|
|
Influence of induced polarization effects on AMT forward modeling and its numerical simulations for sandstone uranium deposits |
HU Ying-Cai1,2,3(), WANG Rui-Ting1,2, LI Xiu2 |
1. Northwest Nonferrous Geological and Mining Group Co., Ltd., Xi’an 710054, China 2. School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710061, China 3. Key Laboratory of Uranium Resource Exploration and Evaluation Technology, China National Nuclear Corporation, Beijing Research Institute of Uranium Geology, Beijing 100029, China |
|
|
Abstract The extensively applied audio magnetotellurics (AMT) has become a primary method for deep geophysical exploration of solid mineral resources. However, its data processing and interpretation often only consider electromagnetic effects but ignore induced polarization (IP) effects, which is inconsistent with actual geological conditions. Based on the two-dimensional AMT finite-element forward modeling with IP effects, this study simulated the magnitude and regularity of the influence of various parameters of IP effects on the two-dimensional forward response. Moreover, this study conducted a numerical simulation on the geoelectric model of sandstone uranium deposits in the Erlian Basin. The results show that: (1) With an increase in the values of polarizability, frequency correlation coefficient, and time constant, the two-dimensional AMT forward modeling with IP effects based on the Cole-Cole model primarily reduced the abnormal response value of two-dimensional forward modeling apparent resistivity and increased the abnormal response value of impedance phase. This is beneficial for detecting low-resistivity targets rather than high-resistivity targets; (2) The zero-frequency resistivity and polarizability in IP effects exhibit a significant influence on the two-dimensional forward response. The influence of both frequency correlation coefficient and time constant on the forward response primarily depends on the polarizability. High polarizability suggests their significant influence on the forward response; (3) In the case of disseminated and sulfide-bearing lithologies in the sand bodies of sandstone uranium deposits, greater IP effects will significantly influence the detection of target sand bodies using frequency-domain AMT. Therefore, forward modeling is necessary before detection to determine the magnitude of IP effects.
|
Received: 22 May 2023
Published: 19 September 2024
|
|
|
|
|
|
Schematic diagram of 2D audio magnetotelluric forward modeling
|
|
Equivalent circuit diagram of Cole-Cole model
|
层序号 | 层厚度/m | 零频电阻率/(Ω·m) | 极化率/% | 频率相关系数 | 时间常数/s | 1 | 200.0 | 100.0 | 0 | 0 | 0 | 2 | 200.0 | 10.0 | 0.4 | 0.5 | 100.0 | 3 | ∞ | 1000.0 | 0 | 0 | 0 |
|
Parameters of layered model
|
频率/Hz | 1D视电阻率 解析解/(Ω·m) | 2D视电阻率数 值计算结果/(Ω·m) | 视电阻 率误差/% | 1D阻抗相位 解析解/(°) | 2D阻抗相位 数值计算结果/(°) | 阻抗相位 误差/% | 10400 | 100.018 | 100.169 | 0.151 | 45.020 | 45.048 | 0.062 | 5200 | 99.332 | 99.410 | 0.079 | 44.882 | 44.912 | 0.067 | 2600 | 102.617 | 102.640 | 0.022 | 44.046 | 44.057 | 0.025 | 1300 | 114.220 | 114.280 | 0.053 | 46.079 | 46.077 | 0.004 | 640 | 114.751 | 114.838 | 0.076 | 53.415 | 53.418 | 0.006 | 320 | 91.935 | 91.989 | 0.059 | 61.437 | 61.446 | 0.015 | 159 | 63.163 | 63.188 | 0.040 | 66.878 | 66.888 | 0.015 | 79 | 39.078 | 39.084 | 0.015 | 68.978 | 68.988 | 0.014 | 40 | 23.550 | 23.550 | 0 | 65.185 | 65.191 | 0.009 | 18.8 | 15.850 | 15.849 | 0.006 | 52.652 | 52.654 | 0.004 | 9.4 | 15.825 | 15.825 | 0 | 37.224 | 37.224 | 0 | 4.7 | 22.162 | 22.163 | 0.005 | 24.973 | 24.972 | 0.004 | 2.34 | 36.640 | 36.643 | 0.008 | 18.387 | 18.387 | 0 | 1.17 | 62.650 | 62.654 | 0.006 | 16.292 | 16.293 | 0.006 | 0.59 | 104.479 | 104.484 | 0.005 | 17.018 | 17.019 | 0.006 | 0.293 | 168.476 | 168.478 | 0.001 | 19.539 | 19.539 | 0 | 0.146 | 255.138 | 255.141 | 0.001 | 23.081 | 23.081 | 0 |
|
Comparison of one-dimensional and two-dimensional forward calculation results in layered model
|
名称 | 埋深/m | 电阻率/(Ω·m) | 极化率/% | 频率相关系数 | 时间常数/s | 背景参数 | - | 500.0 | 0 | 0 | 0 | 异常体 | 100 | 200.0&1250.0 | 无极化/0.2/0.5/0.8 | 0.2 | 10 |
|
Parameter of two-dimensional forward modeling with different polarizabilities
|
|
Forward response results of different polarizabilities in TM mode
|
|
Forward response results of different polarizabilities in TE mode
|
名称 | 埋深/m | 电阻率/(Ω·m) | 极化率/% | 频率相关系数 | 时间常数/s | 背景参数 | - | 500.0 | 0 | 0 | 0 | 异常体 | 100 | 200.0&1250.0 | 0.1/0.5 | 0.1/0.2/0.4/0.6 | 10 |
|
Two dimensional forward modeling parameters with different frequency correlation coefficients
|
|
2D TM mode forward response results of different frequency correlation coefficients in low polarizability
|
|
2D TE mode forward response results of different frequency correlation coefficients in low polarizability
|
|
2D TM mode forward response results of different frequency correlation coefficients in high polarizability
|
|
2D TE mode forward response results of different frequency correlation coefficients in high polarizability
|
名称 | 埋深/m | 电阻率/(Ω·m) | 极化率/% | 频率相关系数 | 时间常数/s | 背景参数 | - | 500.0 | 0 | 0 | 0 | 异常体 | 100 | 200.0&1250.0 | 0.1/0.5 | 0.1 | 0.05/5/500/5000 |
|
2D forward modeling parameters with different time constants
|
|
2D TM mode forward response results of different time constants in low polarizability
|
|
2D TE mode forward response results of different time constants in low polarizability
|
|
2D TM mode forward response results of different time constants in high polarizability
|
|
2D TE mode forward response results of different time constants in high polarizability
|
|
Schematic diagram of geoelectric model in sandstone type uranium deposits
|
|
2D TM mode apparent resistivity result map of geoelectric model in sandstone type uranium deposit
|
|
2D TM mode impedance phase result map of geoelectric model in sandstone type uranium deposit
|
|
Forward response results of AMT 2D TM mode in high time constant and high frequency correlation coefficient
|
|
2D inversion results of geoelectric models for sandstone type uranium deposits with different IP parameters
|
[1] |
汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.
|
[1] |
Tang J T, He J S. Controlled source audio magnetotelluric method and its application[M]. Changsha: Central South University Press, 2005.
|
[2] |
吴娟. 复杂地电结构AMT有限元数值模拟[D]. 长沙: 中南大学, 2011.
|
[2] |
Wu J. Complex geoelectrical structure responses in AMT using finite element method[D]. Changsha: Central South University, 2011.
|
[3] |
汤井田, 张林成, 王显莹, 等. 庐枞矿集区矾山—将军庙地区AMT三维反演及地质结构解释[J]. 地球物理学报, 2018, 61(4):1576-1587.
|
[3] |
Tang J T, Zhang L C, Wang X Y, et al. Subsurface electrical structure of the Fanshan-JiangjunmiaoRegion in the Lujiang-Zongyang Ore District derived from 3D inversion of audio-magnetotelluric data[J]. Chinese Journal of Geophysics, 2018, 61(4):1576-1587.
|
[4] |
王佳龙, 邸兵叶, 张宝松, 等. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3):576-582.
|
[4] |
Wang J L, Di B Y, Zhang B S, et al. The application of audio frequency magnetotelluric method to the geothermal exploration:A case study of HuangniqiaoArea,Ninghua County,Fujian Province[J]. Geophysical and Geochemical Exploration, 2021, 45(3):576-582.
|
[5] |
武毅, 郭建强. 塔克拉玛干沙漠水文地质特征的音频大地电磁测深法勘查效果[J]. 工程地球物理学报, 2004, 1(3):269-273.
|
[5] |
Wu Y, Guo J Q. The effect of audiomagnetotelluric sounding prospecting for detecting hydrogeological characteristic in takelamgan desert[J]. Chinese Journal of Engineering Geophysics, 2004, 1(3):269-273.
|
[6] |
张炯, 陈小斌, 尹小康, 等. 色拉哈断裂及邻区音频大地电磁三维阵列探测[J]. 地球科学, 2022, 47(3):856-866.
|
[6] |
Zhang J, Chen X B, Yin X K, et al. 3D AMT array exploration in the selaha fault and adjacent area[J]. Earth Science, 2022, 47(3):856-866.
|
[7] |
Jiang W P, Brodie R C, Duan J M, et al. Probabilistic inversion of audio-frequency magnetotelluric data and application to cover thickness estimation for mineral exploration in Australia[J]. Journal of Applied Geophysics, 2023, 208:104869.
|
[8] |
Xu Z M, Li G, Xin H C, et al. Hydrogeological prospecting in the Da Qaidam Area of the Qaidam Basin using the audio-frequency magnetotelluric method[J]. Journal of Applied Geophysics, 2020, 182:104179.
|
[9] |
Maryadi M, Mizunaga H. Subsurface temperature estimation in a geothermal field based on audio-frequency magnetotelluric data[J]. Exploration Geophysics, 2022, 53(3):275-288.
|
[10] |
万伟, 唐新功, 黄清华. 陆地可控源电磁法三维勘探的激电效应影响研究[J]. 地球物理学进展, 2019, 34(6):2328-2335.
|
[10] |
Wan W, Tang X G, Huang Q H. Influence of induced polarization effects on 3D land CSEM sounding[J]. Progress in Geophysics, 2019, 34(6):2328-2335.
|
[11] |
Pelton W H, Ward S H, Hallof P G, et al. Mineral discrimination and removal of inductive coupling with multifrequency IP[J]. Geophysics, 2012, 43(3):588-609.
|
[12] |
Ware G H. Theoretical and field investigations of telluric currents and induced polarization[M]. Berkeley: University of California at Berkeley, 1974.
|
[13] |
汤井田, 黄磊, 余灿林, 等. CSAMT法中极化层的视电阻率响应[J]. 工程地球物理学报, 2008, 5(6):648-651.
|
[13] |
Tang J T, Huang L, Yu C L, et al. There sponsibility of apparent resistivity curves on CSAMT for polarized layer[J]. Chinese Journal of Engineering Geophysics, 2008, 5(6):648-651.
|
[14] |
岳安平, 底青云, 王妙月, 等. 含激电效应的CSAMT一维正演研究[J]. 地球物理学报, 2009, 52(7):1937-1946.
|
[14] |
Yue A P, Di Q Y, Wang M Y, et al. 1D forward modeling of the CSAMT signal incorporating IP effect[J]. Chinese Journal of Geophysics, 2009, 52(7):1937-1946.
|
[15] |
符超, 李薇薇, 李志远, 等. 基于Cole-Cole模型的中间极化水平层大地电磁IP效应研究[J]. 地球物理学进展, 2016, 31(2):501-507.
|
[15] |
Fu C, Li W W, Li Z Y, et al. Inducedpolarization effect of magnetotelluric with polarized horizontal layers based on the Cole-Cole model[J]. Progress in Geophysics, 2016, 31(2):501-507.
|
[16] |
李勇, 林品荣, 肖原, 等. 电偶源频率电磁测深激发极化效应研究[J]. 地球物理学报, 2011, 54(7):1935-1944.
|
[16] |
Li Y, Lin P R, Xiao Y, et al. Induced Polarization effect on frequency-domain electromagnetic sounding with electric dipole source[J]. Chinese Journal of Geophysics, 2011, 54(7):1935-1944.
|
[17] |
朱占升, 谭捍东. 考虑激电效应的二维大地电磁正演[J]. 工程地球物理学报, 2011, 8(4):433-437.
|
[17] |
Zhu Z S, Tan H D. 2D forward modeling of the MT signal incorporating IP effect[J]. Chinese Journal of Engineering Geophysics, 2011, 8(4):433-437.
|
[18] |
王恒, 李桐林, 陈汉波, 等. 考虑激电效应的二维大地电磁测深正演[J]. 世界地质, 2018, 37(4):1226-1230.
|
[18] |
Wang H, Li T L, Chen H B, et al. 2D magnetotelluric forward modeling withinducedpolarization[J]. Global Geology, 2018, 37(4):1226-1230.
|
[19] |
徐凯军, 石双虎, 周家惠. 三维大地电磁激电效应特征研究[J]. 西北地震学报, 2009, 31(1):31-34,85.
|
[19] |
Xu K J, Shi S H, Zhou J H. Study on induced polarization effect of three dimensional magnetotelluric[J]. Northwestern Seismological Journal, 2009, 31(1):31-34,85.
|
[20] |
付振兴. 考虑激电效应的大地电磁三维正反演研究[D]. 北京: 中国地质大学(北京), 2018.
|
[20] |
Fu Z X. Research of the three-dimensional magnetotelluric inversion with induced polarization effect[D]. Beijing: China University of Geosciences(Beijing), 2018.
|
[21] |
黄逸伟. 含激电效应的可控源电磁法三维正演及响应研究[D]. 抚州: 东华理工大学, 2017.
|
[21] |
Huang Y W. 3D forward modeling and response analysis of the controlled source electromagnetic signal with IP effect[D]. Fuzhou: East China Institute of Technology, 2017.
|
[22] |
Vozoff K. Electromagnetic methods in applied geophysics[J]. Surveys in Geophysics, 1980, 4(1/2):9-29.
|
[23] |
徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994.
|
[23] |
Xu S Z. FEM in Geophysics[M]. Beijing: Science Press, 1994.
|
[24] |
胡英才. 矢量有限元三维张量CSAMT正演模拟研究[D]. 长春: 吉林大学, 2015.
|
[24] |
Hu Y C. Three dimensional tensor controlled source electromagnetic modeling based the vector finite element method[D]. Changchun: Jilin University, 2015.
|
[25] |
李子颖, 秦明宽, 范洪海, 等. 我国铀矿地质科技近十年的主要进展[J]. 矿物岩石地球化学通报, 2021, 40(4):845-857,1001.
|
[25] |
Li Z Y, Qin M K, Fan H H, et al. Main progresses of uranium geology and exploration techniques for the past decade in China[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2021, 40(4):845-857,1001.
|
[26] |
胡英才, 张濡亮, 王恒. 伊和高勒地区砂岩型铀矿宽频大地电磁数值模拟及应用[J]. 铀矿地质, 2020, 36(5):432-440,476.
|
[26] |
Hu Y C, Zhang R L, Wang H. Simulation and application of broadband magnetotelluric sounding for sandstone type uranium deposits in yihegaole area[J]. Uranium Geology, 2020, 36(5):432-440,476.
|
[27] |
王恒, 胡英才, 张濡亮. 铀矿勘查中MT数据提取极化信息可行性研究[J]. 铀矿地质, 2021, 37(2):269-275.
|
[27] |
Wang H, Hu Y C, Zhang R L. Feasibility of extracting polarization information from MT data in uranium exploration[J]. Uranium Geology, 2021, 37(2):269-275.
|
|
|
|