|
|
Prediction of fractures in VTI media based on the improved particle swarm optimization algorithm |
LI Qin1,4(), YANG Xiao-Ying1(), JIANG Xing-Yu2, LI Jiang3 |
1. College of Geology and Environment,Xi'an University of Science and Technology,Xi'an 710054,China 2. College of Geomatics,Xi'an University of Science and Technology,Xi'an 710054,China 3. CCTEG Xi'an Research Institute,Xi'an 710077,China 4. Key Laboratory of Coal Exploration and Comprehensive Utilization,Ministry of Natural Resources,Xi'an 710021,China |
|
|
Abstract The anisotropy caused by fractures is ubiquitous in formation media.The inversion and prediction of fracture parameters based on anisotropy can somewhat improve the inversion accuracy and prediction reliability of fractures.This study established a reflection coefficient equation based on vertical transverse isotropy(VTI) media.Then,it improved the standard particle swarm optimization algorithm by setting the exit probability based on the Metropolis criterion of the simulated annealing algorithm.Consequently,it obtained the inversion results of compressional- and shear-wave velocities and anisotropy parameters in VTI media.By combining anisotropy-related attributes,Poisson's ratio,and Poisson's velocity, this study predicted the fillers in fractures.The improved algorithm was tested for stability and noise resistance using a two-layer model and a Marmousi2 model,demonstrating its feasibility.Furthermore,the improved algorithm was applied to predict the water-bearing property of fractures using real coal mine data,validating its effectiveness.
|
Received: 23 February 2024
Published: 19 September 2024
|
|
|
|
|
地层 | 层厚 度/m | 纵波速度 VP/ (km·s-1) | 横波速度 VS/ (km·s-1) | 密度ρ/ (g·cm-3) | 各向异性 参数ε | 各向异性 参数δ | A | 245 | 4.6 | 2.5 | 2.65 | 0 | 0 | B | 355 | 5.5 | 3.5 | 2.70 | 0.15 | 0.05 |
|
Parameters of the two-layer model[39-40]
|
|
Synthetic angle gathers for the two-layer model
|
|
Inverted results of the two-layer model
|
|
Synthetic angle gathers for 10 dB signal-to-noise ratios
|
信噪比 | 反演对比 | 纵波速度/ (km·s-1) | 横波速度/ (km·s-1) | 密度/(g·cm-3) | 各向异性参数ε | 各向异性参数δ | 理论值 | 5.500 | 3.500 | 2.700 | 0.150 | 0.050 | 无噪声 | 粒子群反演值 | 5.479 | 3.481 | 2.773 | 0.143 | 0.051 | 误差/% | 0.382 | 0.543 | 2.719 | 4.667 | 2.060 | SNR=10 | 粒子群反演值 | 5.457 | 3.573 | 2.545 | 0.162 | 0.052 | 误差/% | 0.776 | 2.099 | 5.741 | 8.236 | 4.684 | 无噪声 | 改进粒子群反演值 | 5.482 | 3.517 | 2.742 | 0.158 | 0.049 | 误差/% | 0.329 | 0.473 | 1.543 | 5.775 | 1.095 | SNR=10 | 改进粒子群反演值 | 5.467 | 3.524 | 2.759 | 0.140 | 0.048 | 误差/% | 0.600 | 0.696 | 2.201 | 6.667 | 3.572 |
|
Error analysis of inverted results of VTI media of two-layer model
|
|
Marmousi2 original model
|
|
Corner gathers extracted from the target position a—water-bearing fracture;b—gas-bearing fracture;c—oil-bearing fracture
|
|
Original profiles and inverted results of region 1(water-bearing fracture) in Marmousi2 model a,b,c,g,i—are original profiles of P-wave velocity,S-wave velocity,density,ε and δ respectively;d,e,f,h,j—are inverted profiles of P-wave velocity,S-wave velocity,density,ε and δ respectively
|
|
Original profiles and inverted results of region 2(gas-bearing fracture) in Marmousi2 model a、b、c、g、i—are original profiles of P-wave velocity,S-wave velocity,density,ε and δ respectively;d、e、f、h、j—are inverted profiles of P-wave velocity,S-wave velocity,density,ε and δ respectively
|
|
Original profiles and inverted results of region 3(gas-bearing fracture) in Marmousi2 model a、b、c、g、i—are original profiles of P-wave velocity,S-wave velocity,density,ε and δ respectively;d、e、f、h、j—are inverted profiles of P-wave velocity,S-wave velocity,density,ε and δ respectively
|
|
Inverted results of attribute A、B、C in region 1(water-bearing fracture)
|
|
Inverted results of attribute A、B、C in region 2(gas-bearing fracture)
|
|
Inverted results of attribute A、B、C in region 3(oil-bearing fracture)
|
|
Poisson's ratio values of selected regions in Marmousi2 model
|
|
Poisson velocity of selected regions in Marmousi2 model
|
|
Post-stack profile(Inline 317)
|
|
Angle gathers
|
|
Profiles of targeted area a—attribute A;b—attribute B;c—attribute C;d—Poisson's ratio;e—Poisson velocity;f—log curve
|
[1] |
刘世奇, 王鹤, 王冉, 等. 煤层孔隙与裂隙特征研究进展[J]. 沉积学报, 2021, 39(1):212-230.
|
[1] |
Liu S Q, Wang H, Wang R, et al. Research advances on characteristics of pores and fractures in coal seams[J]. Acta Sedimentologica Sinica, 2021, 39(1):212-230.
|
[2] |
唐杰, 李聪, 温雷, 等. 裂隙连通性对含流体介质剪切波分裂特征的影响[J]. 物探与化探, 2019, 43(4):859-865.
|
[2] |
Tang J, Li C, Wen L, et al. A study of influence of fracture connectivity on wave propagation characteristics[J]. Geophysical and Geochemical Exploration, 2019, 43(4):859-865.
|
[3] |
蔡刚, 杨子玉, 李双文, 等. 埕海潜山奥陶系碳酸盐岩裂缝预测[J]. 地球物理学进展, 2013, 28(2):945-951.
|
[3] |
Cai G, Yang Z Y, Li S W, et al. Fracture prediction of Ordovician carbonate rock in the buried hill of Chenghai[J]. Progress in Geophysics, 2013, 28(2):945-951.
|
[4] |
Liu S Q, Sang S X, Ma J S, et al. Effects of supercritical CO2 on micropores in bituminous and anthracite coal[J]. Fuel, 2019, 242:96-108.
|
[5] |
张保卫, 岳航羽, 谢伟, 等. 反射地震在冀中坳陷保定凹陷精细地质结构探测中的应用[J]. 物探与化探, 2022, 46(6):1359-1368.
|
[5] |
Zhang B W, Yue H Y, Xie W, et al. Application of the seismic reflection method in detecting the fine-scale geological structure of the Baoding Sag,Jizhong depression[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1359-1368.
|
[6] |
Thomsen L. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10):1954-1966.
|
[7] |
Thomsen L. Reflection seismology over azimuthally anisotropic media[J]. Geophysics, 1988, 53(3):304-313.
|
[8] |
Rüger A. Variation of P-wave reflectivity with offset and azimuth in anisotropic media[J]. Geophysics, 1998, 63(3):935-947.
|
[9] |
Hudson J A. A higher order approximation to the wave propagation constants for a cracked solid[J]. Geophysical Journal International, 1986, 87(1):265-274.
|
[10] |
Crampin S. A review of wave motion in anisotropic and cracked elastic-media[J]. Wave Motion, 1981, 3(4):343-391.
|
[11] |
Crampin S, Chesnokov E M, Hipkin R G. Seismic anisotropy —the state of the art:II[J]. Geophysical Journal International, 1984, 76(1):1-16.
|
[12] |
Schoenberg M. Orthorhombic media:Modeling elastic wave behavior in a vertically fractured earth[J]. Geophysics, 1997, 62(6):1954-1974.
|
[13] |
Bakulin A, Grechka V, Tsvankin I. Estimation of fracture parameters from reflection seismic data:Part II:Fractured models with orthorhombic symmetry[J]. Geophysics, 2000, 65(6):1803-1817.
|
[14] |
Bakulin A, Grechka V, Tsvankin I. Estimation of fracture parameters from reflection seismic data:Part III:Fractured models with monoclinic symmetry[J]. Geophysics, 2000, 65(6):1818-1830.
|
[15] |
Tsvankin I. P-wave signatures and notation for transversely isotropic media:An overview[J]. Geophysics, 1996, 61(2):467-483.
|
[16] |
Tsvankin I, Thomsen L. Nonhyperbolic reflection moveout in anisotropic media[J]. Geophysics, 1994, 59(8):1290-1304.
|
[17] |
Pšenčík I, Martins J L. Properties of weak contrast PP reflection/transmission coefficients for weakly anisotropic elastic media[J]. Studia Geophysica et Geodaetica, 2001, 45(2):176-199.
|
[18] |
Russell B H, Gray D, Hampson D P. Linearized AVO and poroelasticity[J]. Geophysics, 2011, 76(3):C19-C29.
|
[19] |
孟庆生, 何樵登, 王德利. 均匀横向各向同性介质中P波及SV波的射线规律[J]. 吉林大学学报:地球科学版, 2002, 32(4):378-381.
|
[19] |
Meng Q S, He Q D, Wang D L. Study on P,SV-wave features in homogeneous transversely isotropic media[J]. Journal of Changchun University of Science and Technology, 2002, 32(4):378-381.
|
[20] |
Hao Z T, Yao C, Wang X. The characteristics of velocities with azimuth variation for arbitrary spatial orientation TI media[J]. Progress in Geophysics, 2006, 21(2):524-530.
|
[21] |
李磊. TI介质中的相速度和群速度及射线参数[J]. 石油物探, 2008, 47(4):334-337.
|
[21] |
Li L. Phase velocity,group velocity,and ray parameters in transversely isotropic media[J]. Geophysical Prospecting for Petroleum, 2008, 47(4):334-337.
|
[22] |
Farra V, Pšenčík I. Weak-anisotropy approximations of P-wave phase and ray velocities for anisotropy of arbitrary symmetry[J]. Studia Geophysica et Geodaetica, 2016, 60(3):403-418.
|
[23] |
Ding P B, Di B R, Wang D, et al. P- and S-wave velocity and anisotropy in saturated rocks with aligned cracks[J]. Wave Motion, 2018, 81:1-14.
|
[24] |
陈同俊, 崔若飞, 刘恩儒. VTI型构造煤AVO正演模拟[J]. 煤炭学报, 2009, 34(4):438-442.
|
[24] |
Chen T J, Cui R F, Liu E R. AVO forward modeling for VTI coal[J]. Journal of China Coal Society, 2009, 34(4):438-442.
|
[25] |
陈亮, 黄建平, 王自颖, 等. 应用自适应变网格紧致差分的地震波数值模拟及逆时偏移[J]. 石油地球物理勘探, 2023, 58(3):641-650.
|
[25] |
Chen L, Huang J P, Wang Z Y, et al. Seismic numerical simulation and reverse time migration with adaptive variable-grid and compact difference method[J]. Oil Geophysical Prospecting, 2023, 58(3):641-650.
|
[26] |
李红梅. 弹性参数直接反演技术在储层流体识别中的应用[J]. 物探与化探, 2014, 38(5):970-975.
|
[26] |
Li H M. The application of elastic parameters direct inversion to reservoir fluid identification[J]. Geophysical and Geochemical Exploration, 2014, 38(5):970-975.
|
[27] |
Yan X S, Zhang M Z, Wu Q H. Big-data-driven pre-stack seismic intelligent inversion[J]. Information Sciences, 2021, 549:34-52.
|
[28] |
陈志刚, 刘雷颂, 刘雅琴, 等. 煤系地层中薄砂岩储层预测[J]. 石油地球物理勘探, 2016, 51(S1):52-57.
|
[28] |
Chen Z G, Liu L S, Liu Y Q, et al. Thin-sandstone reservoir prediction in coal-bearing strata[J]. Oil Geophysical Prospecting, 2016, 51(S1):52-57.
|
[29] |
Pan X P, Zhang G Z. Fracture detection and fluid identification based on anisotropic Gassmann equation and linear-slip model[J]. Geophysics, 2019, 84(1):R85-R98.
|
[30] |
乔汉青. 基于改进粒子群算法的横波速度预测方法研究[D]. 长春: 吉林大学, 2017.
|
[30] |
Qiao H Q. Shear wave velocity prediction method based on improved particle swarm algorithm[D]. Changchun: Jilin University, 2017.
|
[31] |
Li Q, Wang W. AVO inversion in orthotropic media based on SA-PSO[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(10):8903-8912.
|
[32] |
张进, 陈晓琦, 邢磊, 等. 基于改进粒子群算法的叠前弹性阻抗反演[J]. 物探化探计算技术, 2016, 38(3):353-360.
|
[32] |
Zhang J, Chen X Q, Xing L, et al. Application of particle swarm optimization in prestack elastic impedance inversion[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016, 38(3):353-360.
|
[33] |
张晓阳, 杜文凤, 卢勇旭, 等. 粒子群算法在煤田地震面波频散曲线反演中的应用研究[C]// 2015中国地球科学联合学术年会论文集(二十三)——专题55煤炭资源与矿山安全地球物理,北京, 2015:73-74.
|
[34] |
李雅丽, 王淑琴, 陈倩茹, 等. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用, 2020, 56(22):1-12.
|
[34] |
Li Y L, Wang S Q, Chen Q R, et al. Comparative study of several new swarm intelligence optimization algorithms[J]. Computer Engineering and Applications, 2020, 56(22):1-12.
|
[35] |
张鹏飞, 张世晖. 西湖凹陷平湖组砂泥岩岩性神经网络地震预测[J]. 物探与化探, 2021, 45(4):1014-1020.
|
[35] |
Zhang P F, Zhang S H. Neural network seismic prediction of sand and mudstone lithology of Pinghu Formation in Xihu Sag[J]. Geophysical and Geochemical Exploration, 2021, 45(4):1014-1020.
|
[36] |
Zhang F, Zhang T, Li X Y. Seismic amplitude inversion for the transversely isotropic media with vertical axis of symmetry[J]. Geophysical Prospecting, 2019, 67(9):2368-2385.
|
[37] |
吴大奎, 张本全, 戴勇, 等. 地震资料气水识别方法及其应用[J]. 天然气工业, 2011, 31(12):54-58.
|
[37] |
Wu D K, Zhang B Q, Dai Y, et al. Seismic identification methods for gas and water layers and their application[J]. Natural Gas Industry, 2011, 31(12):54-58.
|
[38] |
Quakenbush M, Shang B, Tuttle C. Poisson impedance[J]. The Leading Edge, 2006, 25(2):128-138.
|
[39] |
Rutherford S R, Williams R H. Amplitude-versus-offset variations in gas sands[J]. Geophysics, 1989, 54(6):680-688.
|
[40] |
Martin G S, Wiley R, Marfurt K J. Marmousi2:An elastic upgrade for Marmousi[J]. The Leading Edge, 2006, 25(2):156-166.
|
[1] |
ZHANG Jing, WANG Yong, ZHAO Hui-Yan, HENG De, HUANG Jun, ZHANG Xiao-Dan, WANG Wen-Wen, HE Yan-Bing. Prestack seismic inversion of fluid factors in fractured reservoirs based on the global adaptive MCMC algorithm[J]. Geophysical and Geochemical Exploration, 2024, 48(1): 105-112. |
[2] |
CHEN Ren-Jie, Xu Le-Yi, LIU Ling, ZHU Huan, YI Hao, JIANG Man. A low frequency model construction method for continental strata inversion based on co-kriging technique[J]. Geophysical and Geochemical Exploration, 2023, 47(6): 1595-1601. |
|
|
|
|