|
|
The application of integrated geophysical prospecting methods to the exploration of urban buried fault |
LIU Wei(), HUANG Tao, WANG Ting-Yong, LIU Yi, ZHANG Ji, LIU Wen-Tao, ZHANG Qi-Bin, LI Qiang |
Sichuan Institute of Geological Engineering Investigation Group Co. Ltd., Chengdu 610032, China |
|
|
Abstract The existing geological data show that there are several buried faults in the main urban area of Chengdu. However, the specific location and distribution of these faults are still unclear, which poses great security risks to the comprehensive and scientific exploitation and utilization of underground space resources and the optimization of urban construction planning and layout in Chengdu. In view of such a situation, four geophysical methods, namely, micromotion survey, high-density electrical method, transient electromagnetic method and soil radon measurement, were used in this paper to comprehensively explore the buried Baojiangqiao fault in the work area. The integrated geophysical prospecting methods not only identified the stratigraphic structure along the survey line, but also obtained the location, property, attitude and scale of the buried Baojiangqiao fault. This work indicates that the integrated geophysical prospecting methods can achieve better results in the exploration of urban buried fault.
|
Received: 23 November 2020
Published: 20 August 2021
|
|
|
|
|
|
The plane distribution of measuring line and interpreted fault
|
地层 | 岩土类别 | 风化程度 | 剪切波速度 /(m·s-1) | 实测电阻率 /(Ω·m) | 第四系 覆盖层 | 杂填土 | — | 100~250 | 5~20 | | 砂卵砾石 | — | 250~500 | 10~110 | | 成都黏土 | — | 250~500 | 5~15 | 白垩系砂 泥岩地层 | 砂岩、砂 泥岩互层 | 强风化 | 500~800 | 15~60 | | | 中风化 | 800~1200 | 20~70 | | | 微风化 | 1200~2000 | 40~100 |
|
The physical parameters of work area strata
|
|
The data processing flow chart of soil radon
|
|
The geophysical exploration result maps of line L1
|
物探方法 | 填土厚度 | 卵石土 厚度 | 强风化 层厚度 | 中风化 层厚度 | 微动探测 | 3 | 7 | 6 | 46 | 瞬变电磁法 | 6 | 7 | 7 | 43 | 综合物探结果 | 3 | 7 | 6 | 46 |
|
The interpreted stratigraphic structure information of line L1m
|
物探方法 | 埋深/m | 倾角/(°) | 断裂破碎带宽度/m | 断裂影响带宽度/m | 里程范围/m | 微动探测 | 15 | 60 | 18 | 40~60 | 390~469 | 瞬变电磁法 | 20 | 80 | 15~20 | 25~55 | 413~469 | 土壤氡气测量 | \ | \ | \ | \ | 350~445 | 综合物探结果 | 15 | 70 | 18 | 35~55 | 413~445 |
|
The interpreted fault parameters of line L1
|
|
The geophysical exploration result maps of line L2
|
物探方法 | 填土厚度 | 成都黏 土厚度 | 强风化 层厚度 | 中风化 层厚度 | 微动探测 | 5 | 12 | 11 | 46 | 瞬变电磁法 | 3.5 | 12 | 13 | 45 | 综合物探结果 | 5 | 12 | 11 | 46 |
|
The interpreted stratigraphic structure information of line L2m
|
物探方法 | 埋深/m | 倾角/(°) | 断裂破碎带宽度/m | 断裂影响带宽度/m | 里程范围/m | 微动探测 | 20 | 75 | 10 | 30~50 | 340~391.5 | 高密度电阻率法 | 22 | 60~80 | 10~15 | 20~60 | 311.5~368.5 | 瞬变电磁法 | 23 | 80 | 15 | 40~50 | 357~414 | 土壤氡气测量 | \ | \ | \ | \ | 286~384 | 综合物探结果 | 21 | 77.5 | 12 | 30~50 | 357~368.5 |
|
The interpreted fault parameters of line L2
|
[1] |
陈长敬, 黄理善, 罗士新. 隐伏断裂勘察中的综合地球物理方法研究[J]. 工程地球物理学报, 2011,8(3):348-353.
|
[1] |
Chen C J, Huang L S, Luo S X. Chinesejournal of en gineering geoph ysics[J]. Geophysical and Geochemical Exploration, 2011,8(3):348-353.
|
[2] |
邓起东, 徐锡伟, 张先康, 等. 城市活动断裂探测的方法和技术[J]. 地学前缘, 2003,10(1):93-104.
|
[2] |
Deng Q D, Xue X W, Zhang X K, et al. Methods and techniques for detecting active faults in cities[J]. Earth Science Frontiers, 2003,10(1):93-104.
|
[3] |
吴子泉, 刘元生, 刘保金, 等. 地球物理方法在城市地震活动断层精确定位中的应用[J]. 地球物理学进展, 2005,20(2):527-533.
|
[3] |
Wu Z Q, Liu Y S, Liu B J, et al. Application of geophysical method to the precise positioning of urban seismic mobile moving fault[J]. Progress in Geophysics, 2005,20(2):527-533.
|
[4] |
徐建宇. 地震方法在城市浅覆盖区活断层调查中的应用[J]. 物探与化探, 2016,40(6):1103-1107.
|
[4] |
Xu J Y. The application of seismic method to the investigation of active faults in urban shallow Quaternary sediment area[J]. Geophysical and Geochemical Exploration, 2016,40(6):1103-1107.
|
[5] |
顾勤平, 许汉刚, 赵启光. 厚覆盖层地区隐伏活断层探测的地震方法技术——以桥北镇—宿迁断层为例[J]. 物探与化探, 2015,39(2):408-415.
|
[5] |
Gu Q P, Xu H G, Zhao Q G. The seismic exploration method for buried active faults in thick sediment area:A case study of Qiaobei-Suqian fault[J]. Geophysical and Geochemical Exploration, 2015,39(2):408-415.
|
[6] |
玄月, 王金萍, 冯军, 等. 高密度电阻率法在隐伏断裂探测中的应用[J]. 大地测量与地球动力学, 2011,31(2):56-59.
|
[6] |
Xuan Y, Wang J P, Feng J, et al. Application of high-density resistivity method to buried fault exploration[J]. Journal of Geodesy and Geodynamics, 2011,31(2):56-59.
|
[7] |
刘明辉, 薛建, 王者江, 等. 工程场地隐伏断裂的探测与地震活动性评价[J]. 物探与化探, 2018,42(4):839-845.
|
[7] |
Liu M H, Xue J, Wang Z J, et al. The detection of buried faults in engineering sites and the evaluation of seismic activity[J]. Geophysical and Geochemical Exploration, 2018,42(4):839-845.
|
[8] |
智云宝, 郭瑞朋, 王瑞刚, 等. 综合物探方法在焦家断裂带南延中的应用[J]. 物探与化探, 2014,38(6):1176-1180.
|
[8] |
Zhi Y B, Guo R P, Wang R G, et al. The application of integrated geophysical methods to the southward extension of the Jiaojia faulted zone[J]. Geophysical and Geochemical Exploration, 2014,38(6):1176-1180.
|
[9] |
董泽义, 汤吉, 周志明. 可控源音频大地电磁法在隐伏活动断裂探测中的应用[J]. 地震地质, 2010,32(3):442-452.
|
[9] |
Dong Z Y, Tang J, Zhou Z M. Application of controlled source audio magnetotelluric method in detecting concealed active faults[J]. Seismology and Geology, 2010,32(3):442-452.
|
[10] |
夏训银, 李毅, 王身龙, 等. CSAMT在城市隐伏断层探测中的应用[J]. 物探与化探, 2013,37(4):687-691.
|
[10] |
Xia X Y, Li Y, Wang S L, et al. Application of CSAMT to detecting urban buried fault[J]. Geophysical and Geochemical Exploration, 2013,37(4):687-691.
|
[11] |
高武平, 闫成国, 张文朋, 等. 电阻率层析成像在沉积区隐伏断层探测中的应用[J]. 物探与化探, 2020,44(6):1352-1360.
|
[11] |
Gao W P, Yan C G, Zhang W P, et al. The application of high density electrical method to concealed fault detection in sedimentary plain[J]. Geophysical and Geochemical Exploration, 2020,44(6):1352-1360.
|
[12] |
田福金, 贾军元, 田中纺, 等. 多种物探方法组合在南昌城市地下空间探测中的有效性浅析[J]. 地质论评, 2020,66(s1):167-168.
|
[12] |
Tian F J, Jia J Y, Tian Z F, et al. Combination of a variety of geophysical methods in the analysis of the effectiveness of Nanchang urban underground space exploration[J]. Geological Review, 2020,66(s1):167-168.
|
[13] |
陈希泉, 陈颉, 罗先熔, 等 .地气( 氡气) 测量方法寻找隐伏含矿断裂试验[J]. 物探与化探, 2011,35(6):817-820.
|
[13] |
Chen X Q, Chen J, Luo X R, et al. The tentative application of the geogas (radon) measuring method to the prospecting for concealed ore-bearing fractures[J]. Geophysical and Geochemical Exploration, 2011,35(6):817-820.
|
[14] |
冯军, 李红光, 吴涛, 等. 河北隆尧隐伏断裂地球化学探测[J]. 物探与化探, 2011,35(5):597-599.
|
[14] |
Feng J, Li H G, Wu T, et al. Geochemical syrvey of longyao concealed fault in Hebei[J]. Geophysical and Geochemical Exploration, 2011,35(5):597-599.
|
[15] |
常志勇, 史杰, 李清海, 等. 土壤氡测量技术在新疆塔什库尔干县地热资源勘查中的应用[J]. 物探与化探, 2014,38(4):654-659.
|
[15] |
Chang Z Y, Shi J, Li Q H, et al. The application of soil radon measurement technology to geothermal exploration in Taxkorgan county, Xinjiang[J]. Geophysical and Geochemical Exploration, 2014,38(4):654-659.
|
[16] |
韩晓昆, 李营, 杜建国, 等. 夏垫断裂中南段土壤气体地球化学特征[J]. 物探与化探, 2013,37(6):976-982.
|
[16] |
Han X K, Li Y, Du J G, et al. Geochemical characteristics of soil gas in the central south segment of xiadian fault[J]. Geophysical and Geochemical Exploration, 2013,37(6):976-982.
|
[17] |
徐佩芬, 李世豪, 杜建国, 等. 微动探测:地层分层和隐伏断裂构造探测的新方法[J]. 岩石学报, 2013,29(5):1841-1845.
|
[17] |
Xu P F, Li S H, Du J G, et al. Microtremor survey method: A new geophysical method fordividing strata and detecting the buried fault structures[J]. Acta Petrologiea Sinica, 2013,29(5):1841-1845.
|
[18] |
Xu P F, Ling S Q, Li C J, et al. Mapping deeply-buried geothermal faults using microtremor array analysis[J]. Geophysical Journal International, 2015,188(1):115-122.
|
[19] |
曾敏, 董好刚, 张宏鑫, 等. 土壤氡气测量在沙湾断裂带中段隐伏断裂探测中的应用研究[J]. 地震研究, 2012,35(3):347-352.
|
[19] |
Zeng M, Dong H G, Zhang H X, et al. Application research of soil radon measurement in concealed fault detection of middle segment of Shawan Fault Zone[J]. Journal of Seismological Research, 2012,35(3):347-352.
|
[20] |
Toksöz M N, Richard T L. Microseisms: Mode structure and sources[J]. Science, 1968,159(3817):872-873.
|
[21] |
Aki K. Space and time spectra of stationary stochastic waves, with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 1957,35(0):415-456.
|
[22] |
杨振涛. 被动源面波勘探高阶频散曲线的提取和应用[D]. 合肥:中国科学技术大学, 2017.
|
[22] |
Yang Z T. Passive surface waves: highermodes extraction and application[D]. Hefei: University of Science and Technology of China, 2017.
|
[23] |
Capon J. Applications of detection and estimation theory to large array seismology[J]. Proceedings of the IEEE, 1970,58(5):760-770.
|
[24] |
Ling S, Okada H. An extended use of the spatial autocorrelation method for the estimation of geological structure using microtremors[M]. Proc Conf SEGJ, 1993, 44-48.
|
[25] |
赵东. 被动源面波勘探方法与应用[J]. 物探与化探, 2010,34(6):759-764.
|
[25] |
Zhao D. Passive surface waves:methods and applications[J]. Geophysical and Geochemical Exploration, 2010,34(6):759-764.
|
[26] |
张维, 何正勤, 胡刚, 等. 用人工源和天然源面波联合探测浅层速度结构[J]. 震灾防御技术, 2012,7(1):26-36.
|
[26] |
Zhang W, He Z Q, Hu G, et al. Detect the velocity structure of shallow crust with artificial and nature source rayleigh wave technology[J]. Technology for Earthquake Disaster Prevention, 2012,7(1):26-36.
|
[27] |
Cho I, Nakanishi I, Ling S, et al. Application of forking genetic algorithm fga to an exploration method using microtremors[J]. Geophysical Exploration, 1999,52(3):227-246.
|
[1] |
XUE Dong-Xu, LIU Cheng, GUO Fa, WANG Jun, XU Duo-Xun, YANG Sheng-Fei, ZHANG Pei. Predicting the geothermal resources of the Tangyu geothermal field in Meixian County, Shaanxi Province, based on soil radon measurement and the controlled source audio magnetotelluric method[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1169-1178. |
[2] |
ZHANG Fan, FENG Guo-Rui, QI Ting-Ye, YU Chuan-Tao, ZHANG Xin-Jun, WANG Chao-Yu, DU Sun-Wen, ZHAO De-Kang. Feasibility of the transient electromagnetic method in the exploration of double-layer waterlogged goafs with different layer spacings in coal mines[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1215-1225. |
|
|
|
|