|
|
Characteristics and source analysis of heavy metal contamination in the sediments of the Jinsha River Basin: A case study of the Qingling River |
CHENG Yan-Xun1,2( ), XU Lei1,2, WU Liang1,2( ), ZHAO Meng-Sheng1,2, WANG Fu-Hua1,2, QIAN Kun1,2, ZHENG Hong-Fu1,2, LI Wen-Hui1,2, ZHANG Hong-Hui1,2 |
1. Kunming Natural Resources Comprehensive Survey Center of China Geological Survey, Kunming 650100, China 2. Technology Innovation Center for Natural Ecosystem Carbon Sink, Ministry of Natural Resources, Kunming 650100, China |
|
|
Abstract To understand the characteristics and sources of heavy metal contamination in the sediments of the Jinsha River basin, this study investigated the Qingling River basin-a primary tributary of Longchuan River on the south bank of the Jinsha River. Samples were collected from the sediments of 22 representative sections, and the concentrations of eight heavy metal elements, i.e., As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, were tested and analyzed. Statistical analysis was conducted on the distribution characteristics of these heavy metal elements in the sediments along the basin. The sources of these heavy metals were investigated using correlation analysis and principal component analysis, and the degree of heavy metal contamination in the sediments was assessed using the geo-accumulation index and the Nemero index. The results indicate that As, Cd, Cu, Hg, Ni, Pb, and Zn are primarily influenced by mining, agricultural, and industrial activities. Cr and Ni originate primarily from soil-forming parent materials. Besides natural sources, Ni is also affected by anthropogenic sources. The assessment results derived using the geo-accumulation and Nemero indices reveal that the eight heavy metal elements exhibit moderate or low contamination on average. However, partial elements, represented by Cd, Hg, Pb, and Zn, exhibit localized enrichment within the basin, primarily concentrated in the Laojiezi Au-Pb-Ag polymetallic mining area and the urban-rural junction in the lower reaches of the county.
|
Received: 30 January 2024
Published: 22 April 2025
|
|
|
|
|
|
Study area location (a) and distribution of the sediment samples (b)
|
等级 | Igeo值 | 污染程度 | Ⅰ | ≤0 | 无污染 | Ⅱ | 0~1 | 轻微污染 | Ⅲ | 1~2 | 中度污染 | Ⅳ | 2~3 | 中度—重度污染 | Ⅴ | 3~4 | 重度污染 | Ⅵ | 4~5 | 重度—极度污染 | Ⅶ | >5 | 极度污染 |
|
Grading criteria of geo-accumulation index
|
等级 | P综值 | 污染程度 | Ⅰ | ≤0.7 | 清洁 | Ⅱ | 0.7~1 | 尚清洁 | Ⅲ | 1~2 | 轻度污染 | Ⅳ | 2~3 | 中度污染 | Ⅴ | >3 | 重度污染 |
|
Grading criteria of comprehensive pollution index
|
项目 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | 平均值/10-6 | 10.81 | 0.38 | 101.19 | 33.51 | 0.04 | 44.61 | 115.24 | 119.20 | 最小值/10-6 | 3.79 | 0.09 | 74.30 | 11.90 | 0.01 | 20.00 | 13.00 | 34.50 | 中位数/10-6 | 9.40 | 0.28 | 104.50 | 32.90 | 0.03 | 48.75 | 24.40 | 98.05 | 最大值/10-6 | 28.00 | 1.66 | 118.00 | 68.50 | 0.18 | 64.30 | 1003.00 | 493.00 | 标准偏差/10-6 | 6.29 | 0.36 | 11.16 | 13.83 | 0.04 | 12.28 | 246.67 | 99.20 | 变异系数 | 0.58 | 0.95 | 0.11 | 0.41 | 0.93 | 0.28 | 2.14 | 0.83 | 云南省土壤背景值/10-6 | 10.60 | 0.27 | 91.00 | 40.00 | 0.07 | 38.00 | 39.00 | 96.00 | 全国土壤背景值/10-6 | 9.10 | 0.15 | 63.00 | 23.00 | 0.05 | 26.00 | 25.00 | 67.00 |
|
Statistics of heavy metals concentration in the sediments
|
|
Distribution of heavy metals in the sediments of Qingling river
|
元素 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | As | 1 | 0.710** | 0.310 | 0.808** | 0.621** | 0.562** | 0.817** | 0.727** | Cd | | 1 | -0.045 | 0.839** | 0.572** | 0.406 | 0.825** | 0.940** | Cr | | | 1 | 0.283 | 0.228 | 0.730** | 0.073 | 0.155 | Cu | | | | 1 | 0.617** | 0.615** | 0.840** | 0.852** | Hg | | | | | 1 | 0.387 | 0.500* | 0.541** | Ni | | | | | | 1 | 0.406 | 0.574** | Pb | | | | | | | 1 | 0.828** | Zn | | | | | | | | 1 |
|
Correlation analysis of heavy metals in the sediments
|
重金属元素 | 主成分 | 变量共同度 | F1 | F2 | As | 0.890 | 0.019 | 0.792 | Cd | 0.885 | -0.371 | 0.921 | Cr | 0.329 | 0.911 | 0.938 | Cu | 0.945 | -0.033 | 0.894 | Hg | 0.702 | 0.009 | 0.493 | Ni | 0.682 | 0.634 | 0.868 | Pb | 0.881 | -0.273 | 0.851 | Zn | 0.922 | -0.168 | 0.878 | 初始特征值 | 5.161 | 1.475 | | 方差贡献率/% | 64.507 | 18.432 | | 累积方差贡献率/% | 64.507 | 82.939 | |
|
Principal component analysis of heavy metals concentrations in the sediments
|
|
Principal component loading of heavy metals in the sediments
|
元素 | Igeo | 比例/% | 变化范围 | 平均值 | Igeo<0 | 0<Igeo<1 | 1<Igeo<2 | 2<Igeo<3 | 3<Igeo<4 | 4<Igeo<5 | As | -2.07~0.82 | -0.76 | 81.82 | 18.18 | 0 | 0 | 0 | 0 | Cd | -2.20~2.04 | -0.50 | 77.27 | 13.63 | 4.55 | 4.55 | 0 | 0 | Cr | -0.88~-0.21 | -0.44 | 100.00 | 0 | 0 | 0 | 0 | 0 | Cu | -2.33~0.19 | -0.95 | 90.91 | 9.09 | 0 | 0 | 0 | 0 | Hg | -3.39~0.78 | -1.68 | 90.91 | 9.09 | 0 | 0 | 0 | 0 | Ni | -1.51~0.17 | -0.42 | 90.91 | 9.09 | 0 | 0 | 0 | 0 | Pb | -2.17~4.10 | -0.56 | 72.72 | 9.09 | 9.09 | 0 | 4.55 | 4.55 | Zn | -2.06~1.78 | -0.57 | 81.82 | 13.63 | 4.55 | 0 | 0 | 0 |
|
Class distribution of Igeo for heavy metals in the sediments
|
元素 | Pi | 比例/% | 变化范围 | 平均值 | Pi≤1 | 1<Pi≤2 | 2<Pi≤3 | Pi>3 | As | 0.36~2.64 | 1.02 | 68.18 | 22.73 | 9.09 | 0 | Cd | 0.33~6.15 | 1.41 | 50.00 | 36.36 | 4.55 | 9.09 | Cr | 0.82~1.30 | 1.11 | 18.18 | 81.82 | 0 | 0 | Cu | 0.30~1.71 | 0.84 | 81.82 | 18.18 | 0 | 0 | Hg | 0.14~2.57 | 0.63 | 81.82 | 13.63 | 4.55 | 0 | Ni | 0.53~1.69 | 1.17 | 31.82 | 68.18 | 0 | 0 | Pb | 0.33~25.72 | 2.95 | 72.72 | 4.55 | 4.55 | 18.18 | Zn | 0.36~5.14 | 1.24 | 45.45 | 40.91 | 9.09 | 4.55 |
|
Class distribution of Pi of heavy metals in the sediments
|
内梅罗综合 污染指数 | P综 | 比例/% | 变化范围 | 平均值 | P综≤0.7 | 0.7<P综≤1 | 1<P综≤2 | 2<P综≤3 | P综>3 | 0.74~18.54 | 2.75 | 0 | 22.73 | 45.45 | 18.18 | 13.64 |
|
Class distribution of Nemero comprehensive pollution index of heavy metals in the sediments
|
[1] |
魏伟伟, 李春华, 叶春, 等. 基于底泥重金属污染及生态风险评价的星云湖疏浚深度判定[J]. 环境工程技术学报, 2020, 10(3):385-391.
|
[1] |
Wei W W, Li C H, Ye C, et al. Determination of dredging depth of Xingyun Lake based on heavy metal pollution and ecological risk assessment of sediment[J]. Journal of Environmental Engineering Technology, 2020, 10(3):385-391.
|
[2] |
毛志刚, 谷孝鸿, 陆小明, 等. 太湖东部不同类型湖区疏浚后沉积物重金属污染及潜在生态风险评价[J]. 环境科学, 2014, 35(1):186-193.
|
[2] |
Mao Z G, Gu X H, Lu X M, et al. Pollution distribution and potential ecological risk assessment of heavy metals in sediments from the different eastern dredging regions of Lake Taihu[J]. Environmental Science, 2014, 35(1):186-193.
|
[3] |
Sakan S, Dević G, Relić D,et al. Risk assessment of trace element contamination in river sediments in Serbia using pollution indices and statistical methods:A pilot study[J]. Environmental Earth Sciences, 2015, 73(10):6625-6638.
|
[4] |
Zhu Y J, Lu X W, Yang L N, et al. Accumulation and source of heavy metals in sediment of a reservoir near an industrial park of northwest China[J]. Frontiers of Earth Science, 2016, 10(4):707-716.
|
[5] |
王博, 赵爽, 夏敦胜, 等. 兰州市城区河道表层沉积物重金属污染及磁学参数相关关系研究[J]. 环境科学, 2011, 32(5):1430-1440.
|
[5] |
Wang B, Zhao S, Xia D S, et al. Characteristics of heavy metal elements and their relationship with magnetic properties of river sediment from urban area in Lanzhou[J]. Environmental Science, 2011, 32(5):1430-1440.
|
[6] |
Li X C, Bing J P, Zhang J H, et al. Ecological risk assessment and sources identification of heavy metals in surface sediments of a river-reservoir system[J]. Science of the Total Environment, 2022, 842:156683.
|
[7] |
Young S M, Ishiga H, Roser B P, et al. Geochemistry of sediments in three sectors of Trincomalee Bay,Sri Lanka:Provenance,modifying factors and present environmental status[J]. Journal of Soils and Sediments, 2014, 14(1):204-217.
|
[8] |
韦丽丽, 周琼, 谢从新, 等. 三峡库区重金属的生物富集、生物放大及其生物因子的影响[J]. 环境科学, 2016, 37(1):325-334.
|
[8] |
Wei L L, Zhou Q, Xie C X, et al. Bioaccumulation and biomagnification of heavy metals in Three Gorges Reservoir and effect of biological factors[J]. Environmental Science, 2016, 37(1):325-334.
|
[9] |
韩瑞杰, 任逸晨, 黄涛, 等. 包头市三类湿地中重金属污染程度及生物富集研究[J]. 环境工程, 2019, 37(1):29-34.
|
[9] |
Han R J, Ren Y C, Huang T, et al. Study on pollution degree and bio-concentration of heavy metals in three types of wetlands in Baotou,China[J]. Environmental Engineering, 2019, 37(1):29-34.
|
[10] |
Hakima Z, Mohamed M, Aziza M, et al. Environmental and ecological risk of heavy metals in the marine sediment from Dakhla Bay,Morocco[J]. Environmental Science and Pollution Research International, 2017, 24(9):7970-7981.
|
[11] |
Islam M S, Hossain M B, Matin A, et al. Assessment of heavy metal pollution,distribution and source apportionment in the sediment from Feni River estuary,Bangladesh[J]. Chemosphere, 2018, 202:25-32.
|
[12] |
张俊华, 卢翠玲, 刘玉寒, 等. 开封城郊河道底泥重金属形态垂向分布特征及风险评价[J]. 农业环境科学学报, 2017, 36(6):1192-1201.
|
[12] |
Zhang J H, Lu C L, Liu Y H, et al. Vertical distribution characteristics and risk assessment of heavy metals in core sediments from Kaifeng suburban rivers[J]. Journal of Agro-Environment Science, 2017, 36(6):1192-1201.
|
[13] |
庞阔, 李敏, 刘璐, 等. 基于蒙特卡洛模拟与PMF模型的黄河流域沉积物重金属污染评价及源解析[J]. 环境科学, 2022, 43(8):4008-4017.
|
[13] |
Pang K, Li M, Liu L, et al. Evaluation and source analysis of heavy metal pollution in sediments of the Yellow River Basin based on Monte Carlo simulation and PMF model[J]. Environmental Science, 2022, 43(8):4008-4017.
|
[14] |
Bi S P, Yang Y, Xu C F, et al. Distribution of heavy metals and environmental assessment of surface sediment of typical estuaries in eastern China[J]. Marine Pollution Bulletin, 2017, 121(1-2):357-366.
|
[15] |
杨帆, 袁隆湖, 黎一夫, 等. 湖南省主要水系底泥重金属污染特征及其生态风险评价[J]. 生态学报, 2022, 42(5):1934-1946.
|
[15] |
Yang F, Yuan L H, Li Y F, et al. Pollution characteristics and ecological risk assessment of heavy metals in sediments of main water systems in Hunan Province[J]. Acta Ecologica Sinica, 2022, 42(5):1934-1946.
|
[16] |
宫健, 王耀锋, 李强, 等. 某区饮用水源地重金属分布特征、污染评价及源解析[J]. 环境化学, 2022, 41(7):2276-2288.
|
[16] |
Gong J, Wang Y F, Li Q, et al. Distribution characteristics,pollution assessment and source analysis of heavy metals in a drinking water source area[J]. Environmental Chemistry, 2022, 41(7):2276-2288.
|
[17] |
郑敏慧, 白冬锐, 张涛, 等. 苏州水网地区河道底泥的重金属分布特征与污染风险[J]. 环境科学, 2023, 44(1):198-209.
|
[17] |
Zheng M H, Bai D R, Zhang T, et al. Distribution characteristics and pollution risk of heavy metals in river sediment of Suzhou water network area,China[J]. Environmental Science, 2023, 44(1):198-209.
|
[18] |
Ra K, Bang J H, Lee J M, et al. The extent and historical trend of metal pollution recorded in core sediments from the artificial Lake Shihwa,Korea[J]. Marine Pollution Bulletin, 2011, 62(8):1814-1821.
|
[19] |
白冬锐, 张涛, 包峻松, 等. 苏州古城区域河道底泥的重金属污染分布及生态风险评价[J]. 环境科学, 2021, 42(7):3206-3214.
|
[19] |
Bai D R, Zhang T, Bao J S, et al. Pollution distribution and ecological risk assessment of heavy metals in river sediments from the ancient town of Suzhou[J]. Environmental Science, 2021, 42(7):3206-3214.
|
[20] |
张国涵, 解倩, 闫琨, 等. “十三五” 期间滇池外海底泥重金属污染特征分析及生态风险评价[J]. 水土保持学报, 2023, 37(3):240-247.
|
[20] |
Zhang G H, Xie Q, Yan K, et al. Pollution characteristics and ecological risk assessment of heavy metals in sediments of Dianchi outer lake during the ‘13th Five-Year Plan period’[J]. Journal of Soil and Water Conservation, 2023, 37(3):240-247.
|
[21] |
陈豪, 左其亭, 窦明. 河流底泥重金属污染研究进展[J]. 人民黄河, 2014, 36(5):71-75.
|
[21] |
Chen H, Zuo Q T, Dou M. Research progress and prospects of heavy metal pollution in river sediment[J]. Yellow River, 2014, 36(5):71-75.
|
[22] |
易雨君, 王文君, 宋劼. 长江中下游底泥重金属污染特征、潜在生态风险评价及来源分析[J]. 水利水电技术, 2019, 50(2):1-7.
|
[22] |
Yi Y J, Wang W J, Song J. Pollution characteristics,potential ecological risk assessment and source analysis of heavy metals of sediment in the middle and lower reaches of the Yangtze River[J]. Water Resources and Hydropower Engineering, 2019, 50(2):1-7.
|
[23] |
丁文荣. 变化环境下滇中地区典型流域水资源演变特征[J]. 水土保持通报, 2017, 37(2):274-277.
|
[23] |
Ding W R. Evolutions of water resources in typical basin of central Yunnan Province under changing environment[J]. Bulletin of Soil and Water Conservation, 2017, 37(2):274-277.
|
[24] |
严清高, 江小均, 吴鹏, 等. 滇中姚安老街子板内富碱火山岩锆石SHRIMP U-Pb年代学及火山机构划分[J]. 地质学报, 2017, 91(8):1743-1759.
|
[24] |
Yan Q G, Jiang X J, Wu P, et al. Zircon SHRIMP U-Pb geochronology and volcanic edifice division of the laojiezi intraplate alkali-rich volcanic rocks in Yao'an,central Yunnan province[J]. Acta Geologica Sinica, 2017, 91(8):1743-1759.
|
[25] |
程琰勋, 赵萌生, 张亚, 等. 滇中姚安地区土壤重(类)金属来源分析及生态风险评价[J]. 沉积与特提斯地质, 2024, 44(1):172-184.
|
[25] |
Cheng Y X, Zhao M S, Zhang Y, et al. Sources analysis and ecological risk assessment of soil heavy metals and metalloids in Yao'an area of central Yunnan[J]. Sedimentary Geology and Tethyan Geology, 2024, 44(1):172-184.
|
[26] |
罗晨皓, 周晔, 沈阳. 云南姚安Au-Pb-Ag矿床含矿富碱岩浆岩地球化学特征及岩石成因[J]. 地球科学, 2019, 44(6):2063-2083.
|
[26] |
Luo C H, Zhou Y, Shen Y. The geochemical characteristics and petrogenesis of the mineralized alkali-rich magmatic rock in Yao'an Au-Pb-Ag deposit,Yunnan Province[J]. Earth Science, 2019, 44(6):2063-2083.
|
[27] |
Zhang L L, Lyu J G. Ecological risk assessment of the metallic pollution in the soil and sediment in Tingjiang Basin[J]. Environmental Earth Sciences, 2015, 73(4):1799-1803.
|
[28] |
Muller G. Index of geoaccumulation in sediments of the Rhine River[J]. Geology Journal, 1969, 2(3):109-118.
|
[29] |
Wang G X, Zeng C, Zhang F, et al. Traffic-related trace elements in soils along six highway segments on the Tibetan Plateau:Influence factors and spatial variation[J]. Science of the Total Environment, 2017, 581:811-821.
|
[30] |
周葆华, 胡睿鑫, 赵宽, 等. 皖江经济带土壤Cd空间分布特征与生态风险评价[J]. 自然资源学报, 2021, 36(12):3261-3270.
|
[30] |
Zhou B H, Hu R X, Zhao K, et al. Spatial distribution characteristic of Cd in soils and its ecological risk assessment in the economic belt of Yangtze River in Anhui[J]. Journal of Natural Resources, 2021, 36(12):3261-3270.
|
[31] |
汤金来, 赵宽, 胡睿鑫, 等. 滁州市表层土壤重金属含量特征、源解析及污染评价[J]. 环境科学, 2023, 44(6):3562-3572.
|
[31] |
Tang J L, Zhao K, Hu R X, et al. Heavy metal concentration,source,and pollution assessment in topsoil of Chuzhou City[J]. Environmental Science, 2023, 44(6):3562-3572.
|
[32] |
王玉, 辛存林, 于奭, 等. 南方丘陵区土壤重金属含量、来源及潜在生态风险评价[J]. 环境科学, 2022, 43(9):4756-4766.
|
[32] |
Wang Y, Xin C L, Yu S, et al. Evaluation of heavy metal content,sources,and potential ecological risks in soils of southern hilly areas[J]. Environmental Science, 2022, 43(9):4756-4766.
|
[33] |
侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020.
|
[33] |
Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical dataset of China[M]. Beijing: Geological Publishing House, 2020.
|
[34] |
奚小环, 侯青叶, 杨忠芳, 等. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5):1095-1108.
|
[34] |
Xi X H, Hou Q Y, Yang Z F, et al. Big data based studies of the variation features of Chinese soil’s background value versus reference value:A paper written on the occasion of soil geochemical parameters of China’s publication[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1095-1108.
|
[35] |
Wilding L P. Spatial variability:Its documentation,accommodation and implication to soil surveys[G]// Nielsen D R,Bouma J.Soil spatial Variability, 1985:166-194.
|
[36] |
张杰, 郭西亚, 曾野, 等. 太湖流域河流沉积物重金属分布及污染评估[J]. 环境科学, 2019, 40(5):2202-2210.
|
[36] |
Zhang J, Guo X Y, Zeng Y, et al. Spatial distribution and pollution assessment of heavy metals in river sediments from Lake Taihu Basin[J]. Environmental Science, 2019, 40(5):2202-2210.
|
[37] |
Wang L F, Yang L Y, Kong L H, et al. Spatial distribution,source identification and pollution assessment of metal content in the surface sediments of Nansi Lake,China[J]. Journal of Geochemical Exploration, 2014, 140:87-95.
|
[38] |
董鑫, 胡浩然, 张晓晴, 等. 基于Meta分析的矿区周边土壤重金属污染特征及风险评价[J]. 地学前缘, 2024, 31(2):93-102.
|
[38] |
Dong X, Hu H R, Zhang X Q, et al. A Meta-analysis of the distribution characteristics and ecological risk of heavy metals in mining areas[J]. Earth Science Frontiers, 2024, 31(2):93-102.
|
[39] |
周艳, 陈樯, 邓绍坡, 等. 西南某铅锌矿区农田土壤重金属空间主成分分析及生态风险评价[J]. 环境科学, 2018, 39(6):2884-2892.
|
[39] |
Zhou Y, Chen Q, Deng S P, et al. Principal component analysis and ecological risk assessment of heavy metals in farmland soils around a Pb-Zn Mine in south-western China[J]. Environmental Science, 2018, 39(6):2884-2892.
|
[40] |
王美, 李书田. 肥料重金属含量状况及施肥对土壤和作物重金属富集的影响[J]. 植物营养与肥料学报, 2014, 20(2):466-480.
|
[40] |
Wang M, Li S T. Heavy metals in fertilizers and effect of the fertilization on heavy metal accumulation in soils and crops[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(2):466-480.
|
[41] |
Madrid L, Díaz-Barrientos E, Madrid F. Distribution of heavy metal contents of urban soils in parks of Seville[J]. Chemosphere, 2002, 49(10):1301-1308.
|
[42] |
李旗, 白凯华, 姜大伟, 等. 漓江上游青狮潭灌区干支渠沉积物重金属分布规律及来源解析[J]. 中国农村水利水电, 2022(7):16-24.
|
[42] |
Li Q, Bai K H, Jiang D W, et al. Distribution and source analysis of heavy metals in sediments of qingshitan irrigation district in Lijiang River Basin[J]. China Rural Water and Hydropower, 2022(7):16-24.
|
[43] |
陈志凡, 化艳旭, 徐薇, 等. 基于正定矩阵因子分析模型的城郊农田重金属污染源解析[J]. 环境科学学报, 2020, 40(1):276-283.
|
[43] |
Chen Z F, Hua Y X, Xu W, et al. Analysis of heavy metal pollution sources in suburban farmland based on positive definite matrix factor model[J]. Acta Scientiae Circumstantiae, 2020, 40(1):276-283.
|
[44] |
宁增平, 肖青相, 蓝小龙, 等. 都柳江水系沉积物锑等重金属空间分布特征及生态风险[J]. 环境科学, 2017, 38(7):2784-2792.
|
[44] |
Ning Z P, Xiao Q X, Lan X L, et al. Spatial distribution characteristics and potential ecological risk of antimony and selected heavy metals in sediments of Duliujiang river[J]. Environmental Science, 2017, 38(7):2784-2792.
|
[45] |
秦元礼, 张富贵, 彭敏, 等. 云南省武定县土壤重金属地球化学分布特征及其来源浅析[J]. 地质与勘探, 2020, 56(3):540-550.
|
[45] |
Qin Y L, Zhang F G, Peng M, et al. Geochemical distribution characteristics and sources of heavy metals in soils of Wuding County,Yunnan Province[J]. Geology and Exploration, 2020, 56(3):540-550.
|
[1] |
LU Wen-Dong, SUN Bin, LI Guang-Jie, WEI Wei, XIA Xiao-Xing, PAN Bing-Lei, SHA Qing, LYU Xiao-Hong, LI Yuan-Chun, QIAO Na. Application of factor analysis in geochemical zoning and its implications: A case study of 1:50,000 stream sediment survey in the Juxian-Wulian area, Shandong Province[J]. Geophysical and Geochemical Exploration, 2025, 49(2): 411-421. |
[2] |
ZHU You-Huan, NIE Fei, ZOU Jia-Zuo, LI Hong-Wei, ZHOU Xue-Cheng, RAN Guang-Hui, LEI Dong. Total rare-earth oxides in stream sediments in the Dechang area: Geochemical characteristics and prospecting targets[J]. Geophysical and Geochemical Exploration, 2025, 49(2): 270-280. |
|
|
|
|