal time-frequency analysis method for high precision seismic exploration in the coal field on the

basis of comparing and studying these methods. Aimed at probing into STFT, Wavelet Transform, S-Transform, Choi-Williams

Distribution, Wigner-Ville Distribution and its improved methods, this paper studied advantages and disadvantages of every method

through numerical simulation in time resolution, frequency resolution and interference. The First Break Picking and Separate

Frequency Display for Collapse Column interpretation were realized by SPWVD and S-Transform, with a good result obtained.

Related Articles | Metrics
THE APPLICATION OF ELEMENT AND LEAD ISOTOPE TRACING TO THALLIUM CONTAMINATION IN SOIL OF THE YUNFU PYRITE MINE
LIU Jing-yong, CHANG Xiang-yang, TU Xiang-lin
Geophysical and Geochemical Exploration    2006, 30 (4): 348-353.  
Abstract1840)      PDF (896KB)(2044)      

The environmental pollutant has the same lead isotope composition as its source, and hence we can determine the accurate contaminative source through the study of lead isotope composition. In recent years lead isotope tracing has been playing its unique role in studying the source and migration of heavy metals in soil. As Tl and Pb have similar geochemical characteristics, the distribution and migration of Tl in the surface soil of the Yunfu pyrite mine have good correlation with Pb. In this study, therefore, the element and lead isotope tracing was used to study the migration of thallium in soil. Element and lead isotope tracing shows that thallium pollutants are mainly accumulated in top soil of about 0-16.5 cm, and that the soil is subjected less pollution in deeper soil. The soil around the slags at the depth of some 44 cm is affected by Tl leaching from the slags.

Reference | Related Articles | Metrics
PML ABSORBING BOUNDARY CONDITION FORNUMERICAL MODELING OF RAYLEIGH WAVE
XIONG Zhang-Qiang, TANG Sheng-Song, ZHANG Da-Zhou
Geophysical and Geochemical Exploration    2009, 33 (4): 453-457.  
Abstract3479)      PDF (2025KB)(2038)      

The algorithm of the finite difference oforder velocitystress staggered grids has been built, which is

suitable for the perfectly matched layer (PML) absorbing boundary for elastic media. Meanwhile, the construction of the

PML absorbing boundary condition and the realization of the finitedifference algorithm are discussed in detail. Wave

field modeling calculations show that, compared with the conventional decaying exponential absorbing boundary and non

absorbing boundary, the PML absorbing boundary can perform absorption much more clearly and absorb the boundary

reflection from various angles, whose absorptivity (the ratio of absorption energy to unabsorbable energy) can reach

99.99%. The PML absorbing boundary can well eliminate the periodic folding effects, which makes the calculation of the

wave field characteristics very distinct, and the Rayleigh wave can be clearly shown in the waveform record.

Related Articles | Metrics
CHAMP, GRACE AND GOCE: THREE SATELLITES FOR SENSING AND/OR MEASURING THE EARTH'S GRAVITY FIELD
ZHANG Chang-da
Geophysical and Geochemical Exploration    2005, 29 (5): 377-382.  
Abstract2175)      PDF (749KB)(2034)      

In this paper, the working principle of three satellites (CHAMP, GRACE and GOCE) has been described, and the important geopotential models and the newest geopotential models (EIGEN-CG01C, GGM02) have been introduced.

Reference | Related Articles | Metrics
YANG Li-De
Geophysical and Geochemical Exploration    2009, 33 (6): 741-742.  
Abstract2245)      PDF (240KB)(2032)      
Related Articles | Metrics
More...
Please wait a minute...
For Selected: Toggle Thumbnails
New progress in the technology and applications of SOTEM
XUE Guo-Qiang
Geophysical and Geochemical Exploration    2024, 48 (5): 1165-1168.   DOI: 10.11720/wtyht.2024.0325
Abstract425)   HTML9)    PDF (380KB)(420)      

The artificial source electromagnetic method is an important technique for deep resource exploration. The key challenge is to improve the depth and precision of detection through innovative technology. The detection mode of electromagnetic methods is evolving from far-field to near-field, and the study of near-source electromagnetic methods has become an international research frontier in recent years. Building on the recent advancements in wide-field electromagnetic methods and multi-channel transient electromagnetic methods, the short-offset transient electromagnetic method (SOTEM) has been further developed and proposed. The distinguishing features of SOTEM are its stronger signals and wider bandwidth, which are advantageous for achieving the detection requirements of greater depth and higher precision. This special issue presents eight articles covering the methods, techniques, software, and applications of SOTEM, providing strong support for the growing need for high-resolution subsurface detection.

Reference | Related Articles | Metrics
Analysis of critical parameters in the field acquisition of short-offset transient electromagnetic data
CHEN Wei-Ying, XUE Guo-Qiang, LI Hai
Geophysical and Geochemical Exploration    2024, 48 (5): 1169-1175.   DOI: 10.11720/wtyht.2024.1197
Abstract231)   HTML6)    PDF (2409KB)(273)      

The grounded-source short-offset transient electromagnetic (SOTEM) method involves many parameters in field data acquisition. The selection of these parameters is closely associated with the signal quality and detection sensitivity of measured data. Based on the relevant provisions in the organization standard, Technical specification for grounded-source short-offset transient electromagnetic method (T/CGS 002—2021), issued by the Chinese Geophysical Society, numerical emulations, and practical cases, this study analyzed and expounded the selection criteria of critical parameters like transmitting source length, transmitting fundamental frequency, offset, device type, and observation component. The insights obtained in this study are significant for guiding the field construction of the SOTEM device and leveraging its detection performance.

Table and Figures | Reference | Related Articles | Metrics
Application of comprehensive geophysical prospecting in the exploration of geothermal resources in the Linjiadi area, Aohan Banner, Inner Mongolia
HAN Shu-He, PEI Qiu-Ming, XU Jian, SONG Zhi-Yong, MO Hai-Bin
Geophysical and Geochemical Exploration    2024, 48 (4): 962-970.   DOI: 10.11720/wtyht.2024.1315
Abstract206)   HTML5)    PDF (4495KB)(298)      

In the context of the goals of both peak carbon dioxide emissions and carbon neutrality, scientific and efficient exploration and exploitation of geothermal resources are criticalfor the geothermal industry. To address the commonly concernedtechnical challenges in the exploration of moderately deep geothermal resources, this study investigated the effectiveness of comprehensive geophysical prospecting in the exploration of geothermal resources inthe Linjiadi area, Aohan Banner, Inner Mongolia. Based on the analysis ofthe geological and hydrogeological conditions, this studypreliminarilyascertainedthe geothermal field characteristicsand the hydrochemicalcharacteristics of groundwater in the Linjiadi area. By comprehensively employingcontrolled source audio-frequency magnetotellurics (CSAMT), CSAMT; microtremor survey; radioactive radon survey; this study roughly determined the distribution of strata, magmatic rocks, and fault structures in the study area, inferring the factors controllinggeothermal anomaly areas and hot-water migration.Accordingly, exploration boreholes were arranged, allowing for drilling verificationwith a total length of 960 m. The results show that the comprehensiveapplication of CSAMT and microtremor survey, combined with radioactive radon survey for auxiliary verification, is effective in exploringmoderately deep geothermal resources. This study will provide a methodological reference for geothermal resource exploration in other areas.

Table and Figures | Reference | Related Articles | Metrics
Quasi-two-dimensional joint inversion of the data from the controlled source audio-frequency magnetotellurics and the microtremor survey
ZHANG Ji-Wei, TAN Hui
Geophysical and Geochemical Exploration    2024, 48 (4): 1094-1102.   DOI: 10.11720/wtyht.2024.1477
Abstract172)   HTML4)    PDF (4316KB)(272)      

Both the controlled source audio-frequency magnetotellurics (CSAMT) and the microtremor survey exhibit promising application prospectsunder strong urban interference. However,single geophysical inversion methods are challenged by a multiplicity of solutions. To achieve the complementary advantages of different geophysical methods, and address the lateral discontinuity of single-point inversion, this studyexplored the quasi-two-dimensional joint inversion of the CSAMTand microtremor survey data. It enabled the joint inversionby introducing a lateral constraint matrix into the objective function for joint inversion and employing the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm. The reliability and effectiveness of the joint inversion were verified using the inversion example of synthetic data from theoretical models. The results show that compared to single data inversion, the joint inversion can effectively improve the accuracy of inversion results, with the resistivity model more consistent with theshear-wave velocity structure. Moreover,lateral constraints can effectively reduce the discontinuity of the physical parameters of adjacentsurvey points. The quasi-two-dimensional joint inversion with lateral constraints enhances the inversion reliability by obtaining more reasonable profile results of physical parameters and structures with the efficiency of single-point inversion.

Table and Figures | Reference | Related Articles | Metrics
Organic carbon content-baesd prediction and influencing factors of black soil layer thicknesses
LIU Kai, DAI Hui-Min, LIU Guo-Dong, LIANG Shuai, WEI Ming-Hui, YANG Ze, SONG Yun-Hong
Geophysical and Geochemical Exploration    2024, 48 (5): 1368-1376.   DOI: 10.11720/wtyht.2024.1436
Abstract163)   HTML6)    PDF (4274KB)(218)      

Black soil layer thicknesses, anessential attribute of black soil,serves as a significant indicator for measuring the fertility and erosion degree of black soil. Their spatial prediction holds critical significance for supporting China's black land conservation and ensuring food security.Considering the diagnostic characteristics of black soil layers in soil system classification, this study regarded soil layers with organic carbon content higher than 6×10-3 of soil parent materials as black soil layers.Moreover, it derived the calculation formula for the thicknesses of black soil layers relying on the exponential distribution pattern of organic carbon in the vertical soil profile. Based on the 62 896 topsoil and 15 687 deepsoil organic carbon data obtained from the multi-purpose regional geochemical survey, this study conducted detailed spatial prediction of the thicknesses of black soil layers in the Songliao Plain and analyzed their relationship with soil types and climate factors. Key findings are as follows:(1) The thicknesses of black soil layers in the Songliao Plain range from 0 to 165 cm, with a median of 23.33 cm;(2) The spatial distribution of black soil layers exhibits significant heterogeneity, characterized by thin southwestern and thick northeastern portions;(3) The black soil layers of swampy soil and peat soil manifest the largest average thicknesses between 60 and 80 cm, followed by those of typical black soil (average thickness: 56 cm) and those of albic soil and meadow soil (average thickness: 40~50 cm);(4) The spatial distributions of the thicknesses of black soil layers are closely associated with climatic conditions, primarily showing a significant negative correlation with temperature and a positive correlation with rainfall;(5) The mean annual temperature of 0 ℃ is a significant temperature threshold for the development of thick black soil layers.Above this temperature, the average thickness of black soil layers exceeds 80 cm and no longer changes with temperature. With global warming, the southward shift of this 0 ℃ is otherm may significantly influence the thicknesses of black soil layers.

Table and Figures | Reference | Related Articles | Metrics
Application of the opposing coils transient electromagnetic method in a shallow groundwater-rich area: A case study of Xiacun Town, Xinyu City
ZHU Xiao-Wei, DING Chen, XUE Kai-Xi, CHEN Jun, HAN Kai-Min, LUO Qiang, YI Guang-Sheng
Geophysical and Geochemical Exploration    2024, 48 (5): 1424-1436.   DOI: 10.11720/wtyht.2024.1574
Abstract158)   HTML3)    PDF (7265KB)(279)      

Unfavorable geobodies such as Karsts, weak soil, and water-rich areas are extensively distributed in China. Under heavy rainfall, they are prone to geologic hazards like collapse. A severe geological collapse occurred in Xiacun Town, Yushui District, Xinyu City, near the Shanghai-Kunming high-speed railway. The space around the collapsed foundation pit was limited, with many interference sources like underground pipelines. With early signals subjected to the mutual inductance effects of receiver and transmitter coils, the conventional transient electromagnetic method exhibited low detection accuracy and anti-interference ability, encountering significant shallow blind zones. To locate unfavorable geobodies in the study area and provide suggestions for the prevention and control of geologic hazards, this study innovatively applied the opposing-coils transient electromagnetic method (OCTEM), supplemented by borehole-based verification. The results show that: (1) The OCTEM exhibited high accuracy, as demonstrated by the high consistency between the geophysical exploration results and the drilling results of the study area; (2) The low-resistivity zone spread across the study area, and the low-resistivity anomalies revealed by geophysical exploration were caused by groundwater according to borehole-based verification; (3) The strata from top to bottom were composed of soft plastic silty clay, hard plastic silty clay, soft plastic silty clay, and moderately weathered limestones; (4) The subsurface micro-confined water in the collapse area surged upward, gradually eroding the soft plastic silty clay layer around the area. The static water level in the collapsed foundation pit manifested an elevation of 55.60 m, located approximately 1.4 m below the surface; (5) A groundwater channel existed under the collapse area, with soil caves formed in the limestone layer under the prolonged erosion effect of water flow; (6) Long-term groundwater extraction may expand the underground seepage zone; (7) The administrative department in charge must promptly contain groundwater in the collapse area to prevent it from further eroding the surrounding unconsolidated soil layer.

Table and Figures | Reference | Related Articles | Metrics
Metalleogenic geochemistry:Science problems and research ideas
XI Xiao-Huan
Geophysical and Geochemical Exploration    2024, 48 (4): 891-917.   DOI: 10.11720/wtyht.2024.0282
Abstract158)   HTML5)    PDF (791KB)(279)      

In geoscientific field, the essential object of all the research problems is the physical world which is derived from the crust-mantle interaction and has deeply influenced globally the environment and resources. The metallogenic geochemical theory believes that the metallogenic materials are the internal factors for the metallogenic system to influence the metallogenic process, and taking metallogenic materials as the main body to study the problems of metallogenic materials and metallogenic processes is the basic meaning of the metallogenic geochemical theory, and the core subject of the studies of metallogenic rules and theories. During the mineralization process of metallogenic system, metallogenic materials formed into metallogenic series of corresponding scale. This paper outlines several scientific topics of the metallogenic geochemical studies, among which, the topic of global metallogenic system mainly studies the metallogenic processes and relations of the series of metallogenic regions, provinces and belts formed by metallogenic materials in the context of global metallogenic process; the topic of regional metallogenic system mainly studies the metallogenic processes and relations of ore field series in the context of regional metallogenic process; the topic of ore field metallogenic system mainly studies the metallogenic processes and relations of mineral deposit series in the context of ore field metallogenic process; the topic of mineral deposit metallogenic system mainly studies the metallogenic processes and relations of ore-body series in the context of mineral deposit metallogenic process. The basic research ideas concerning above mentioned studies are discussed in this paper, including the metallogenic materials' geneses and sources, migration and evolution, differentiation and concentration, as well as the zoning relations of each level's metallogenic system and series of the world during the metallogenic processes. The purpose is to summary the metallogenic rules, explore the metallogenic mechanism and guide the mineral resources exploration. Supported by modern technologies and methods of IT(information technology), modeling and AI(artificial intelligence), the metallogenic geochemical theory uses the earth system scientific ideas to study the problems of metallogenic system and metallogenic series, construct the theoretical framework for metallogenic geochemical research, and provide a theoretical basis for the mineral resources exploration, evaluation and development technics and methods.

Table and Figures | Reference | Related Articles | Metrics
Geochemical characteristics of soils and prospecting potential of the northern Laojunmiao gold deposit in the Beishan area, Gansu Province
ZHANG Wen-Bin, ZHOU Xian-Jun, HOU Cui-Xia, WANG Ning-Zu, SUN Ping-Yuan, ZHAO Zhen-Guan, HE Bi
Geophysical and Geochemical Exploration    2024, 48 (4): 945-953.   DOI: 10.11720/wtyht.2024.1342
Abstract155)   HTML4)    PDF (5615KB)(266)      

Thenorthern Laojunmiao gold deposit is located in the southern zone of the Beishan area, Gansu Province, and on the northeastern margin of the Tarim block. It resides in a tectonic environment of the Yaodongliang-Xiaoxigong Paleoproterozoic rift basin. This study delineated five comprehensive anomaly zones in the area through a 1∶10,000 geochemical soil survey. As verified by trenching exploration, three gold ore bodies, one gold-silver ore body, and two low-grade gold ore bodies were identified in the comprehensive anomaly zones, suggesting satisfactory prospecting results. Based on the comprehensive geological and geochemical anomaly characteristics of the deposit, this study established an integrated geological-geochemical prospecting model centering on the HT1 comprehensive anomaly zone. Moreover, it proposed the subsequent prospecting direction, providing a significant reference for the deep and peripheral prospecting in the area.

Table and Figures | Reference | Related Articles | Metrics
Geochemical characteristics and formation mechanism of thermal spring water in the Chuhe fault zone in Anhui Province
WANG Guo-Jian, HU Wen-Hui, LI Guang-Zhi, ZHU Huai-Ping, HU Bin, XIAO Peng-Fei, ZHANG Ying
Geophysical and Geochemical Exploration    2024, 48 (5): 1223-1231.   DOI: 10.11720/wtyht.2024.1145
Abstract155)   HTML5)    PDF (3297KB)(174)      

Several thermal springs associated with tectonic activity occur along the Chuhe fault zone. Except for the Bantang thermal spring at the southern end, other springs along the fault zone exhibit unideal utilization of thermal energy. This affects the development of local industries. Therefore, it is necessary to delve into the geochemical characteristics and formation mechanism of typical thermal springs along the Chuhe fault zone. The purpose is to provide scientific evidence for the rational utilization and exploration methods of geothermal resources in the thermal spring groups in the future. Therefore, this study investigated thermal springs in the Bantang, Zhaoguan, and Xiangquan areas along the Chuhe fault zone, where nine samples of thermal spring water, cold well water, and surface water were collected individually. For these samples, the composition tests of 25 indices, including anions, cations, and major and trace elements, were tested, and the hydrogen and oxygen isotope values were determined. The analyses of the 25 measured indices, along with the investigation of the geothermal water source and controlling factors through hydrogen and oxygen isotope tracing, indicate that the thermal spring water in the three areas tends to be of the CaSO4 type and is all closely related to the interactions between groundwater and surrounding rocks. The thermal spring water, cold well water, and surface water in Bantang and Zhaoguan show consanguinity, with geothermal water being directly recharged with local precipitation and surface water. In contrast, the thermal spring water, surface water, and cold well water in the Xiangquan area show weaker consanguinity, indicating different sources for the underground cold water runoff and geothermal water. This should be noted when determining the primary factors controlling the thermal spring in this area. The temperatures calculated using a chalcedony geothermometer were close to the temperatures of the hot water recovered on the surface. In contrast, the temperatures calculated using a quartz geothermometer approached the temperatures of deep geothermal reservoirs. The results of this study preliminarily reveal the geochemical characteristics, recharge relationships, and water-rock interactions of thermal spring water in the Chuhe fault zone and propose effective geochemical geothermometers for the study area. These contribute to deeper insights into the mechanisms and controlling factors of the thermal springs along the fault zone, as well as providing practical value and a methodological model for enhancing thermal spring functionality and geothermal resource exploitation and utilization in the future.

Table and Figures | Reference | Related Articles | Metrics
Influence of induced polarization effects on AMT forward modeling and its numerical simulations for sandstone uranium deposits
HU Ying-Cai, WANG Rui-Ting, LI Xiu
Geophysical and Geochemical Exploration    2024, 48 (4): 1006-1017.   DOI: 10.11720/wtyht.2024.1218
Abstract151)   HTML3)    PDF (8319KB)(229)      

The extensively applied audio magnetotellurics (AMT) has become a primary method for deep geophysical exploration of solid mineral resources. However, its data processing and interpretation often only consider electromagnetic effects but ignore induced polarization (IP) effects, which is inconsistent with actual geological conditions. Based on the two-dimensional AMT finite-element forward modeling with IP effects, this study simulated the magnitude and regularity of the influence of various parameters of IP effects on the two-dimensional forward response. Moreover, this study conducted a numerical simulation on the geoelectric model of sandstone uranium deposits in the Erlian Basin. The results show that: (1) With an increase in the values of polarizability, frequency correlation coefficient, and time constant, the two-dimensional AMT forward modeling with IP effects based on the Cole-Cole model primarily reduced the abnormal response value of two-dimensional forward modeling apparent resistivity and increased the abnormal response value of impedance phase. This is beneficial for detecting low-resistivity targets rather than high-resistivity targets; (2) The zero-frequency resistivity and polarizability in IP effects exhibit a significant influence on the two-dimensional forward response. The influence of both frequency correlation coefficient and time constant on the forward response primarily depends on the polarizability. High polarizability suggests their significant influence on the forward response; (3) In the case of disseminated and sulfide-bearing lithologies in the sand bodies of sandstone uranium deposits, greater IP effects will significantly influence the detection of target sand bodies using frequency-domain AMT. Therefore, forward modeling is necessary before detection to determine the magnitude of IP effects.

Table and Figures | Reference | Related Articles | Metrics
2D/3D electrical exploration based on borrowing-line telecontrol electrode arrays
GE Wei-Zhong, LIANG Bing-He, GAO Jian-Dong, Lv Yu-Zeng, CHEN Long
Geophysical and Geochemical Exploration    2024, 48 (6): 1437-1447.   DOI: 10.11720/wtyht.2024.0170
Abstract143)   HTML11)    PDF (3061KB)(253)      

The telecontrol electrode array is a new type of electrode array for power supply and observations that utilizes the carrier waves of the power-supply and measurement wires used in conventional electrical prospecting to transmit signals. By remotely controlling a series of coded electrode switches between various wires and their connections, this array allows for orderly power supply and measurements. This array enables flexible spacings between electrodes and the gradual expansion of the distances between power supply electrodes via remote control, thus achieving a gradient-based sounding array. The borrowing-line remote controller can be used combined with single-channel, multi-channel, and high-density resistivity instruments, and the combined arrays can perform 2D/3D electrical prospecting more effectively. Followed by the brief introduction of the principle of the borrowed-line telecontrol electrode array, this study discusses the applications and examples of this array and several combined arrays in the resistivity method and induced polarization (IP).

Table and Figures | Reference | Related Articles | Metrics
Response of the geochemical anomalies of cobalt to ore-bearing geological bodies in the Mangyahedong area, eastern Kunlun
MA Wen-Jun, XIE Hai-Lin, GUO Wei, LI Fei-Fei, TENG Xiao-Yan, CHEN Su-Liong, LI Shao-Nan, LIU Xiu-Feng, MA Zhong-Ying, MA Hai-Yun
Geophysical and Geochemical Exploration    2024, 48 (5): 1232-1246.   DOI: 10.11720/wtyht.2024.0031
Abstract140)   HTML5)    PDF (14076KB)(217)      

Over recent years, large-scale geochemical surveys on a scale of 1:25,000 have been conducted in the eastern Kunlun region for geological prospecting. These surveys, characterized by the rapid and accurate location of anomaly sources, have been widely applied in mineral explorations, yielding encouraging mineral prospecting results. Using 1:25,000-scale stream sediment surveys, this study delineated 12 geochemical integrated anomalies of the element associations of Cu, Co, and Ni in the Hedong area, Mangya City, eastern Kunlun. These anomalies include one integrated anomaly dominated by Co, where various element anomalies exhibit high-degree overlap, relatively large scales, high intensity, and distinct concentration zoning. The Co anomaly is closely associated with the Ordovician Qimantag Group, demonstrating a high degree of spatial consistency. The subsequent anomaly verification reveals four cobalt mineralized zones within anomalies GA16, GA26, GA11, and GA39, with three ore bodies and multiple mineralized bodies of cobalt being identified within the mineralized zones. The comprehensive analysis indicates that the eastern Kunlun region enjoys excellent metallogenic geological conditions and favorable geochemical characteristics, with promising prospecting results having been achieved. Therefore, this region has the prospecting potential of medium to large-scale cobalt deposits.

Table and Figures | Reference | Related Articles | Metrics
Factors influencing the application of ESPAC-based microtremor survey in shallow surface environments
YANG Lang-Yong-Hang, LI Hong-Xing
Geophysical and Geochemical Exploration    2024, 48 (5): 1322-1330.   DOI: 10.11720/wtyht.2024.1479
Abstract138)   HTML5)    PDF (5302KB)(288)      

The extended spatial autocorrelation (ESPAC)-based microtremor exploration(natural-source surface wave exploration) technology has been extensively used in shallow formation exploration owing to its simplicity,efficiency,and accuracy.However,the imaging effect of dispersion energy extracted based on the ESPAC method is unsatisfactory in practical applications.In particular,different observation array arrangements influence the extraction of dispersion curves from collected data.By investigating the imaging principle of the ESPAC method,this study conducted the simulation experiment of natural-source microtremor recording through ambient noise simulation.It compared the differences in dispersion energy under various dominant frequency distributions of wavelets.Moreover,it quantitatively analyzed the influence of different station arrangements and acquisition durations on the imaging quality of dispersion energy.The comparative study reveals the imaging patterns of the ESPAC method in shallow surface exploration.The ESPAC method can maximize the imaging quality of dispersion energy in the fundamental mode while considering both efficiency and exploration costs.The results of this study were applied to engineering application cases to further verify the simulation results.

Table and Figures | Reference | Related Articles | Metrics
Application of wide-field electromagnetic sounding method to deep prospecting in the Mangling ore concentration area in North Qinling: A case study of the Yaozhuang ore district
ZHANG Xiao-Tuan, LI Xin-Lin, ZHOU Bin, GAO Wei-Qiang
Geophysical and Geochemical Exploration    2024, 48 (6): 1609-1617.   DOI: 10.11720/wtyht.2024.0056
Abstract135)   HTML3)    PDF (6000KB)(203)      

The Mangling ore concentration area with intense magmatic activity has become a focal area for deep prospecting in the North Qinling tectonic belt in recent years. The formation of molybdenum deposits in this area is closely related to small Late Jurassic acidic intrusions. To achieve breakthroughs in deep ore prospection within this area, this study conducted the wide-field electromagnetic sounding over the concealed Yaozhuang intrusion delineated based on gravity anomalies. The results indicate the presence of pronounced high-resistivity anomalies at depth, and it is inferred that the protruding part of the anomalies corresponds to the concealed Yaozhuang intrusion. The resistivity inversion results roughly delineated the variations in the top surface of the intrusion, with the elevations and N-S width of the top surface estimated at -300~620 m and 1300~1600 m, respectively. Drilling in the most favorable deep mineralized part confirmed the presence of the concealed intrusion and concealed molybdenum ore bodies. The results of this study demonstrate that the wide-field electromagnetic sounding method exhibits great sounding depths and high resolutions, serving as an effective method for deep ore prospecting in the Mangling ore concentration area.

Table and Figures | Reference | Related Articles | Metrics
Stratigraphic architecture and activity of the alluvial fan in the eastern piedmont of the Liupan Mountains since the Late Pleistocene
YAO Zi-Heng, DONG Xiao-Peng, YANG Yong
Geophysical and Geochemical Exploration    2025, 49 (1): 1-13.   DOI: 10.11720/wtyht.2025.2257
Abstract135)   HTML5)    PDF (11949KB)(97)      

Many cities or urban residential areas in central and western China reside in alluvial plains formed from piedmont alluvial fans. Hence, revealing the stratigraphic architectures and stability of alluvial fans holds critical significance for urban construction planning and rational land use. The alluvial fan in the eastern piedmont of the Liupan Mountains hosts the urban residential areas and villages of Guyuan City, with a dense population. Moreover, the alluvial fan develops several event deposits recording the activity of the alluvial fan under tectonic movements and climatic changes. Through field geological survey, optically stimulated luminescence dating, controlled source audio-frequency magnetotellurics (CSAMT), and conventional radon measurement, this study revealed the stratigraphic architecture of the alluvial fan and its two-phase event deposits (~43.33 ka B.P. and 22.92~20.72 ka B.P) since the Late Pleistocene. As indicated by the CSAMT and conventional radon measurement results, the alluvial fan still exhibits high activity under the influence of the Haiyuan and Qingshuihe faults. The results of this study provide fundamental data for crustal stability assessment, prevention and control of geologic hazards, and engineering construction in the Liupanshan area.

Table and Figures | Reference | Related Articles | Metrics
Development of a nodal rotational seismometer with a micro-electro-mechanical system sensor and testing of H/V spectral ratios
JIA Song, HE Zhan-Xiang, YANG Hui, YAO Yong-Chao, WANG Cai-Xia
Geophysical and Geochemical Exploration    2024, 48 (6): 1471-1478.   DOI: 10.11720/wtyht.2024.0140
Abstract134)   HTML4)    PDF (3283KB)(177)      

In response to the increasing demand for large-scale field seismic acquisition, this study developed a low-cost multifunctional nodal rotational seismometer (RBWL) with a micro-electro-mechanical system (MEMS) sensor, considering the functionality, economic feasibility, and the ease of arrangement. The RBWL employs a low-cost and low-power MEMS sensor to acquire seismic signals, involving three-component translational motions (Tx,Ty,Tz) and three-component rotational motions (Rx,Ry,Rz). To reduce the impacts of environmental factors on measurements, the system of the RBWL automatically records real-time information including temperature and attitude while performing compensation correction on the measurement results. For real-time monitoring and data transmission at acquisition nodes, the system establishes a data transmission link integrating 4G, cloud, and client, with the measured maximum data transmission rate up to 100 Mbps. The testing of H/V spectral ratios verifies the system functions and principal performance parameters of the RBWL and its effectiveness in engineering physical exploration.

Table and Figures | Reference | Related Articles | Metrics
Elemental geochemical characteristics and genetic mechanisms of Se-rich soils in the Lixiahe area in Jiangsu Province
LIAO Qi-Lin, HUANG Shun-Sheng, XU Wei-Wei, CUI Xiao-Dan, JIN Yang, LIU Ling, WANG Yuan-Yuan, LI Wen-Bo, ZHOU Qiang
Geophysical and Geochemical Exploration    2024, 48 (4): 1114-1124.   DOI: 10.11720/wtyht.2024.1369
Abstract134)   HTML2)    PDF (2070KB)(215)      

Based on relevant eco-geochemical survey data collected fromthe Lixiahe plain area in Jiangsu Province,this study systematically explored the geochemical characteristics of elements in Se-rich soils and the genetic mechanism through elemental distribution contrast, correlation analysis, R-type cluster analysis, and principal component analysis. This study can be referenced for the rational production and utilization of Se-rich land resources of the Quaternary sedimentary type. Key findings are as follows: (1)Se-rich soilsin the Lixiahe area are typical Quaternary sediments, and the closed lagoon facies sedimentary environment characterized by rich organic matter and slightly reducing conditions plays a foundational role in the formation of local Se-rich soils;(2) Typical element association, Se-OM-N-K-Fe-Co, in Se-rich soils is primarily located within a depth of 30 cm from the surface, with Se content ranging mostly from 0.3×10-6 to 0.4×10-6 in a uniform distribution; (3) Significant positive correlations between Se and some other elements can be observed in the soils, with the correlation coefficients (r)between Se and OM,and Se and CEC being 0.74 and 0.66, respectively.In contrast, Se exhibits a significant negative correlation with pH, with a correlation coefficient of -0.35; (4) The formation of Se-rich soilsmight have experienced three Se enrichment stages: the initial enrichment in soil parent materials, the re-enrichment during soil formation, and the supergene enrichment after soil formation, accompanied by interference from non-lagoon facies sediments (such as marine sediments). Organic matter adsorption, colloid adsorption, and biogeochemistry constitute the main causes of Se enrichment in the soils; (5) The Se-rich soils are also relatively enriched in heavy metal elements like Cu, Pb, Zn, Ni, Co, and V, which are within the national limit standards.

Table and Figures | Reference | Related Articles | Metrics
Three-dimensional numerical simulation of short-offset transient electromagnetic responses to water-rich bodies in coal mines
CHANG Jiang-Hao, XUE Jun-Jie, MENG Qing-Xin, ZHAO Peng
Geophysical and Geochemical Exploration    2024, 48 (5): 1176-1184.   DOI: 10.11720/wtyht.2024.1300
Abstract132)   HTML4)    PDF (7711KB)(193)      

This study performed forward modeling for the short-offset transient electromagnetic (SOTEM) responses of a three-dimensional geoelectric model using the three-dimensional finite-difference time-domain method. The results reveal that: (1) The attenuation curves of the Ex responses from the electric field above the goaf or collapse column were above the background response curve at early times but below it at later times; (2) A shorter offset corresponded to a higher relative anomaly of ∂Bz/∂t response signals. Increasing the length of the transmitting source could enhance the signal intensity while slightly decreasing the relative anomaly; (3) In the case of survey lines close to the transmitting source, the overall ∂Bz/∂t responses of the goaf or collapse column were weaker than the background responses. For survey lines away from the transmitting source, the overall ∂Bz/∂t responses of the goaf or collapse column were stronger than the background responses. In summary, the calculation results demonstrate significant implications for understanding the ability of the SOTEM method to detect typical water-rich bodies in coal mines, laying a theoretical foundation for the parameter selection of SOTEM devices and their generalized application in the coal sector.

Table and Figures | Reference | Related Articles | Metrics
A log-based lithofacies identification method based on random forest and sedimentary microfacies characteristics:A case study of tight sandstones in the second member of the Xujiahe Formation in the Xinchang area
HE Xiao-Long, ZHANG Bing, YANG Kai, HE Yi-Fan, LI Zhuo
Geophysical and Geochemical Exploration    2024, 48 (5): 1337-1347.   DOI: 10.11720/wtyht.2024.0180
Abstract131)   HTML0)    PDF (5425KB)(155)      

Tight sandstones serve as significant oil and gas reservoirs.Their lithofacies identification can assist in further understanding the developmental characteristics of reservoirs.Combining core observations with log data processing,this study analyzed the lithofacies and sedimentary microfacies characteristics of tight sandstones in the Xinchang area and the internal relationships between lithofacies and sedimentary microfacies.Moreover,it constructed a random forest classification model with geological implications through data mining of sedimentary microfacies characteristics.The results show that:(1)Tight sandstones in the Xinchang area can be classified into seven typical lithofacies,including mudstone,siltstone with ripple lamination,massive fine sandstone,fine sandstone with parallel bedding,massive medium- to coarse-grained sandstone,and medium- to coarse-grained sandstone with parallel/cross bedding;(2)The sedimentary microfacies in the Xinchang area consist primarily of subaqueous distributary channel,subaqueous distributary bay,river-mouth bar,and prodeltaic mud,which are closely associated with the sedimentation of lithofacies;(3)In the classification model,the relative centroid(RM),root mean square deviation(GS),average median(AM),and average slope(M) of the gamma ray(GR) curve can be used as the characteristic parameters of sedimentary microfacies to increase the number of characteristics in the dataset;(4)Considering the characteristics of sedimentary microfacies,especially the energy and turbulence of water bodies,can significantly enhance the performance of the random forest classification model.Overall,the results of this study provide a novel approach for lithofacies identification using machine learning methods and a significant reference for oil and gas exploration in tight sandstones.

Table and Figures | Reference | Related Articles | Metrics
Critical techniques for sweet spot prediction for tight sandstone reservoirs in the Dongsheng gas field and their application effects
CAO Shao-He, REN Feng-Ru, WANG Xiao-Xiao
Geophysical and Geochemical Exploration    2024, 48 (4): 954-961.   DOI: 10.11720/wtyht.2024.1423
Abstract131)   HTML4)    PDF (7524KB)(213)      

The Xinzhao gas zone of the Dongsheng gas field resides at the junction of three first-order tectonic units:Yishan slope,Yimeng uplift,and Tianhuan depression.Due to the influence of paleogeomorphology and provenance,different channel sediments vary significantly in this zone.The main target layer is the first member of the Shihezi Formation,which hosts a braided river sedimentary system,with tight reservoirs characterized by typical low porosities and permeabilities.The effective sandstone reservoir exhibits a small thickness,pronounced heterogeneity in gas content,and low-resolution seismic data,complicating sweet spot prediction.Hence,this study delved into the critical seismic prediction techniques for sweet spots in braided-river tight sandstone reservoirs.Firstly,the stratigraphic framework was established based on the three-dimensional seismic relative isochronous surface,characterizing the spatial distributions of channel sand bodies at different stages using the relative-spatial-resolution stratal slicing technique.Then,the seismic data were transformed from the time domain to the frequency domain using the wavelet transform time-frequency analysis technique.Based on the analysis of instantaneous spectrum differences in seismic data of different channels,the qualitative gas content prediction was achieved using the low-frequency energy ratio and the ABV absorption attribute,effectively supporting well deployment.Finally,the facies-controlled geostatistical inversion in the depth domain combining logs and seismic data was conducted for quantitative reservoir prediction, guiding the accurate design and optimization of horizontal well trajectories.The application of these techniques has increased the probability of penetration of gas reservoirs in the study area by seven percentage points, demonstrating satisfactory application effects.

Table and Figures | Reference | Related Articles | Metrics
Bedrock surface and fault structures in the Rongcheng uplift revealed from reflection seismic profiles and their implications for the geothermal origin
LIU Hong-Kai, GAO Lei, ZHANG Jie, HOU He-Sheng, XIE Min-Ying, LI Hong-Qiang
Geophysical and Geochemical Exploration    2024, 48 (4): 934-944.   DOI: 10.11720/wtyht.2024.1316
Abstract131)   HTML6)    PDF (9585KB)(249)      

The Rongcheng uplift in North China boasts abundant geothermal resources. Research indicates that the Rongcheng uplift exhibits significantly different physical properties between the bedrock surface and the overlying Cenozoic strata. Moreover, the bedrock surface serves as the primary top boundary of the geothermal reservoir in the Wumishan Formation. Investigating the fine-scale structures, burial depths, and faults of the bedrock surface in the Rongcheng uplift holds critical significance for understanding the distribution and enrichment of geothermal resources in the area and guiding their exploration and production. Through elaborative processing of the north-south reflection seismic profile data of the Rongcheng uplift, collected by the Chinese Academy of Geological Sciences in 2018, this study obtained the high-precision geometric structure of the Rongcheng uplift within a depth of 4 km. The geometric structure was calibrated using geothermal borehole data before interpretation. Key findings are as follows: (1) The Cenozoic sedimentary strata overlying the bedrock surface of the Rongcheng uplift exhibit a nearly horizontal layered distribution, serving as cap rocks of the Rongcheng geothermal field; (2) The bedrock surface of the Rongcheng uplift manifests burial depths ranging from 700 to 3 000 m, with gentle changes in the central portion, and rapidly deepening to around 3 000 m towards the periphery; (3) The Niunan and Rongdong faults converge in the deep part, constituting a fault system along with other medium and small faults, thus facilitating the conduction of water and heat; (4) The geometric structure of the Rongcheng uplift on the bedrock surface contributes to the convergence of heat flow beneath the uplift.

Table and Figures | Reference | Related Articles | Metrics
Geochronological characteristics of the Guidong pluton and the Xiazhuang uranium ore-field
ZHU Wei-Ping, CHEN Zheng-Le, XIE Min-Ying, PAN Jia-Yong, WANG Yong-Feng
Geophysical and Geochemical Exploration    2024, 48 (4): 918-933.   DOI: 10.11720/wtyht.2024.1198
Abstract126)   HTML5)    PDF (4808KB)(144)      

The Guidong plutonis a crucial part of the EW-directed Dadongshan-Guidong-Wuliting magmatic rock belt in the Nanling region of South China.The Xiazhuang uranium orefield resides in the eastern portion of the Guidong pluton. Researchers have conducted extensive chronological testing on the Guidong pluton, the Xiazhuang uranium orefield, and their veins, obtaining abundant age data. This study synthesized the advances and characteristics of chronological research in the study area. The results show that: (1) The Guidong pluton is a complex pluton formed by Caledonian-Yanshanian magma at 450~151 Ma. From east to west, it can be divided into the Caledonian (450~418 Ma),the Indosinian (246~214 Ma), and the Yanshanian (189~151 Ma) plutons, manifesting a gradually aging pattern from west to east. The Xiazhuang uranium orefield hosts NWW-, NEE-, and NNE-directedmafic veins form eddue to Yanshanian magmatism at 211~91 Ma. These veins can be categorized into five sets according to their ages: 211~185 Ma, ca. 180 Ma, 145~139 Ma, 110~100 Ma, and 93~91 Ma. The uranium mineralization in the orefield lasted from the middle Jurassic to the Miocene with an age of 175~20 Ma, involving five phases and six stages: The Middle Jurassic uranium mineralization (175~162 Ma), the late Jurassic-early Cretaceous uranium mineralization (138~123 Ma, 113~100 Ma),the late Cretaceous uranium mineralization (96~66 Ma),the Paleocene uranium mineralization (65~54 Ma), and the Eocene-Miocene uranium mineralization and modification (52~20 Ma). Among them, 138~123 Ma and 96~54 Ma constituted the primary mineralization epochs. (2) According to the chronological and geological data of the study area,the formation of the Guidong pluton and its uranium mineralization can be divided into the following eight phases and 12 stages. The first phase is the middle-late Caledonian magmatism (450~418Ma),forming subvolcanic and granitic rocks primarily in the northern and eastern peripheries of the Guidong pluton. The second phase is the Indosinian granitic magmatism (246~214 Ma), which was dominated by the granitic magmatism from the middle Triassic to the early stage of the late Triassic.The third phase is the early Yanshanian mafic magmatism and uranium mineralization (211~162 Ma),including three stages: The mafic vein activity from the late stage of the Triassic to the early Jurassic (211~200 Ma), the early Jurassic granitic magmatism(ca.180 Ma), and the middle Jurassic mafic vein activity and uraninite mineralization (179~162 Ma). The fourth phase is the Yanshanian magmatism (163~139 Ma), which formed the Yanshanian pluton in the west of the Guidong pluton, consists of the granitic magmatism during the late stage of the middle Jurassic (163~151 Ma) and the late Jurassic magmatism (145~39 Ma). The fifth phase is the late Yanshanian early Cretaceousuranium mineralization and mafic vein activity (138~100 Ma), which comprises the uranium mineralization at the early stage of the early Cretaceous (138~123 Ma) and the mafic vein activity and uraninite mineralization at the late stage of the early Cretaceous(113~100 Ma). The sixth phase is the late Yanshanian late Cretaceous uranium mineralization and mafic vein activity (96~66 Ma), serving as one primary mineralization phase. The seventh phase is the Himalayan Paleocene uranium mineralization(65~54 Ma).The eighth phase is the Himalayan Eocene-Miocene uranium mineralization and modification(52~20 Ma). 3) The pluton formation and uranium mineralization are relatively concentratedin the study area, such as the Caledonian pluton (450~418 Ma), the Indosinian granitic pluton (238~220 Ma), the Yanshanian pluton (163~151 Ma), mafic vein activity (211~91 Ma), and uranium mineralization (138~123 Ma, 96~54 Ma). There exists a certain time difference between uranium mineralization and granitic pluton formation, indicating that they are non-contemporaneous products. Each uranium mineralization was preceded by mafic vein activity, suggesting an intimate relationship between uranium mineralization and mafic vein activity.

Table and Figures | Reference | Related Articles | Metrics
Application cases of the short-offset transient electromagnetic method in detecting goafs with thick overburden in a coal mine
HUANG Shi-Mao, YANG Guang, WANG Jun-Cheng, LUO Chuan-Gen, XU Ming-Zuan, ZHOU Nan-Nan, ZHAO Peng
Geophysical and Geochemical Exploration    2024, 48 (5): 1208-1214.   DOI: 10.11720/wtyht.2024.1232
Abstract124)   HTML2)    PDF (4749KB)(235)      

Within a coal mine in Peixian County, Xuzhou City, brick-red Paleogene and Neogene strata were deposited in the faulted basin during the Cenozoic, with extensive Quaternary strata overlying various strata. The Quaternary, Jurassic, and Cretaceous strata exhibit thick overburden, up to over 500 m. This study explored the coal mine using the short-offset transient electromagnetic (SOTEM) method. Based on geoelectric conditions, reasonable observation parameters were designed to obtain the subterranean electric structure within a burial depth of 1500 m. Goafs were detected at a burial depth of 900 m, with their delineated boundaries aligning with the mining situation of the coal mine. The results of this study serve as a reference for detecting goafs with thick overburden in North China-type coalfields.

Table and Figures | Reference | Related Articles | Metrics
Microtremor survey-based investigation of deep geothermal- and water-controlling structures in the Salt Lake geothermal field, Yuncheng City, Shanxi Province, China
WANG He-Yu, WU Guo-Peng, CHEN Guo-Xiong, CHAI Jian-Zhou, MAO Jie, WANG De-Tao
Geophysical and Geochemical Exploration    2025, 49 (1): 32-40.   DOI: 10.11720/wtyht.2025.1327
Abstract122)   HTML4)    PDF (4299KB)(157)      

The Salt Lake geothermal field in Yuncheng City, Shanxi Province, China lies beneath a densely populated urban area, posing significant challenges to further geothermal exploration and extraction. Based on the distribution of geothermal gradients in the geothermal field, which are higher in the southwest and lower in the northeast, a NE-trending microtremor survey profile was arranged in the southern part of Yuncheng City, aimed at investigating the deep geothermal reservoir structure and NW-trending structures in the geothermal field. The 2D velocity structure profile reveals a pronounced low-velocity anomaly in the eastern part, which is supposed to be induced by the fault fracture zone formed by multiple NW-striking tensional faults. Spatially, this concealed fault zone roughly corresponds to the low-geothermal gradient anomaly in the northeastern Salt Lake geothermal field, suggesting that this fault fracture zone might facilitate the rapid infiltration of cold surface water, thereby lowering the temperature of deep rocks in the northeastern part, leading to the formation of a large-scale low-temperature anomaly zone. Additionally, the faults identified by the microtremor survey can be traceable and confirmed in a controlled source reflection seismic profile in the study area, demonstrating the complementary nature of the two methods. This study further reveals the deep geothermal structures of the Salt Lake geothermal field based on previous efforts. This study provides more valuable bases and guidance for future exploration and resource evaluation of geothermal fields in the region while also demonstrating the effectiveness and superiority of the microtremor survey method in research on urban geothermal resources.

Table and Figures | Reference | Related Articles | Metrics
Electrical structure of the Bengbu-Huaibei area and its geological implications
ZHU Jiang-Bo, WANG Qi-Nian, LIU Yu-Quan, GUAN Da-Wei, LI Tao, YOU Miao, ZHANG Jian
Geophysical and Geochemical Exploration    2024, 48 (4): 971-978.   DOI: 10.11720/wtyht.2024.1502
Abstract122)   HTML4)    PDF (5817KB)(231)      

This study conducted magnetotelluric profiling in the Bengbu-Huaibei area of Anhui Province. Combined with gravity and magnetic anomalies, it obtained the deep electrical structure, the distribution of primary strata, and the properties of faults in the area, particularly the morphology of the Xuzhou-Suzhouarcuate nappe structure and the development of deep coal-measure strata. The results indicate that: (1) The Upper Paleozoic strataare primarily distributed under the high-resistivity nappe on the surface of the Xuzhou-Suzhouarcuate nappe structure. Theymanifest low-resistivity and low-densityphysical properties and high continuity, suggesting high exploration potential for coal beneath the nappe structure;(2)On the profile, early-stage faulting was dominated by reverse faults, resulting in local Lower Paleozoic and Proterozoicstrata overlying the Upper Paleozoic strata. In the later stage, normal faults predominated, controlling the Cenozoic deposition;(3) The Xuzhou-Suzhouarcuate nappe structure exhibits a 'high-low' double-layer electrical structure at burial depths shallower than 4 km, withthe dominant thrust fault plane composed of F5 and F6 faults. The leading edge of the high-resistivity nappe on the surface extends northwestward to Xiaoxian County and southward to northern Guzhen County, experiencing significant denudation in the Zhahe area. The above results provide critical geophysical information for the basic geological research and mineral exploration in the study area.

Table and Figures | Reference | Related Articles | Metrics
Application and indication of seismic methods in deep gold prospecting in the Xilin fault zone in the Jiaodong area
KONG Xiao-Min, SUN Chao, ZHOU Yi-Kang, TIAN Si-Qing, SU Hai-Gang, ZHOU Ming-Lei
Geophysical and Geochemical Exploration    2024, 48 (4): 979-985.   DOI: 10.11720/wtyht.2024.1408
Abstract122)   HTML3)    PDF (8914KB)(229)      

The Xilin fault zone,intimately associated with gold and polymetallic mineralization,exhibits high potential for gold resources.In deep exploration,identifying the deep structural characteristics of ore-controlling faults plays a critical role in achieving breakthroughs in gold exploration.Through the analysis of gold metallization regularity and the reflection seismic methods,this study clarified the seismic response to the changes in the attitude of the dominant ore-controlling fault zone in the Jiaodong area.It posited that the changes in energy intensity of the seismic event on the seismic time profile,as well as large continuity deterioration zones,can indicate the changes in the fault attitude,demonstrating high mineralization potential.Moreover,this study predicted and verified the metallization targets in the area.

Table and Figures | Reference | Related Articles | Metrics
Seismic impedance optimization inversion combining model inversion with deep learning inversion
HUANG Wen-Lu, YAN Jian-Guo, REN Li-Long, XIE Rui
Geophysical and Geochemical Exploration    2024, 48 (4): 1076-1085.   DOI: 10.11720/wtyht.2024.1288
Abstract122)   HTML1)    PDF (7559KB)(242)      

Based on the combination ofdata- and model-driven approaches, this study expanded the labels of the training set through model inversion results, and added the model inversion objective function to the deep learning algorithm. By constructing a new loss function, this study proposed a seismic impedance optimization inversion method combining model inversion with deep learning inversion. The semi-supervised deep learning network inversion under a pseudo-label was achieved using the RNN network structure. The network inversion results were used as the initial model to participate in the model inversion. The final optimization inversion was completed by continuous iterative optimization of both network and model inversion. The method proposed in this study proves to possess high inversion accuracy and practicability, as demonstrated by the synthesis of the Marmousi model and the actual data.

Table and Figures | Reference | Related Articles | Metrics
Prediction of fractures in VTI media based on the improved particle swarm optimization algorithm
LI Qin, YANG Xiao-Ying, JIANG Xing-Yu, LI Jiang
Geophysical and Geochemical Exploration    2024, 48 (4): 1054-1064.   DOI: 10.11720/wtyht.2024.0025
Abstract118)   HTML1)    PDF (10854KB)(189)      

The anisotropy caused by fractures is ubiquitous in formation media.The inversion and prediction of fracture parameters based on anisotropy can somewhat improve the inversion accuracy and prediction reliability of fractures.This study established a reflection coefficient equation based on vertical transverse isotropy(VTI) media.Then,it improved the standard particle swarm optimization algorithm by setting the exit probability based on the Metropolis criterion of the simulated annealing algorithm.Consequently,it obtained the inversion results of compressional- and shear-wave velocities and anisotropy parameters in VTI media.By combining anisotropy-related attributes,Poisson's ratio,and Poisson's velocity, this study predicted the fillers in fractures.The improved algorithm was tested for stability and noise resistance using a two-layer model and a Marmousi2 model,demonstrating its feasibility.Furthermore,the improved algorithm was applied to predict the water-bearing property of fractures using real coal mine data,validating its effectiveness.

Table and Figures | Reference | Related Articles | Metrics
Forward modeling and wave field analysis of seismic surface waves and guided P-waves
LIU Tong, SUN Cheng-Yu, CAI Rui-Qian
Geophysical and Geochemical Exploration    2024, 48 (4): 986-995.   DOI: 10.11720/wtyht.2024.1387
Abstract117)   HTML4)    PDF (4815KB)(231)      

Surface waves and guided P-waves,as two boundary-related wave phenomena,are a crucial part of the near-surface seismic wave field.This study investigated their generation mechanism and propagation regularity using the high-order staggered-grid finite-difference algorithm.First,it solved the problems like numerical dispersion and boundary conditions in numerical simulation.Based on this,it designed medium models under different thicknesses and elastic parameters for forward modeling.Furthermore,it extracted dispersion profiles and amplitude versus offset curves for analysis.In the case of a low-velocity thin layer on the surface,guided P-waves can be generated when the phase velocities of P and SV waves from the same source exceed the S-wave velocity but are less than the P-wave velocity of the underlying high-velocity layer.In media with high Poisson's ratios(>0.4),the phase velocities of surface waves and guided P-waves are sensitive to the S- and P-wave velocities,respectively.Surface waves and guided P-waves usually contain near-surface information that is unavailable in refracted and reflected waves.The appropriate acquisition,analysis,and inversion of near-surface information enable the establishment of a high-resolution near-surface model.This study generalized the generation conditions and wave field characteristics of surface waves and guided P-waves under the same source and deepened the understanding of their propagation regularity,laying a foundation for inversion and denoising research.

Table and Figures | Reference | Related Articles | Metrics
An automatic fitting method for a variogram based on deep learning
ZHAO Li-Fang, YU Si-Yu, LI Shao-Hua
Geophysical and Geochemical Exploration    2024, 48 (5): 1359-1367.   DOI: 10.11720/wtyht.2024.1522
Abstract115)   HTML0)    PDF (3408KB)(149)      

A variogram serves as a crucial tool for quantifying spatial correlations. However, existing variogram fitting methods often yield unstable results. This study proposed an automatic variogram fitting method based on deep learning, aiming to enhance the precision and stability of automatic fitting. The fitting of the experimental variogram is essentially a nonlinear optimization problem, which involves optimizing the matching between the experimental and theoretical variograms. The proposed method generated substantial training datasets using several sets of theoretical variograms with varying parameter values for training and learning in deep neural networks. The trained model was then used for the automatic fitting of the experimental variogram. Multiple sets of experimental results demonstrate that based on the robust fitting capability of deep neural networks, the proposed method manifested superior fitting stability and computational efficiency compared to the least squares method, providing a novel approach for automatic variogram fitting in geostatistics.

Table and Figures | Reference | Related Articles | Metrics
Application of three-dimensional magnetic anomaly inversion in magnetite exploration
ZHAO Bai-Ru, LI Hou-Pu, ZHANG Heng-Lei
Geophysical and Geochemical Exploration    2024, 48 (6): 1626-1632.   DOI: 10.11720/wtyht.2024.0167
Abstract115)   HTML3)    PDF (3579KB)(201)      

The Galinge iron deposit in Qinghai is overlain by deposits measuring greater than 150 m in thickness. The great burial depths of ore bodies lead to gentle magnetic anomaly morphology, making it difficult to characterize the spatial distribution of ore bodies. Therefore, this study employed three-dimensional magnetic anomaly inversion to determine the three-dimensional distribution characteristics of subsurface magnetic intensity in the study area. Given the prior information of non-magnetic surrounding rocks, the three-dimensional magnetic intensity model clearly presented the spatial distribution of the ore bodies and reflected the presence of intense magnetic bodies at depths of less than 500 m in existing boreholes. Accordingly, it can be inferred that there exist concealed ore bodies at depths exceeding 500 m in the study area. The results of this study suggest that three-dimensional magnetic anomaly inversion can effectively improve target identification, providing clear information on the horizontal positions, depths, and scales of magnetic ore bodies. The proposed inversion method can offer strong support for drilling design and reserve estimation, warranting promotion in detailed exploration of solid minerals.

Table and Figures | Reference | Related Articles | Metrics
The indicators of tectonic superimposed halo for prediction and discrimination of denudation degree of deep and peripheral blind ore deposits of hydrothermal deposits and their application effect
WEI Zi-Xin, LI Hui, WEI Yang, REN Liang-Liang, WEI Jiang, WANG Xu, YU Bin, WANG Jun, PENG Wei, WANG Xi-Jun, XIE Zi-Chen, JIA Jin-Dian, YAO Yue-Wen, AN Na
Geophysical and Geochemical Exploration    2025, 49 (1): 14-21.   DOI: 10.11720/wtyht.2025.2580
Abstract113)   HTML0)    PDF (3456KB)(133)      

The method of structural superimposed halo to find blind ore is a new method to find blind ore, which is based on the study of the theory of primary halo to find blind ore-the axial zoning of primary halo, and puts forward two new theories of ‘primary superimposed halo theory’ and ‘structural superimposed halo theory’. The accuracy of blind ore prediction by superimposed halo of structure is determined by the correctness of prediction marks and indexes. Based on the summary of seven common signs of structural superimposed halos in the prediction of deep blind ore deposits in more than 100 hydrothermal deposits, four important quantitative qualitative prediction signs are upgraded to quantitative prediction indicators. The structural superimposed halo prediction signs and indicators of 17 different combinations of accurate prediction of blind ore and discrimination of ore body denudation degree in the deep and periphery of the mining area are described in detail, and a practical ideal model of structural superimposed halo for predicting blind ore and discriminating ore body denudation degree is established. The common prediction signs and indicators of the model have important guiding significance for the prediction of deep blind ore in typical hydrothermal deposits, and have achieved remarkable prospecting results in more than 100 mine applications.

Table and Figures | Reference | Related Articles | Metrics
Assessment and trend prediction of the environmental capacity of heavy metals in surface sediments of the Dongping Lake, North China
YU Lin-Song, HU Lei, WANG Dong-Ping, LIU Hui, CHEN Zi-Wan, LI Hua-Yong, DENG Huan-Guang
Geophysical and Geochemical Exploration    2024, 48 (4): 1146-1156.   DOI: 10.11720/wtyht.2024.1347
Abstract111)   HTML2)    PDF (3599KB)(158)      

The environmental capacity of lake sediments serves as a significant indicator for assessing the environmental carrying capacity of lake systems, effectively reflecting the stability and sustainability of lake systems.This study investigated the Dongping Lake in the lower reaches of the Yellow River basin by determining 11 heavy metal elements, including As, Cd, Cr, Co, Cu, Hg, Mn, Ni, Pb, Tl, and Zn, in the sampled surface sediments. It delved into the spatial distributions of heavy metal contents and environmental carrying capacity using statistical analysis and geographical information system (GIS) technology. Moreover, it predicted the trend of environmental capacity changes of heavy metals at a centennial scale. The results indicate that: (1) The maximum content of As in the surface sediments of the study area exceededits risk screening value (allowable limit) for soil contamination, whereas those of other elements were below corresponding allowable limits;(2) The average single environmental capacity index (Pi) values of heavy metal elements decreased in the order of Hg, Pb, Cr, Ni, Zn, Cd, Cu, Co, Mn, Tl, and As. Among these heavy metal elements, As displayed overload level and warning level points, whereas Mn and Tl manifested warning level points. The composite capacity index (Pi) was calculated to be between medium and high capacity levels. The composite capacity level measured based on the inferior level of Pi suggests a medium capacity to overload level distribution in the study area;(3) The static annual capacity limits of heavy metal elements decreased in the order of Mn, Zn, Cr, Ni, Cu, Pb, As, Co, Tl, Cd, and Hg, whereas the dynamic annual capacity limits decreased in the order of Mn, Zn, Cr, Ni, Pb, Cu, Co, As, Hg, Cd, and Tl. The static and dynamic capacity limits will show a steeply to gently decreasing trend in the 5~40 years and 5~15 years, respectively, followed by a gentle and stable trend. Regardless of the number of years, the average dynamic annual capacity limit is higher than the average static one, suggesting a high environmental carrying capacity.This study reveals the current status and future trends of environmental capacity in the Dongping Lake, providing a scientific basis for the environmental quality assessment and ecological conservation and restoration of the lake.

Table and Figures | Reference | Related Articles | Metrics
A fault extraction technique based on structure-oriented filtering and its application
YAO Ming
Geophysical and Geochemical Exploration    2024, 48 (5): 1313-1321.   DOI: 10.11720/wtyht.2024.1418
Abstract111)   HTML5)    PDF (7103KB)(175)      

Accurately identifying faults is crucial for the exploration and exploitation of oil and gas fields,and further fault extraction based on this holds critical significance for later comprehensive research.At present,the commonly used fault extraction techniques primarily include automatic fault tracking,fault slice interpretation,and manual interpretation.However,these fault extraction techniques and their application in practical exploration and exploitation often face the following challenges.Automatic fault tracking based on an attribute volume often extracts faults with low accuracy and poor continuity,whereas fault slice interpretation and conventional manual interpretation require long work cycles.Hence,this study proposed a fault extraction technique based on structure-oriented filtering.First,the original poststack seismic data were processed through structure-oriented filtering to improve the quality of fundamental data and enhance the fault boundary features.Then,a relative isochronous model was established based on the filtered data volume,with sensitive attributes that can characterize faults extracted.Finally,based on the analysis of fault combination relationships,a comprehensive interpretation method combining plane and profile views was employed to extract faults.The technique proposed in this study has been successfully applied to a certain block of SB.As indicated by the application results,the proposed technique exhibits higher reliability,accuracy,and efficiency compared to the three commonly used fault extraction techniques, thus demonstrating high applicability.

Table and Figures | Reference | Related Articles | Metrics
Deriving analytical solution of the pseudo wavefield from transient electromagnetic data
LI Hai, ZHAO Pan, LI Ke-Ying, LIU Zheng
Geophysical and Geochemical Exploration    2024, 48 (5): 1193-1198.   DOI: 10.11720/wtyht.2024.1188
Abstract111)   HTML2)    PDF (1705KB)(195)      

The transform from transient electromagnetic (TEM) field to pseudo wavefield is the basis for using the imaging technique. The TEM field follows the diffusion equation, while the pseudo wavefield follows the wave equation. These two can be transformed into each other via the Q-transform. As the integral transformation from TEM field to pseudo wavefield is ill-posed, numerical method is used to get the desired pseudo wavefield. As a result, it is often the case that the methods and parameters are need to be optimized to get a optimal pseudo wavefield. Therefore, here in this paper, we derived the analytical solution of the pseudo wavefield from the TEM field. We start from the analytical formula of TEM field, and utilize the Laplace transform to establish the analytical solution pairs. The pairs can be used to test the accuracy and stability of the numerical method, as well as examining the features of the pseudo wavefield to get an effective imaging method.

Table and Figures | Reference | Related Articles | Metrics
Portable opposing-coils transient electromagnetic system and its application tests
ZHOU Sheng, CHEN Xing-Peng, WANG Jun, QI Qing-Xin, ZHANG Zhi-Qing, PAN Ji-Min, XI Zhen-Zhu, YANG Chun-Hua
Geophysical and Geochemical Exploration    2024, 48 (6): 1479-1485.   DOI: 10.11720/wtyht.2024.0169
Abstract109)   HTML4)    PDF (4415KB)(181)      

In shallow engineering investigations, the small-loop transient electromagnetic (TEM) system is challenged by limitations such as overweight equipment, significant transmitter-receiver mutual inductance, and high manpower requirements. Hence, this study introduced an improved system. Based on the opposing-coils transient electromagnetic (OCTEM) theory, this study calculated the magnetic field distribution of the generalized opposing-coils antenna device. Furthermore, it designed and developed efficient portable antennas and the supporting system (collectively referred to as the portable OCTEM system). Subsequent field experiments demonstrate that while ensuring exploration accuracy, the portable OCTEM system can enhance the investigation efficiency by effectively mitigating the transmitter-receiver mutual inductance and significantly reducing manpower requirements. This study preliminarily verifies the feasibility of the portable OCTEM system, providing a novel technology route for developing downsized shallow exploration equipment.

Table and Figures | Reference | Related Articles | Metrics
3D simulations of geological structures in coastal cities using a electrical resistivity method
LIU Hong-Hua, ZHANG Hui, WANG Ru-Jie, YU Peng, QIN Sheng-Qiang, LI Wen-Yu, CHE Rong-Qi
Geophysical and Geochemical Exploration    2024, 48 (4): 1037-1044.   DOI: 10.11720/wtyht.2024.1344
Abstract109)   HTML1)    PDF (7138KB)(208)      

For the underground construction of coastal cities in China, there is an urgent need to accurately position unfavorable geobodies such as faults and boulders. Based on the geological characteristics of coastal cities, this study conducted 3D numerical simulations using a high-density resistivity method, determining the effects of the electrical properties and thickness of the overburden on the survey results, as well as the DC electric field characteristics varying with the sizes and burial depths of detection targets. The results show that the resistivity difference between the overburden and the targets serves as a critical factor in determining the influence of the overburden. For low-resistivity fracture zones, a higher resistivity of the overburden signifies more prominent responses from the fracture zone. Under middle- to high-resistivity overburden conditions, shallowly buried boulders can be easily found, and larger boulders exhibit more significant high-resistivity characteristics. In the exploration along the Qingdao metro line 5, the high-density resistivity method played a vital role in exploring fracture zones and boulders, verifying the effective application effects of the method. The results of this study provide a basis for selecting engineering exploration methods and determining operating parameters in coastal cities.

Table and Figures | Reference | Related Articles | Metrics
A method for identifying faults based on well-controlled multi-attribute fusion using a feedforward neural network
ZHAO Jun, RAN Qi, ZHU Bo-Hua, LI Yang, LIANG Shu-Yuan, CHANG Jian-Qiang
Geophysical and Geochemical Exploration    2024, 48 (4): 1045-1053.   DOI: 10.11720/wtyht.2024.1524
Abstract108)   HTML3)    PDF (3756KB)(195)      

The fault-controlled fractured-vuggy carbonate reservoirs in the Tarim Basin exhibitconsiderable burial depths, complex structures, and highly developed faults. Faults serve asa dominant factor controlling oil and gas accumulation and possible hydrocarbon migration pathways in the study area. Hence, it is critical to predict their spatial distributions and sizes. There existvariousfault detection attributes, which characterize fault scales and features differently due totheir different calculation methods.Moreover, conventional attribute detection ignores the use and constraints of logs. For more complete and accurate fault prediction results, this study selected multiple fault detection attributes for fusion using the feedforward neural network algorithm, with logs as prior information. First of all, a sample database for fault feature identification was established using fault attributes (like AFE, likelihood, and dip angle) with distinct characteristics anddiscrimination criteria of fault types, including lost circulation data, imaging logs, and seismic event dislocations.The deep feedforward neural network was trained based on the sample database.A neural network prediction model with a minimum prediction error was obtained by comparing and testing the learning effects under different hidden layer depths. Finally, the neural network prediction model was applied to the fault prediction of the study area. The comparative analysis reveals thatthe fault prediction using deeplearning-based fused attributesyielded prediction results more consistent with the log-based interpretation results, and could synthesize the information of faults with different scale characteristics, thus effectively improving the prediction accuracy and reliability.

Table and Figures | Reference | Related Articles | Metrics
Log-based lithology identification of volcanic rocks using random forest method: A case study of Carboniferous strata in the Dixi area, Junggar Basin
SHANG Ya-Zhou, ZHANG Zhao-Hui, XU Duo-Nian, ZHAO Wen-Wen, CHEN Hua-Yong, HAN Hai-Bo
Geophysical and Geochemical Exploration    2024, 48 (4): 1025-1036.   DOI: 10.11720/wtyht.2024.1303
Abstract108)   HTML2)    PDF (9065KB)(184)      

The accurate lithologyidentification of volcanic rocksserves as a significant foundation for the efficient exploration and exploitation of volcanic reservoirs. However, volcanic reservoirs exhibit intricate lithologies, longitudinalmultistagesuperimposition, and fast transverse phase transition, which reduce the accuracy of crossplots in lithologyidentification ofvolcanic reservoirs. Based on the optimal parameter combination of the model determined through grid search and orthogonal experiments, this study quantitatively evaluatedthe effects of conventional log curves on the lithologyidentification of volcanic rocks. Withthe natural gamma ray, compensated neutron, sonic interval transit time, and formation resistivity as lithologic indicators, this study builtan intelligent model for the lithology identification of Carboniferous volcanic rocks in the Dixi area in the Junggar Basin using therandom forest method. This study identified the lithologies of thecored intervalswith a cumulative thickness of 870 m infive cored wells in the study area, with the coincidence ratesof the identification results with thin section identification results and core description resultsreaching 76.67% and 85.98%, respectively. This suggestssignificant identification effects. Therefore, this studysets the stagefor the fine-scale evaluation of volcanic reservoirs in the study area.

Table and Figures | Reference | Related Articles | Metrics
Application of ground-penetrating radar in detecting the internal structures of the ancient Great Wall in Linhai City
YANG Hao, ZOU Jie, CHENG Dan-Dan, YU Jing-Lan
Geophysical and Geochemical Exploration    2024, 48 (6): 1741-1746.   DOI: 10.11720/wtyht.2024.0091
Abstract107)   HTML1)    PDF (3789KB)(174)      

Non-destructive testing of the internal structural characteristics of ancient buildings is the key to preserving cultural relics.To determine the structures and internal defects of the ancient Great Wall in Linhai City,this study performed non-destructive testing of the wall structures in different orientations using a ground-penetrating radar (GPR) combining 100 MHz and 270 MHz antennas.The testing results show significant structural stratification in the ancient Great Wall.The GPR signal-reflected images reveal clear internal wall defects like pores,cracks,voids,and other hidden dangers.This study demonstrates the reliability of the GPR in detecting structures and defects of ancient walls,there by providing technical support for the structural protection of the ancient Great Wall.

Table and Figures | Reference | Related Articles | Metrics
Total rare-earth oxides in stream sediments in the Dechang area: Geochemical characteristics and prospecting targets
ZHU You-Huan, NIE Fei, ZOU Jia-Zuo, LI Hong-Wei, ZHOU Xue-Cheng, RAN Guang-Hui, LEI Dong
Geophysical and Geochemical Exploration    2025, 49 (2): 270-280.   DOI: 10.11720/wtyht.2025.2571
Abstract106)   HTML6)    PDF (4186KB)(61)      

The Mianning-Dechang area in western Sichuan serves as the most important metallogenic belt of light rare earth elements (LREEs) in China. To make breakthroughs in the exploration of rare earth resources in the Dechang area, a 1:50 000 stream sediment survey was conducted in this study. The analysis of test data characteristics and the extraction of geochemical anomalies reveal that the total rare-earth oxides (REOs) in the area exhibit a pronounced enrichment pattern and that element anomalies largely overlap the spatial distribution of related geological bodies. Through comprehensive analysis using the cumulative frequency method and iterative method, this study determined the lower limits of anomalies and, accordingly, plotted element anomaly maps, with five main anomaly areas being delineated. The comprehensive evaluation of anomalies revealed four prospecting target areas: Huangjiaba, Jiaobacun, Yibasan, and Huajiaoyuan. The analysis of metallogenic geological conditions and the anomaly verification based on drilling in the Gannan area led to the discovery of three light rare earth deposits in the Huangjiaba prospecting target area, two heavy rare earth deposits in the Jiaobacun prospecting target area, two heavy rare earth deposits in the Yibasan prospecting target area, and two heavy rare earth deposits in the Huajiaoyuan prospecting target area. This study posits that the Triassic biotite moyite and biotite monzogranite in the study area are the metallogenic parent rocks of ion adsorption-type rare earth resources, with REEs primarily undergoing enrichment and mineralization in completely weathered layers. Therefore, a simple and effective prospecting pattern for "endogenous and exogenous" ion adsorption-type rare earth deposits in the Dechang area consists of analyzing the geochemical characteristics of the total REOs based on a 1:50 000 stream sediment survey, delineating metallogenic prospect areas that indicate parent rocks for REE enrichment, and selecting sections favorable for the formation and preservation of weathered crusts based on the hypergenic conditions of the enrichment areas, thus achieving the quick delineation of the prospecting target areas.

Table and Figures | Reference | Related Articles | Metrics
Seismic prediction of unfavorable geobodies in tunnels using the borehole-roadway transient electromagnetic method
LI He, LI Xiu, QI Zhi-Peng, CAO Hua-Ke
Geophysical and Geochemical Exploration    2024, 48 (5): 1215-1222.   DOI: 10.11720/wtyht.2024.1277
Abstract106)   HTML2)    PDF (8377KB)(216)      

Tunnel detection in complex environments requires fine-scale detection of small unfavorable geobodies like karst caves and fissures. Hence, this study designed a tunnel construction model with a small karst cave in front of the tunnel face. A borehole was drilled at the center point of the tunnel face towards the construction direction, and then an electrical source was put into the borehole for excitation. Array data acquisition was conducted on the tunnel face. The 3D forward modeling based on transient electromagnetic data was performed using the time-domain finite element method. As indicated by the results, the electromagnetic sounding of the target was achieved through the movement of the electrical source, and the planar position of the unfavorable geobody was determined based on the distribution patterns of the electromagnetic field on the tunnel face. Therefore, electrical source excitation in a borehole can enhance the detection ability of the transient electromagnetic method on small karst caves, serving as a feasible method for improving the accuracy of tunnel seismic prediction.

Table and Figures | Reference | Related Articles | Metrics
Application of an improved SRME method in eliminating land surface multiples
QI Peng, YANG Jin-Long, HU Shou-Wang
Geophysical and Geochemical Exploration    2024, 48 (5): 1331-1336.   DOI: 10.11720/wtyht.2024.1271
Abstract104)   HTML4)    PDF (4565KB)(174)      

Surface-related multiple elimination(SRME) is vital in processing seismic data.At present,the SRME method most commonly used for processing marine data can effectively predict surface-related multiple models,achieving multiple elimination through matching and subtraction.However,this method requires full wave field information,thus placing higher demands on observation systems.The irregular land data acquisition makes it difficult to apply this method for processing land data.Hence,this study presented an improved SRME method,which performs moveout correction on adjacent channels for multiple prediction by constructing the minimum error constraint function,thus enhancing the adaptability to complex observation systems.The improved SRME method was applied to process the actual seismic data of land.Its effectiveness was validated by comparing the gathers,velocity spectra,prestack time migration profiles,and synthetic seismograms before and after SRME.

Table and Figures | Reference | Related Articles | Metrics
Application of the unmanned aerial vehicle-airborne gamma-ray spectrometry system to follow-up geochemical surveys in high-relief areas
ZHONG Hui-Rong, YANG Cheng-Zhi, YANG Qing-Hua, XIN Chao, YANG Lei, WANG Wei
Geophysical and Geochemical Exploration    2024, 48 (5): 1268-1274.   DOI: 10.11720/wtyht.2024.1565
Abstract102)   HTML3)    PDF (3183KB)(207)      

In response to the need for large-scale exploration of radioactive minerals in high-relief areas, this study developed an airborne gamma-ray spectrometer based on small-sized NaI (Tl) crystals, which was integrated with the F-120 unmanned aerial vehicle (UAV) to form an airborne gamma-ray spectrometry (AGRS) system. The UAV-AGRS system was applied to the follow-up geochemical survey of uranium deposits in a certain area of South China. The survey results show roughly consistent locations and morphologies for high-anomaly zones with the ground gamma-ray spectrometry results. Moreover, the results of this study exhibit more detailed anomaly morphologies, and more significant responses of uranium content-related uranium channel data to known uranium occurrences in the study area, suggesting superior data. Therefore, the UAV-AGRS system shows promising potential as an effective alternative to ground gamma-ray spectrometry for the follow-up geochemical survey of uranium deposits in high-relief areas.

Table and Figures | Reference | Related Articles | Metrics
Hydrochemical characteristics of shallow groundwater in a chemical industry agglomeration area of Yantai City
HU Sheng-Tao, ZHANG Xiang-Heng, HAN Ming-Zhi, TANG Shi-Kai, YU Lin-Hong, LI Jin-Peng, ZHANG Jie, ZHAO Guo-Peng, BAI Ying
Geophysical and Geochemical Exploration    2024, 48 (4): 1157-1164.   DOI: 10.11720/wtyht.2024.1372
Abstract101)   HTML2)    PDF (2740KB)(177)      

To investigate thehydrochemical characteristics of shallow groundwater in a chemical industrial agglomeration area in Yantai City, this study collected 12 sets of groundwater samples and one set of surface water samples from the study area and its surrounding areas. It analyzed the hydrochemical characteristics ofgroundwater by integrating various methods like mathematical statistics, Piper and Gibbsdiagrams, correlation analysis,the ion ratio method, and principal component analysis. Moreover, it explored the impacts of production activities in thestudy area on the groundwater environment. The results show that:(1) The shallow groundwater in the study area was neutral to slightly alkaline, with the primary hydrochemical type being the SO4-Ca·Na type, followed by the SO4·HCO3-Ca·Mg, HCO3·SO4-Ca·Na, SO4·HCO3·Cl-Ca·Na, SO4·Cl-Ca, SO4·HCO3-Ca, and SO4-Na types;(2) The chemical composition of shallow groundwater originated principally from the combined effects of evaporite and silicate dissolution; (3) Chemical enterprises contributed significantly to groundwater contamination. A nearercontamination source is associated with higher ion concentrations,suggesting more severe groundwater contamination. Along the groundwater flow direction, contaminants in upper reaches are prone to migrate and accumulate toward lower reaches,aggravating groundwater contamination in lower reaches.

Table and Figures | Reference | Related Articles | Metrics
Geochemical characteristics and bioavailability of selenium and zinc in soils in an area subjected to water and soil erosion : A case study of Changting County, Fujian Province
TANG Zhi-Min, ZHANG Xiao-Dong, MEI Li-Hui, ZHAN Long, CHEN Guo-Guang, LIU Hong-Ying, ZHOU Mo, ZHANG Ming, ZHANG Jie
Geophysical and Geochemical Exploration    2024, 48 (4): 1125-1135.   DOI: 10.11720/wtyht.2024.1336
Abstract101)   HTML2)    PDF (5570KB)(230)      

Water and soil erosion affects the distribution and partitioning of elements in soils. The distribution and partitioning patterns and bioavailability of trace beneficial elements such as selenium (Se) and zinc (Zn) in water and soil erosion areas serve as significant factors for measuring the ecological effects of water and soil erosion. Through the geochemical survey of soil and crops, this study investigated the geochemical characteristics and bioavailability of Se and Zn in the water and soil erosion area of Changting County, Fujian Province, obtaining the critical geochemical parameters of Se and Zn in soil and crops in the study area. The results are as follows: (1) The soil Se and Zn contents in the study area show median values of 0.43×10-6 and 46×10-6, respectively; (2) Se is enriched in the soil developed from metamorphic rocks, whereas Zn is enriched in the soil developed from metamorphic rocks and granites; (3) The soil Se and Zn contents are higher in bamboo forests compared to other land-use types; (4) The soil Se content shows a decreasing trend as the water and soil erosion intensifies; (5) The bio-concentration factors of Se and Zn are significantly positively correlated with w(Si)/w(Al) ratios, and negatively correlated with Se, Zn, and organic matter. As indicated by the results above, the distribution and partitioning of soil trace beneficial elements like Se and Zn in the study area are primarily subjected to metamorphic rocks and granites. The water and soil erosion is accompanied by a significant soil Se loss. The bioavailability of soil Se and Zn is reduced by the adsorption of clay minerals and organic matter. Additionally, there may be a large proportion of inactive Se and Zn in the soil of the water and soil erosion area.

Table and Figures | Reference | Related Articles | Metrics
Development of a submarine optically pumped magnetometer
GONG Yi-Xuan, JIANG Kai, GAO Jing-Yu, ZHU Wan-Hua, CHEN Kai
Geophysical and Geochemical Exploration    2024, 48 (6): 1498-1506.   DOI: 10.11720/wtyht.2024.0144
Abstract101)   HTML4)    PDF (4010KB)(144)      

The Autonomous Underwater Vehicle (AUV) equipped with a magnetometer conducts underwater magnetic anomaly detection, enabling long-duration and large-scale continuous sampling. It offers advantages such as concealment, high efficiency, high practicality, wide application range, strong maneuverability, and robust endurance. To improve measurement accuracy, synchronous seabed magnetic field data is needed as a reference to counteract environmental magnetic noise. To address this, a submarine optically pumped magnetometer was developed to provide a reference for processing AUV magnetic anomaly detection data.The submarine optically pumped magnetometer consists of a magnetic field measurement unit and an acoustic release unit, capable of high-precision autonomous acquisition of the total magnetic field on the seabed, as well as underwater acoustic release and recovery. The magnetic field measurement unit includes an optical pumping probe, electronic unit, counter, battery pack, and nylon pressure chamber. The acoustic release unit includes an acoustic transducer, acoustic communication board, electro-corrosion decoupler, cement block, buoyancy block, and frame. This design addresses key technical challenges such as miniaturization, autonomous acquisition, and underwater acoustic communication.In 2022, a magnetic anomaly detection test was conducted in the offshore waters of Qingdao. The test results verified the autonomous seabed magnetic field acquisition and the release and recovery functions of the submarine optically pumped magnetometer, providing effective reference data for underwater target detection.

Table and Figures | Reference | Related Articles | Metrics
Marine controlled-source electromagnetics-based technology for generating arbitrary-frequency waveforms
WANG Jie, WANG Meng, REN Zhi-Bin, WANG Chen-Tao, WANG Hui-Min
Geophysical and Geochemical Exploration    2024, 48 (6): 1448-1454.   DOI: 10.11720/wtyht.2024.0165
Abstract100)   HTML4)    PDF (2713KB)(222)      

Marine controlled-source electromagnetics (MCSEM) is used to explore resources such as oil and gas hydrates, as well as deep geological structures, by revealing resistivity differences below the seabed. Different excitation frequencies correspond to varying detection depths. To enhance the resistivity imaging of targets beneath the seabed, this study investigated the MCSEM-based technology for generating arbitrary-frequency waveforms to flexibly alter the excitation frequency and improve the exploration effectiveness and efficiency. Using the direct digital frequency synthesis (DDS) chip AD9833 and the joint control of a microcontroller and a complex programmable logic device (CPLD), this study achieved the generation of arbitrary-frequency waveforms with limited precision. The test results indicate that this technology can effectively enhance the spectral adaptability and flexibility of MCSEM.

Table and Figures | Reference | Related Articles | Metrics
Active/passive source-based observation experiments and applications of fiber-optic rotational seismometers
CAO Yu-Jia, CHEN Yan-Jun, LI Zheng-Bin, TENG Yun-Tian, ZHANG Ding-Fan
Geophysical and Geochemical Exploration    2024, 48 (6): 1486-1497.   DOI: 10.11720/wtyht.2024.0142
Abstract99)   HTML3)    PDF (9597KB)(191)      

In the past two decades, high-sensitivity ring laser gyroscopes have demonstrated the potential of rotational observation data in global seismology. Commercial fiber-optic three-component rotational seismometers have heralded a new development phase of rotational seismography. Field experiments for high-sensitivity portable fiber-optic rotational seismometers in China remain in the initial stage, whereas their relevant data analysis results have been obtained internationally. This study elucidated the co-located observation experiments on six components (6C, including three components of translational motions and three components of rotational motions) of an active source and a natural earthquake, involving experimental schemes, implementation steps, and subsequent data analysis. Moreover, this study revealed the primary factors influencing the experiment results by comparatively analyzing the similarities and differences of experiments. Fiber-optic rotational and conventional seismometers need to be fixed on the same rigid panel to ensure the consistency of received signals. Besides, proper ground coupling and burial processing contribute to high-quality experimental data. The experimental results indicate that water bodies will affect surface wave manifestation and P-wave clarity. These findings, enriching the practical experience in seismic rotational observation experiments, serve as a reference for the design of subsequent rotational observation experiments, thereby assisting in completing the experiments and obtaining higher-quality data. In terms of data application, this study optimized and substantiated the feasibility of the preprocessing scheme, with the backazimuth calculation accuracy improved by 58.8° and 50° at the two active-source measuring points, and by 24.1° and 29.4° at the two passive-source measuring points. The application of six-component seismic data from a single seismic station suggests that additional observation of rotational components can acquire more seismic wavefield information, thus the observation of rotational components can be employed to enhance the utilization of China's massive seismic observation data. Overall, fiber-optic rotational seismometers broaden the boundary of seismic monitoring technology, boost seismology research, and create new possibilities for future earthquake research.

Table and Figures | Reference | Related Articles | Metrics
Effective information extraction from high-order pseudo-random electromagnetic signals in urban environments:A case study of a rail transit engineering area in Jinan City, China
MA Zhen-Bo, ZHOU Chang-Yu, RUAN Jin-Ping, ZHANG Wen-Yan
Geophysical and Geochemical Exploration    2024, 48 (6): 1709-1719.   DOI: 10.11720/wtyht.2024.1535
Abstract99)   HTML3)    PDF (7825KB)(175)      

The spectra of high-order pseudo-random electromagnetic signals encompass all the frequencies required for exploration engineering, it has the characteristics of enhancing work efficiency and strong anti-interference capability, and has been applied in electromagnetic exploration in urban environments. This study extracted effective information from high-order pseudo-random signals in the electromagnetic survey conducted in areas with strong powerline interference within the special exploration area of the Phase I engineering of the Jinan Urban Rail Transit Line 8. To efficiently extract high-quality effective information, an envelope assessment algorithm was combined with high-order pseudo-random signals. Specifically, the actual signal interference was accurately estimated by analyzing the spectral envelope values. This allows for screening received signals, thus further mitigating the impacts of powerline interference and its harmonics. As a result, more effective frequency and geoelectric information were obtained, providing abundant effective electromagnetic data for subsequent inversion and interpretation. The novel method serves as a technique for effective information extraction for future electromagnetic sounding in a complex urban environment.

Table and Figures | Reference | Related Articles | Metrics
More...
Office Online
News
gfff
More>>
Information
Web: http://www.wutanyuhuatan.com
Editor in Chief: XIONG ShengQing
Published by:
The Geological Publishing House (31 Xueyuan Road,Beijing 100083,China)
Printer:
Beijing Changning Printing Co. Ltd.
Distributor: Beijing Post Office
Abroad Distributor:
China International Book Trading Corporation
Subscription Hander:
Local Post Offices of China
Sponsored by:
China Aero Geophysical Survey and Remote Sensing Center for Natural Resources
Edited by:
Editorial Office of Geophysical and Geochemical Exploration
Add:
29 Xueyuan Road, Beijing 100083,China
Tel: 86-010-62060192/62060193
Fax: 86-010-62060193
Email: whtbjb@sina.com ,
           whtbjb@163.com
Links
More>>
京ICP备05055290号-3
Copyright © 2021 Geophysical and Geochemical Exploration, All Rights Reserved.
Tel: (8610)62301569   Email: whtbjb@sina.com , whtbjb@163.com