|
|
Geochemical characteristics and formation mechanism of thermal spring water in the Chuhe fault zone in Anhui Province |
WANG Guo-Jian1(), HU Wen-Hui1, LI Guang-Zhi1, ZHU Huai-Ping1, HU Bin1, XIAO Peng-Fei2, ZHANG Ying3 |
1. Wuxi Institute of Petroleum Geology, Petroleum Exploration and Production Research Institute, SINOPEC, Wuxi 214126, China 2. Geophysical Research Institute Co., Ltd., SINOPEC, Nanjing 211100, China 3. Petroleum Exploration and Production Research Institute, SINOPEC, Beijing 100026, China |
|
|
Abstract Several thermal springs associated with tectonic activity occur along the Chuhe fault zone. Except for the Bantang thermal spring at the southern end, other springs along the fault zone exhibit unideal utilization of thermal energy. This affects the development of local industries. Therefore, it is necessary to delve into the geochemical characteristics and formation mechanism of typical thermal springs along the Chuhe fault zone. The purpose is to provide scientific evidence for the rational utilization and exploration methods of geothermal resources in the thermal spring groups in the future. Therefore, this study investigated thermal springs in the Bantang, Zhaoguan, and Xiangquan areas along the Chuhe fault zone, where nine samples of thermal spring water, cold well water, and surface water were collected individually. For these samples, the composition tests of 25 indices, including anions, cations, and major and trace elements, were tested, and the hydrogen and oxygen isotope values were determined. The analyses of the 25 measured indices, along with the investigation of the geothermal water source and controlling factors through hydrogen and oxygen isotope tracing, indicate that the thermal spring water in the three areas tends to be of the CaSO4 type and is all closely related to the interactions between groundwater and surrounding rocks. The thermal spring water, cold well water, and surface water in Bantang and Zhaoguan show consanguinity, with geothermal water being directly recharged with local precipitation and surface water. In contrast, the thermal spring water, surface water, and cold well water in the Xiangquan area show weaker consanguinity, indicating different sources for the underground cold water runoff and geothermal water. This should be noted when determining the primary factors controlling the thermal spring in this area. The temperatures calculated using a chalcedony geothermometer were close to the temperatures of the hot water recovered on the surface. In contrast, the temperatures calculated using a quartz geothermometer approached the temperatures of deep geothermal reservoirs. The results of this study preliminarily reveal the geochemical characteristics, recharge relationships, and water-rock interactions of thermal spring water in the Chuhe fault zone and propose effective geochemical geothermometers for the study area. These contribute to deeper insights into the mechanisms and controlling factors of the thermal springs along the fault zone, as well as providing practical value and a methodological model for enhancing thermal spring functionality and geothermal resource exploitation and utilization in the future.
|
Received: 30 March 2023
Published: 21 October 2024
|
|
|
|
|
2] ">
|
Distribution of thermal springs in the Chuhe fault zone[2]
|
9-10]) ">
|
Geological sketch of the Chuhe fault zone and the distribution of sampling points of water (modifiedaccording to references[9-10])
|
样品号 | 样品来源 | Ca | Mg | Na | K | Cl- | | | Al | As | B | Ba | Cr | BT-1 | 半汤地表水 | 31.5 | 10.51 | 23.58 | 3.22 | 9.67 | 97.52 | 23.46 | 96 | 1.03 | 0 | 0.27 | 2.64 | BT-2 | 半汤冷井水 | 34.57 | 13.65 | 2.77 | 72.2 | 23.55 | 170.95 | 72.44 | 26 | 11.19 | 0.02 | 0.06 | 5.22 | BT-3 | 半汤温泉水 | 420.88 | 91.47 | 23.49 | 8.63 | 3.37 | 259.29 | 1074.61 | 89 | 1.87 | 0.03 | 0.04 | 7.86 | ZG-1 | 昭关地表水 | 33.32 | 11.75 | 73.11 | 7.98 | 9.28 | 79.27 | 35.04 | 2090 | | 0.02 | 0.08 | 19.61 | ZG-2 | 昭关冷井水 | 102.87 | 43.13 | 100.05 | 132.16 | 42.27 | 385.41 | 82.31 | 850 | | 0.03 | 0.13 | 19.99 | ZG-3 | 昭关温泉水 | 330.84 | 105.45 | 76.97 | 18.79 | 7.24 | 281.91 | 984.89 | 600 | | 0.05 | 0.04 | 13.97 | XQ-1 | 香泉地表水 | 61.02 | 6.75 | 67.23 | 4.77 | 9.8 | 144.29 | 39.51 | 740 | | 0.09 | 0.2 | 15.78 | XQ-2 | 香泉冷井水 | 195.93 | 35.57 | 152.12 | 15.82 | 143.68 | 461 | 236.24 | 740 | | 0.08 | 0.12 | 18.54 | XQ-3 | 香泉温泉水 | 337.26 | 63.18 | 56.12 | 11.83 | 7.88 | 187.36 | 864.3 | 340 | | 0.06 | 0.08 | 7.97 | 样品号 | 样品来源 | Cu | Fe | Li | Mn | Mo | Ni | Pb | SiO2 | Sr | U | V | Zn | pH | BT-1 | 半汤地表水 | 1.38 | 0.04 | 0.07 | 0 | 0.41 | 1.35 | 0.1 | 0.68 | 0.09 | 0.95 | 0.32 | 233.45 | 7.1 | BT-2 | 半汤冷井水 | 0.9 | 0.02 | 3.23 | 0 | | 1.92 | <0.02 | 29.78 | 0.12 | 0.15 | 5.64 | 226.05 | 6.8 | BT-3 | 半汤温泉水 | 2.71 | 0.02 | 0.19 | 0.01 | 0.7 | 10.04 | <0.02 | 54.15 | 10.57 | 0.23 | 0.65 | 558.55 | 6.9 | ZG-1 | 昭关地表水 | 3.06 | 1.5 | 0 | 0.05 | 0.6 | 9.15 | 3.15 | 9.51 | 0.15 | 0.36 | 4.02 | 177.67 | 6.9 | ZG-2 | 昭关冷井水 | 1.71 | 0.25 | 0.01 | 0.05 | 0.78 | 8.78 | 1.94 | 25.11 | 0.55 | 2.34 | 9.2 | 271.03 | 6.7 | ZG-3 | 昭关温泉水 | 1.7 | 0.09 | 0.33 | 0.01 | 1.01 | 16.83 | 1.37 | 32.01 | 6.7 | 0.36 | 1.21 | 122.97 | 6.9 | XQ-1 | 香泉地表水 | 1.52 | 0.2 | 0 | 0.02 | 1.19 | 6.55 | 1.6 | 2.51 | 0.23 | 0.95 | 2.78 | 779.84 | 6.8 | XQ-2 | 香泉冷井水 | 1.77 | 0.3 | 0.04 | 1.7 | 4.5 | 12.92 | 1.6 | 27.28 | 5.23 | 1.13 | 5.85 | 175.82 | 6.7 | XQ-3 | 香泉温泉水 | 5.6 | 0.37 | 0.17 | 0.01 | 2.16 | 17.67 | 1.31 | 40.84 | 10.06 | 0.31 | 1.35 | 138.24 | 7 |
|
Hydrochemical composition of samples of thermal spring water, cold well water, and surface water in the Bantang, Xiangquan, and Zhaoguan areas in the Chuhe fault zone
|
样号 | 样品来源 | 电中性 水平/% | 阴离子/ (meq·L-1) | 阳离子/ (meq·L-1) | 总离子/ (meq·L-1) | 总溶解浓度/ (meq·L-1) | 总硬度/ (mg·L-1) | 碱度/ (mg·L-1) | 计算密度/ (g·cm-1) | SAR(钠 吸附比) | 主水型 | BT-1 | 半汤地表水 | 20.54 | 2.36 | 3.58 | 5.94 | 200.91 | 121.84 | 1.60 | 1.000 | 0.93 | Ca(HCO3)2 | BT-2 | 半汤冷井水 | 3.62 | 4.98 | 5.35 | 10.33 | 423.61 | 142.42 | 2.80 | 1.000 | 0.10 | KHCO3 | BT-3 | 半汤温泉水 | 39.07 | 26.73 | 61.02 | 87.75 | 2139.2 | 1426.5 | 4.25 | 1.002 | 0.27 | CaSO4 | ZG-1 | 昭关地表水 | 46.38 | 2.29 | 6.26 | 8.55 | 261.85 | 131.47 | 1.30 | 1.000 | 2.77 | NaHCO3 | ZG-2 | 昭关冷井水 | 28.38 | 9.23 | 16.54 | 25.76 | 915.23 | 434.14 | 6.32 | 1.001 | 2.09 | KHCO3 | ZG-3 | 昭关温泉水 | 7.22 | 25.35 | 29.29 | 54.65 | 1845.97 | 1259.36 | 4.62 | 1.002 | 0.94 | CaSO4 | XQ-1 | 香泉地表水 | 32.15 | 3.47 | 6.76 | 10.24 | 337.96 | 180.04 | 2.36 | 1.000 | 2.18 | NaHCO3 | XQ-2 | 香泉冷井水 | 9.49 | 16.54 | 20.00 | 36.54 | 1275.75 | 635.22 | 7.56 | 1.001 | 2.63 | Ca(HCO3)2 | XQ-3 | 香泉温泉水 | 8.13 | 21.3 | 25.07 | 46.38 | 1579.65 | 1101.43 | 3.07 | 1.002 | 0.74 | CaSO4 |
|
Hydrochemical parameters in the Bantang, Xiangquan, and Zhaoguan areas in the study area
|
|
Piper trilinear diagram showing the natural hydrochemical characteristics of the Bantang,Zhaoguan and Xiangquan areas
|
地区 | 样品名称 | δ18O(Vsmow)/‰ | δD(Vsmow)/‰ | 巢湖半汤 | 地表水 | -2.7 | -36 | 冷井水 | -5.9 | -53 | 温泉水 | -6.3 | -66 | 含山昭关 | 地表水 | -7.1 | -35 | 冷井水 | -8.8 | -51 | 温泉水 | -10.9 | -61 | 和县香泉 | 地表水 | -6.9 | -43 | 冷井水 | -5.5 | -54 | 温泉水 | -11.1 | -63 |
|
Hydrogen and oxygen isotope values of the water samples from Bantang, Zhaoguan, and Xiangquan areas
|
|
ρ(Na)-ρ(K)-ρ(Mg) ternary diagram of different water bodies in the Bantang, Zhaoguan, and Xiangquan areas
|
|
Multi-mineral saturation indices of the thermal spring water samples from the Bantang, Zhaoguan, and Xiangquan areas
|
计算方法 | 地热温标/℃ | 巢湖半汤 | 和县香泉 | 含山昭关 | 石英1(无 蒸汽闪失) | 105.57 | 92.60 | 82.10 | 石英2(完 整蒸汽闪失) | 105.80 | 94.58 | 85.41 | 石英3(混合 型石英温标) | 106.02 | 93.14 | 82.65 | 玉髓 | 75.92 | 62.03 | 50.90 |
|
Geothermal reservoir temperatures calculated using conventional geothermometers
|
|
Hydrogen and oxygen isotopes of the geothermal water, groundwater, and surface water in the Bantang, Zhaoguan, and Xiangquan areas in the Chuhe fault zone
|
[1] |
苏蓉. 滁河断裂特征研究及其意义[D]. 合肥: 合肥工业大学, 2010.
|
[1] |
Su R. Study on characteristics of Chuhe fault and its significance[D]. Hefei: Hefei University of Technology, 2010.
|
[2] |
刘飞, 汪龙虎, 洪江生. 浅论安徽巢湖半汤地热田成因及径流通道问题[J]. 地质学刊, 2008, 32(3):172-178.
|
[2] |
Liu F, Wang L H, Hong J S. On origin of Bantang geothermal field and its run-off passage in Chaohu area,Anhui[J]. Journal of Geology, 2008, 32(3):172-178.
|
[3] |
宁金野. 合肥温泉之乡半汤地热成因模式及其外围地热前景探讨[J]. 安徽地质, 2013, 23(3):227-230.
|
[3] |
Ning J Y. Genetic model of the geothermal energy in Bantang,a spa town in Hefei and the exploration potential in the periphery[J]. Geology of Anhui, 2013, 23(3):227-230.
|
[4] |
张英, 冯建赟, 何治亮, 等. 地热系统类型划分与主控因素分析[J]. 地学前缘, 2017, 24(3):190-198.
|
[4] |
Zhang Y, Feng J Y, He Z L, et al. Classification of geothermal systems and their formation key factors[J]. Earth Science Frontiers, 2017, 24(3):190-198.
|
[5] |
王国建, 宁丽荣, 李广之, 等. 沉积盆地型与隆起山地型地热系统地表地球化学异常模式差异性分析[J]. 地质论评, 2021, 67(1):117-128.
|
[5] |
Wang G J, Ning L R, Li G Z, et al. Analysis of the differences of surface geochemical anomaly patterns between the sedimentary basin type geothermal system and the rifted mountain type geothermal system[J]. Geological Review, 2021, 67(1):117-128.
|
[6] |
陶士振, 刘德良. 郯庐断裂带及邻区地热场特征、温泉形成因素及气体组成[J]. 天然气工业, 2000, 20(6):42-47.
|
[6] |
Tao S Z, Liu D L. Gerothermal field characteristics of tanlu fault zone and its neighbouring regions,thermal spring genesis and its gas composition[J]. Natural Gas Industry, 2000, 20(6):42-47.
|
[7] |
安徽省地质矿产局. 安徽省区域地质志[M]. 北京: 地质出版社,1987.
|
[7] |
Bureau of Geology and Mineral Resources of Anhui Province. Regional geology of Anhui Province[M]. Beijing: Geological Publishing House,1987.
|
[8] |
宋传中, 朱光, 王道轩, 等. 苏皖境内滁河断裂的演化与大地构造背景[J]. 中国区域地质, 2000, 19(4):367-374.
|
[8] |
Song C Z, Zhu G, Wang D X, et al. Evolution of the Chuhe fault in Jiangsu and Anhui and tectonic setting[J]. Geological Bulletin of China, 2000, 19(4):367-374.
|
[9] |
郭鹏, 韩竹军, 周本刚, 等. 安徽巢湖—铜陵地区中强地震发生的构造标志[J]. 地震地质, 2018, 40(4):832-849.
|
[9] |
Guo P, Han Z J, Zhou B G, et al. Tectonic indications of occurrence of moderate-to-strong earthquakes in Chaohu-Tongling area,Anhui Province[J]. Seismology and Geology, 2018, 40(4):832-849.
|
[10] |
隋丽嫒, 周训, 李状, 等. 安徽滁河断裂带温泉的水化学和同位素特征及成因分析[J]. 地质论评, 2022, 68(3):981-992.
|
[10] |
Sui L A, Zhou X, Li Z, et al. Hydrochemical and isotopic characteristics and genesis of hot springs in the Chuhe fault zone,Anhui[J]. Geological Review, 2022, 68(3):981-992.
|
[11] |
周迅, 叶永红. 地下水舒卡列夫水化学分类法的改进及应用——以福建省晋江市地下水为例[J]. 资源调查与环境, 2014(4):299-304.
|
[11] |
Zhou X, Ye Y H. Improvement and application of Schukalev groundwater hydrochemical classification method:Taking groundwaters in Jinjiang city,Fujian Province as an example[J]. Resources Survey & Environment, 2014(4):299-304.
|
[12] |
高宗军, 陈晨. 基于库尔洛夫式和舒卡列夫分类原则的水化学分类表示方法[J]. 地下水, 2018, 40(4):6-11.
|
[12] |
Gao Z J, Chen C. The classification method of water chemical types based on the principle of Kurllov's Formula and Shoka Lev classification[J]. Ground Water, 2018, 40(4):6-11.
|
[13] |
陈新攀. 地下水舒卡列夫水化学分类法的一些改进[J]. 地下水, 2022, 44(2):25-28.
|
[13] |
Chen X P. Improvement of Schukalev groundwater hydro-chemical classification method[J]. Ground Water, 2022, 44(2):25-28.
|
[14] |
袁星芳, 王敬, 霍光, 等. 胶东半岛洪水岚汤温泉水化学特征与成因分析[J]. 地质与勘探, 2020, 56(2):427-437.
|
[14] |
Yuan X F, Wang J, Huo G, et al. Hydrochemistry and genesis of the hongshuilantang hot spring in the Jiaodong peninsula[J]. Geology and Exploration, 2020, 56(2):427-437.
|
[15] |
刘成龙, 王广才, 史浙明, 等. 云南硫磺洞温泉水文地球化学特征和成因分析[J]. 地震研究, 2020, 43(2):278-286.
|
[15] |
Liu C L, Wang G C, Shi Z M, et al. Hydrogeochemical characteristic and formation of the Liuhuangdong spring in Yunnan Province[J]. Journal of Seismological Research, 2020, 43(2):278-286.
|
[16] |
Giggenbach W F. Geothermal solute equilibria.Derivation of Na-K-Mg-Ca geoindicators[J]. Geochimica et Cosmochimica Acta, 1988, 52(12):2749-2765.
|
[17] |
Parkhurst D L, Appelo C A. User's guide to PHREEQC ( Version 2 ) — A computer program for speciation,batch-reaction,one-dimensional transport,and inverse geochemical Calculations[R]. Water Resources Investigation Report,1999.
|
[18] |
Arnorsson S. Application of the silica geothermometer in low temperature hydrothermal areasin Iceland[J]. American Journal of Science, 1975, 275(7):763-784.
|
[19] |
Fournier R O, Truesdell A H. Geochemical indicators of subsurface temperature—part 2,Estimation of temperature and fraction of hot water mixed with cold water[J]. Journal of Research the U.S.Geological Survey, 1974, 2( 3):263-270.
|
[20] |
Fournier R O, Potter II R W. A revised and expanded silica (quartz) geothermometer[J]. Geothermal Resources Council Bulletin, 1982,11:3-12.
|
[21] |
郑淑蕙, 侯发高, 倪葆龄. 我国大气降水的氢氧稳定同位素研究[J]. 科学通报, 1983, 28(13):801-806.
|
[21] |
Zheng S H, Hou F G, Ni B L. Study on hydrogen and oxygen stable isotopes of atmospheric precipitation in China[J]. Science Bulletin, 1983, 28(13):801-806.
|
[22] |
Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465):1702-1703.
|
[23] |
Krabbenhoft D P, Bowser C J, Anderson M P, et al. Estimating groundwater exchange with lakes:1.The stable isotope mass balance method[J]. Water Resources Research, 1990, 26(10):2445-2453.
|
[24] |
包为民, 胡海英, 王涛, 等. 蒸发皿中水面蒸发氢氧同位素分馏的实验研究[J]. 水科学进展, 2008, 19(6):780-785.
|
[24] |
Bao W M, Hu H Y, Wang T, et al. Experimental study on the fractionation mechanism of hydrogen and oxygen stable isotopes in evaporation from water surface of evaporation pans[J]. Advances in Water Science, 2008, 19(6):780-785.
|
[25] |
罗维均, 王世杰, 刘秀明. 中国大气降水δ18O区域特征及其对古气候研究的意义[J]. 地球与环境, 2008, 36(1):47-55.
|
[25] |
Luo W J, Wang S J, Liu X M. Regional characteristics of modern precipitation δ18O values and implications for paleoclimate research in China[J]. Earth and Environment, 2008, 36(1):47-55.
|
[26] |
刘进达, 赵迎昌, 刘恩凯, 等. 中国大气降水稳定同位素时—空分布规律探讨[J]. 勘察科学技术, 1997(3):34-39.
|
[26] |
Liu J D, Zhao Y C, Liu E K, et al. Discussion on the stable isotope time-space distribution law of China atmospheric precipitation[J]. Site Investigation Science and Technology, 1997(3):34-39.
|
[27] |
钱会, 马致远. 水文地球化学[M]. 北京: 地质出版社, 2005.
|
[27] |
Qian H, Ma Z Y. Hydrogeochemistry[M]. Beijing: Geological Publishing House, 2005.
|
[1] |
LI Lin-Guo, LI Bai-Xiang. A discussion on the heat source mechanism and geothermal system of Gonghe-Guide basin and mountain geothermal field in Qinghai Province[J]. Geophysical and Geochemical Exploration, 2017, 41(1): 29-34. |
[2] |
SUN Bin-Bin, ZHANG Xue-Jun, LIU Zhan-Yuan, ZHOU Guo-Hua, ZHANG Bi-Min, CHEN Ya-Dong. A preliminary study of the formation mechanism of the geoelectric chemistry anomaly[J]. Geophysical and Geochemical Exploration, 2015, 39(6): 1183-1187. |
|
|
|
|