E-mail Alert Rss
 
Office Online
News
gfff
More>>
Information
Sponsored by:
China Aero Geophysical Survey and Remote Sensing Center for Natural Resources
Edited by:
Editorial Office of Geophysical and Geochemical Exploration
Add:
29 Xueyuan Road, Beijing 100083,China
Tel: 86-010-62060192/62060193
Fax: 86-010-62060193
Email: whtbjb@sina.com
Web: http://www.wutanyuhuatan.com
Editor in Chief: XIONG ShengQing
Published by:
The Geological Publishing House (31 Xueyuan Road,Beijing 100083,China)
Printer:
Beijing Changning Printing Co. Ltd.
Distributor: Beijing Post Office
Abroad Distributor:
China International Book Trading〖DW〗Corporation
Subscription Hander:
Local Post Offices of China
Links
More>>
Top Read Articles
Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
Advances in research on the distributed optical fiber acoustic sensing system in the field of geophysical exploration
ZHOU Shao-Yu, BAO Qian-Zong, SHI Wei
Geophysical and Geochemical Exploration    2024, 48 (2): 411-427.   DOI: 10.11720/wtyht.2024.1304
Abstract274)   HTML5)    PDF (7793KB)(290)      

Distributed acoustic sensing (DAS) technology, one of the most advanced sound field detection technologies, can achieve distributed, long-distance, and high-precision real-time detection of the ambient vibration and sound field information interacting with optical fiber. The optical fiber exploration system of the DAS technology solves the problems of high cost and deployment difficulty of conventional geophones in complex geological environments. In recent years, the DAS technology has experienced rapid development, especially in monitoring application scenarios that require long-term and large-scale deployment. However, its systematic understanding is insufficient due to divergent research results. To further understand the research advances of the DAS technology in geophysical exploration for more effective subsequent research, this study systematically classified and summarized the development history of the DAS technology and its recent research results in geophysical exploration based on the oil and gas, marine, and environmental engineering application scenarios through literature research. This study focused on the development process of the DAS technology in different directions, the research advances in data processing, and relevant literature with specific results. Finally, this study generalized the development trend and urgent problems of the DAS acquisition system, analyzing the DAS development prospect.

Table and Figures | Reference | Related Articles | Metrics
Prospecting for concealed skarn iron deposits using the high-precision gravity-magnetic survey method
DONG Jian, LI Xiao-Peng, FU Chao, DANG Zhi-Cai, ZHAO Xiao-Bo, ZENG Qing-Bin, HU Xue-Ping, WANG Jin-Hui
Geophysical and Geochemical Exploration    2024, 48 (1): 31-39.   DOI: 10.11720/wtyht.2024.1047
Abstract255)   HTML10)    PDF (7885KB)(396)      

The Laiwu area in central Shandong Province, situated in the eastern North China Craton, is a significant production area of skarn iron-rich ores. Its ore deposits occur primarily in the contact zone between the mining rock mass and the Middle Ordovician carbonate formation. Based on the latest areal gravity and magnetic survey results, this study thoroughly investigated the characteristics of gravity and magnetic anomalies along the Shijiaquan-Liujiamiao area in the western periphery of the mine rock mass. Then, this study delineated the deep prospecting target combining the characteristics of gravity and magnetic fields of the known iron deposits in the Laiwu area. Large-scale gravity and magnetic profiles were arranged in the favorable mineralization area. With the known boreholes as constraints, the gravity and magnetic anomalies were qualitatively and quantitatively interpreted using the 2.5D gravity-magnetic joint inversion technique. The interpretation results provide a basis for the location and depth of the borehole to be placed, which revealed a 15.8 m-thick iron-rich ore deposit, suggesting remarkable prospecting effects. This study holds critical indicative significance for further exploration of skarn iron ore deposits in this area.

Table and Figures | Reference | Related Articles | Metrics
Application of integrated geophysical exploration technology in the geothermal exploration of northern Jinan
ZHANG Yi, LIU Peng-Lei, WANG Yu-Min, ZHANG Peng-Peng, ZHANG Chao, ZHANG Ning
Geophysical and Geochemical Exploration    2024, 48 (1): 58-66.   DOI: 10.11720/wtyht.2024.1141
Abstract252)   HTML10)    PDF (8896KB)(447)      

Ji'nan possesses highly abundant geothermal resources, which are hosted by Ordovician-Cambrian karst-fissured geothermal reservoirs and Neogene-Paleogene clastic pore-fissure geothermal reservoirs. The geothermal exploration in this study focuses on the Ordovician-Cambrian karst fissured geothermal reservoirs in Daqiao Town in northern Ji'nan. Through geophysical profile measurements, this study aims to identify the distributions of strata and fault structures and the burial depths of geothermal reservoirs, infer the attitudes and spatial morphologies of fault structures associated with heat control and conduction, delineate the target area for geothermal well construction, and conduct drilling verification in the favorable underground water-rich position. Building on the collected data, this study interpreted and inferred the fault structures in the study area and comparatively analyzed the water-bearing properties by employing direct-current sounding, controlled source audio magnetotellurics, and magnetotelluric survey. A geothermal exploration and production combined well was constructed in a favorable position of the geothermal target area, manifesting a completion depth of 1 532.06 m, a static-water burial depth of 13.03 m, a wellhead water temperature of 50.1 ℃, a water yield of 132.998 m3/h, and a dropdown depth of 18.27 m.

Table and Figures | Reference | Related Articles | Metrics
A review of thirty years of airborne geophysical surveys in the Qiangtang Basin and future prospect
ZHOU Dao-Qing, XIONG Sheng-Qing, WANG Bao-Di, CAO Bao-Bao, GUO Zhi-Hong, HU Yue, ZHENG Yu-Zhou, ZHAO Rui, WEI Yan-Yan, XIAO Meng-Chu, HU Xia-Wei, YAN Qiao-Juan
Geophysical and Geochemical Exploration    2024, 48 (2): 287-295.   DOI: 10.11720/wtyht.2024.1413
Abstract236)   HTML15)    PDF (7354KB)(297)      

Airborne geophysical surveys, characteristic of being green, economical, efficient, and subjected to less influence by surface factors, serve as the one of most effective means of basic surveys and scientific research on the Qinghai-Tibet Plateau. This study reviewed the progress in the airborne geophysical surveys in the Qiangtang Basin of the Qinghai-Tibet Plateau in the past thirty years, systematically summarizing the progress and geological interpretation results of comprehensive airborne geophysical surveys in the basin. Furthermore, this study presented research progress and understanding of major basic geological issues of the basin, such as the basin's boundaries, central uplift zone, basement properties, deep structures, and cover characteristics, as well as the identification of favorable structural areas for oil and gas exploration. Finally, based on an analysis of the developmental trends of airborne geophysical surveys in the Qiangtang Basin, this study proposed opinions and suggestions for key research directions in the future.

Table and Figures | Reference | Related Articles | Metrics
Comparison and summary of different azimuthal anisotropy-based inversion techniques
LIANG Zhi-Qiang, LI Hong
Geophysical and Geochemical Exploration    2024, 48 (2): 443-450.   DOI: 10.11720/wtyht.2024.1251
Abstract231)   HTML3)    PDF (3440KB)(191)      

The progress in seismic acquisition techniques characterized by wide azimuths,wide frequency bands,and high densities has greatly promoted the application of the prestack P-wave fracture inversion technique based on the azimuthal anisotropy theory.Azimuthal anisotropy-based inversion can yield the azimuths and intensities of fractures.However,different inversion techniques yield different parameters for fracture intensity characterization,resulting in inconsistent inversion results.Consequently,the azimuthal anisotropy-based inversion results of fractures are non-unique,leading to confusion about accurate results.Based on the Thomsen anisotropy theory,as well as the interrelationships between fracture models(the Hudson coin model and the Schoenberg linear sliding model),this study established the connections of anisotropic parameters between different fracture inversion techniques(VVAZ,Ruger's approximation,and Fourier series),presenting the real meanings and mathematical expressions of results from different azimuthal anisotropy-based fracture inversion techniques.Additionally,this study summarized the relationships of parameters between different inversion techniques and fracture models,further deepening the research on azimuthal anisotropy-based fracture inversion.This study lays solid theoretical and technical foundations for large-scale fracture detection based on the seismic data obtained using the seismic acquisition techniques featuring wide azimuths,wide frequency bands, and high densities.

Table and Figures | Reference | Related Articles | Metrics
Chronology and geochemical characteristics of trachytes in the Tiaojishan Formation, Xuanhua Basin, northwestern Hebei Province, and their geological implications
YANG Ji-Yuan, HU Xin-Zhuo, ZHOU Jing, QI Peng-Chao, LI Ze-Yang, MENG Jia-Bao, XU Fan, ZHANG Hui-Bin, QI Hui-Yun
Geophysical and Geochemical Exploration    2024, 48 (1): 1-14.   DOI: 10.11720/wtyht.2024.2503
Abstract223)   HTML15)    PDF (8237KB)(255)      

The Tiaojishan Formation in northwestern Hebei Province is home to volcanic-sedimentary strata. Due to the lack of fossil organisms, insufficient isotopic dating data, and outdated dating methods, the formation epochs of these strata have been controversial. To accurately determine their formation epochs and examine their regional geotectonic setting, this study conducted a detailed field investigation of the lithologic assemblage of the Tiaojishan Formation in the Xuanhua Basin. Petrological, petrogeochemical, and high-precision isotopic dating studies were conducted on the trachytic volcanic rocks in the upper segment of the formation, obtaining the LA-ICP-MS-based zircon U-Pb isotopic ages, which were 161.1±1.2 Ma and 162.5±1.3Ma. As indicated by the petrological and petrogeochemical characteristics, these trachytic volcanic rocks belong to the shoshonite series, exhibiting enriched light rare earth elements, relatively enriched elements including Rb, K, Th, Ce, Zr, and Hf, and relatively depleted Ba, Nb, Sr, P, and Ti. According to the comparison of principal parameters and graphical discrimination, the magma originated primarily from the melting of continental crustal materials and formed in the tectonic setting of compressional continental margin volcanic arcs. The comprehensive research reveals that the Tiaojishan Formation formed primarily during the Middle Jurassic and continued to the Late Jurassic, and the trachytic volcanic rocks in its upper segment formed in the intraplate compressional tectonic setting. The results of this study provide new data for the division and correlation of Mesozoic volcanic-sedimentary strata and the analysis of their formation environment.

Table and Figures | Reference | Related Articles | Metrics
Application of comprehensive geophysical prospecting in exploration of the Duhu copper deposit in Xinxing County
HE Jun-Fei
Geophysical and Geochemical Exploration    2024, 48 (2): 375-381.   DOI: 10.11720/wtyht.2024.1101
Abstract217)   HTML11)    PDF (5778KB)(276)      

Since individual geophysical exploration methods suffer the multiplicity of solutions, comprehensive geophysical prospecting has been extensively applied in deep ore prospecting presently. This study conducted the geological exploration of the Duhu porphyry copper deposit in Xinxing County using multiple geophysical methods such as high-precision magnetic survey and controlled source audio-frequency magnetotellurics (CSAMT). It was inferred that the CSAMT-derived medium-low resistivity anomalies and the low-gentle anomalies derived from the high-precision magnetic survey serve as significant prospecting indicators. Satisfactory results were achieved in follow-up verification of the anomalies. Specifically, copper, molybdenum, silver, and gold mineralized bodies with a cumulative thickness of 178.2 m were identified in a 1 000 m deep borehole, with the highest copper grade of 1.45%. The application of comprehensive geophysical prospecting holds great significance in guiding the exploration of porphyry copper deposits in western Guangdong.

Table and Figures | Reference | Related Articles | Metrics
New progress in the technology and applications of SOTEM
XUE Guo-Qiang
Geophysical and Geochemical Exploration    2024, 48 (5): 1165-1168.   DOI: 10.11720/wtyht.2024.0325
Abstract195)   HTML8)    PDF (380KB)(218)      

The artificial source electromagnetic method is an important technique for deep resource exploration. The key challenge is to improve the depth and precision of detection through innovative technology. The detection mode of electromagnetic methods is evolving from far-field to near-field, and the study of near-source electromagnetic methods has become an international research frontier in recent years. Building on the recent advancements in wide-field electromagnetic methods and multi-channel transient electromagnetic methods, the short-offset transient electromagnetic method (SOTEM) has been further developed and proposed. The distinguishing features of SOTEM are its stronger signals and wider bandwidth, which are advantageous for achieving the detection requirements of greater depth and higher precision. This special issue presents eight articles covering the methods, techniques, software, and applications of SOTEM, providing strong support for the growing need for high-resolution subsurface detection.

Reference | Related Articles | Metrics
Critical factors in microtremor-based exploration at a depth of thousands of meters
QI Juan-Juan
Geophysical and Geochemical Exploration    2024, 48 (3): 777-785.   DOI: 10.11720/wtyht.2024.1358
Abstract191)   HTML3)    PDF (6323KB)(258)      

To explore the critical factors influencing the results of microtremor-based exploration at a depth of thousands of meters,this study conducted experiments using triangular arrays based on spatial autocorrelation(SPAC) and extended SPAC(ESPAC).Focusing on factors such as array size,acquisition unit frequency,and acquisition duration,this study explored the frequency band ranges corresponding to different array sizes,the arrangement of arrays in kilometer-depth exploration for obtaining both deep and shallow data,and the improvement in deep resolution.Based on the analysis and discussion results,this study established a parameter-setting system to improve the accuracy of exploration at a depth of thousands of meters.

Table and Figures | Reference | Related Articles | Metrics
Geological characteristics and origin of the Mogou fluorite deposit in Fangcheng County, Henan Province
ZHANG Qing-Song, XIA Ming-Zhe, WANG Chun-Lian, LI Ke-Kun, LIU Zeng-Zheng, JIANG Ji-Yong, JIANG Jian-Lang
Geophysical and Geochemical Exploration    2024, 48 (1): 15-23.   DOI: 10.11720/wtyht.2024.2588
Abstract189)   HTML6)    PDF (6964KB)(196)      

The Mogou fluorite deposit of Fangcheng County, residing in the Neoproterozoic Meiyaogou Formation, is a crucial part of the fluorite metallogenic belt in southern Henan Province. Based on the analysis of the geological characteristics of the Mogou fluorite deposit, this study conducted petrographic and petrogeochemical studies to define the source of ore-forming materials and probe into the genetic mechanism of the fluorite deposit. The results show that the fluorite ore body is veined or lenticular, with mineralization-related alterations composed of silicification, fluorite and sericite alterations. Its ore structures are primarily massive, followed by banded, striped, and brecciated types. The chondrite-normalized rare earth element distribution pattern of the fluorite ore body is similar to that of the Meiyaogou Formation marbles and the Yanshanian porphyritic plagiogranites, suggesting a genetic relationship. The possible genetic mechanism is that the F-enriched ore-bearing hydrothermal liquids intruded along the interbedded fault and reacted with the surrounding rocks to form the fluorite ore /mineralized body. The deposit belongs to the epithermal filling type along the interbedded structure.

Table and Figures | Reference | Related Articles | Metrics
Geophysical characteristics and deep prospecting prediction of the Dachaigou gold deposit in the eastern Kunlun area
YU Zhong-Hong, YAN Ling-Qin, ZHANG Zhan-Xiong, LI Peng, LI Feng-Ting, FU Jia
Geophysical and Geochemical Exploration    2024, 48 (1): 40-47.   DOI: 10.11720/wtyht.2024.1126
Abstract186)   HTML6)    PDF (7232KB)(348)      

The eastern Kunlun metallogenic belt, as a significant metal metallogenic belt in China, hosts extensive orogenic gold deposits and large-scale Kunlunhe, Gouli, and Wulonggou gold concentration areas. The Dachaigou gold deposit is a large-scale gold deposit newly discovered in the Wulonggou gold field in recent years. Despite its high metallogenic potential, the western extension of its ore belt has not been defined. Hence, this study conducted induced polarization (IP) sounding and wide-field electromagnetic sounding in the deposit. The results show that the known ore belt is situated in the regional gravity anomaly gradient zone, the transition zone of positive and negative weak magnetic anomalies, the edge of IP anomalies, or the electrical gradient zone. The development zone of the regional tectonic belt resides in the large-scale IP anomaly section. The regional tectonic belt is characterized by a wide range of low-resistivity anomaly zones. The IV and III alteration zones of the known ore belt are located in the opening position of the low-resistivity anomaly zone and the shallow electrical anomaly gradient zone, respectively. Based on the above understanding and the electromagnetic anomaly change patterns of several parallel profiles in the western extension segment, it was inferred that the regional ore-controlling structure extends steadily in the W-NWW direction, forming a favorable prospecting space in the western extension segment of the deposit. The results of deep geophysical exploration in the Dachaigou deposit indicate that geophysical methods manifest significant advantages in deep geological prospecting research, providing successful experience for deep prospecting in the eastern Kunlun gold deposit area.

Table and Figures | Reference | Related Articles | Metrics
Application of high-density electrical resistivity tomography and audio magnetotellurics for groundwater exploration in the karst area in southwestern China
XIA Shi-Bin, LIAO Guo-Zhong, DENG Guo-Shi, YANG Jian, LI Fu
Geophysical and Geochemical Exploration    2024, 48 (3): 651-659.   DOI: 10.11720/wtyht.2024.1237
Abstract185)   HTML7)    PDF (5894KB)(274)      

Huize County of Yunnan Province is situated in the karst area in southwestern China, where karst groundwater is its primary water source. To conquer local difficulties in drinking water, this study constructed a conceptual model of groundwater occurrence by fully investigating the hydrogeological conditions of the Huize area. Moreover, this study evaluated the applicability and optimal combination of geophysical methods based on the measurement results of petrophysical properties. According to the actual local needs, this study deployed a comprehensive profile combining high-density electrical resistivity tomography (HDERT) and audio magnetotellurics (AMT) in Tuogu Village, Huize County. The groundwater enrichment site was delineated relying on resistivity anomalies, effectively guiding the layout of boreholes. The boreholes achieved the maximum single-borehole water yield of 20.76 m3/d, thus effectively alleviating the local drinking water problem. The HDERT-AMT combined exploration method proves to be optimal for prospecting for groundwater in carbonate rock areas. HDERT can accurately characterize weathered layer thicknesses, bedrock boundaries, fissure evolutionary degrees, and water-bearing properties of strata, constraining groundwater recharge channels, thus counteracting AMT's defects for identification of near-surface stratigraphic structures. AMT can accurately reflect the spatial structures of fracture zones and the macrostructures of strata, limiting the boundary conditions (aquicludes) of water-bearing structures, thus making up for the defects of insufficient detection depths of HDERT in high-resistivity stratigraphic regions. HDERT and AMT, which are complementary to each other in terms of accuracy and depth, can be applied to identify and constrain the spatial occurrence conditions of groundwater migration, storage, and enrichment.

Table and Figures | Reference | Related Articles | Metrics
Research and application of the log-based comprehensive identification method for low-contrast oil layers:A case study of the Lufeng oilfield in the Pearl River Mouth Basin
LIU Wei-Nan, GUAN Yao, LIU Dao-Li, SHI Lei, SONG Wei
Geophysical and Geochemical Exploration    2024, 48 (3): 573-583.   DOI: 10.11720/wtyht.2024.1164
Abstract180)   HTML14)    PDF (7267KB)(160)      

The accurate identification of fluid properties is critical for reservoir evaluation.However,for the Paleogene low-porosity and low-permeability reservoirs in the Lufeng area,Pearl River Mouth Basin,the low contrast between oil and water layers in conventional logs due to the presence of high-resistivity water layers complicates the identification of oil and water layers.This study first ascertained the reservoir characteristics and genetic analysis of low-contrast oil layers.Then,it developed the Flair gas logging response equation and the Flair logging response correction method,aiming to overcome the challenge that gas logging response values of low-porosity and low-permeability reservoirs are significantly influenced by factors such as drilling rate and porosity.Given the differences in the properties and components of various fluids,this study constructed new oil-bearing and water-content indices using Flair gas logging curves.Moreover,this study characterized the geochemical chromatogram using a gamma probability distribution function and extracted the shape and scale factors to describe the chromatogram characteristics.Based on sensitivity parameters,this study plotted the characteristic parameter-based fluid property identification chart.The practical application shows that the log-based comprehensive fluid property identification method can yield satisfactory effects,achieving a compliance rate of 91.3%.Therefore,this method can be popularized.

Table and Figures | Reference | Related Articles | Metrics
Design and implementation of key technologies for real-time three-dimensional ground-penetrating radar
YIN Da, XIN Guo-Liang, SUN Xue-Chao, ZHANG You-Yuan, ZHANG Qi-Dao
Geophysical and Geochemical Exploration    2024, 48 (1): 194-200.   DOI: 10.11720/wtyht.2024.1030
Abstract175)   HTML0)    PDF (3013KB)(279)      

To improve the detection level of municipal roads for rapid and effective municipal road collapse warning and rapid search for municipal pipe network distribution, the 22nd Research Institute of China Electronics Technology Group Corporation designed and developed real-time three-dimensional ground-penetrating radar (3D GPR). With the real-time 3D GPR, which is based on the architecture of field programmable gate array and digital signal processor (FPGA&DSP), the institute achieved the design and implementation of several key technologies for the multi-channel high-speed acquisition system, enriching the road detection techniques and methods. The real-time 3D GPR enables high-speed acquisition of ten-channel radar data using the horizontally polarized antennae equipped with five transmitters and six receivers. The channels can be switched using high-speed switches, which operate in an interactive interpolation manner. The 3D GPR allows for up to 32 channels and detection speeds of above 60 km/h (channel interval: 2 cm). This is attributed to the switching of the antenna array using switches. The optimum antenna polarization design was verified by the comparison of experimental data from cavity- and metal-plate-based experimental sites. As a result, the optimal antenna scheme was determined. The measured results show that, compared to general LTD-2600 radar, the real-time 3D GPR boasts a higher acquisition speed and higher performance in terms of amplitude and phase, conducive to the improvement of road disaster detection technologies. Therefore, there is high market demand for the real-time 3D GPR.

Table and Figures | Reference | Related Articles | Metrics
Research on the detection of underground pedestrian passage by high precision gravity exploration
YANG Min, XU Xin-Qiang, CHEN Ming, Ji Xiao-Lin, WANG Wan-Yin, ZHAO Dong-Ming, ZHOU Wei, ZHANG Yi-Mi
Geophysical and Geochemical Exploration    2024, 48 (3): 876-883.   DOI: 10.11720/wtyht.2024.0047
Abstract174)   HTML10)    PDF (3819KB)(218)      

Underground cavities with shallow burial and small scale are difficult to detect. With the development of gravity sensing technology, the accurate and rapid acquisition of micro-gravity variations brings new opportunities for detecting underground cavities, and it has wide research and practical value for the detection of small-scale underground cavities. This paper systematically analyzes and studies underground cavities from three aspects: gravity basic theory, gravity detection technology, and gravity data processing and inversion. Under given body size and gravity data accuracy, the maximum burial depth of gravity detection is calculated using the bisection method. High-density acquisition and high-precision gravity detection methods are applied to the actual detection of an underground pedestrian tunnel in a certain area of a passenger station. A set of high-precision gravity grid data is obtained. The theoretical research and measurement results indicate that existing gravity instruments have the ability to detect underground cavities. By using the minimum curvature potential field separation method, 2.5D interactive inversion and the target area recognition three-dimensional physical property fast inversion method, the approximate SN distribution and burial depth of the underground pedestrian tunnel are obtained, which is approximately 2.5~5 m, consistent with the actual situation. This study has developed a complete gravity exploration process for detecting underground cavities, and it has certain reference value.

Table and Figures | Reference | Related Articles | Metrics
Two-dimensional joint inversion based on the marine controlled-source electromagnetic method and seismic full-waveform
KONG Fan-Xiang, TAN Han-Dong, LIU Jian-Xun
Geophysical and Geochemical Exploration    2024, 48 (1): 67-76.   DOI: 10.11720/wtyht.2024.2583
Abstract171)   HTML1)    PDF (5740KB)(188)      

To reduce the limitations and the multiplicity of solutions of a single geophysical inversion method, this study investigated the two-dimensional joint inversion based on the marine controlled-source electromagnetic (MCSEM) method and seismic full-waveform inversion. The MCSEM method employs the data-space Occam’s algorithm, while the seismic full-waveform inversion utilizes the gradient algorithm. By incorporating a cross-gradient function for the mutual coupling of the two types of physical property parameters, this study developed a two-dimensional joint inversion method, whose accuracy was verified using three different models. As indicated by the results, compared to a single inversion method, the MCSEM-based joint inversion yielded significantly improved inversion results, predominantly in terms of the morphology characterization of anomalous bodies, as well as the reconstruction of their structure and textures and their physical property values. Therefore, the full-waveform inversion can enhance the reliability of the MCSEM inversion results.

Table and Figures | Reference | Related Articles | Metrics
Delineation of areas with high geological background values of heavy metals in soils in Yunnan Province, China based on geological big data technology
XIAO Gao-Qiang, ZHAO Juan, CHEN Zi-Wan, SONG Xu-Feng, ZHU Neng-Gang
Geophysical and Geochemical Exploration    2024, 48 (1): 216-227.   DOI: 10.11720/wtyht.2024.1129
Abstract168)   HTML3)    PDF (4168KB)(203)      

This study aims to systematically investigate the distribution and over-limit elements of areas with high geological background values of heavy metals in soils in Yunnan Province. GIS spatial analysis was conducted based on the heavy metal content data from a province-wide 1∶200,000 stream sediment survey and the regional geological map. The analysis results were validated using the data of heavy metals in soils in Kunming, Yuxi, Zhaotong, and other regions. A total of 61 geological units were identified, with heavy metal content in soils exceeding the screening values of agricultural land, accounting for 21.09% of the total land area of Yunnan. The cultivated land in high geological background areas covers an area of approximately 2.844 1 million hectares, accounting for 7.22% of the total land area of Yunnan. The lithologies that cause over-limit heavy metals in soils primarily comprise carbonate rocks, mafic-ultramafic volcanic rocks, intermediate mafic intrusive rocks, coal-bearing clastic rocks, and clastic rocks with mafic components. The over-limit heavy metal elements in high geological background areas are dominated by Cu, Cr, Ni, and Cd. In contrast, As manifests an over-limit risk mainly in carbonate rock formations, Pb and Zn only exhibit an over-limit risk in individual strata, and Hg almost shows no over-limit risk.

Table and Figures | Reference | Related Articles | Metrics
Multi-source frequency-domain seismic exploration technique and its application
SUN Hong-Lin, LIU Tie-Hua, LIU Tie, ZHANG Zhan-Rong, CHEN Zhi-Xing
Geophysical and Geochemical Exploration    2024, 48 (3): 618-628.   DOI: 10.11720/wtyht.2024.1317
Abstract166)   HTML3)    PDF (5836KB)(224)      

Due to various strong electromagnetic mechanical interference and traffic barriers, many geophysical exploration techniques are ineffective in urban geophysical exploration.Based on transient surface waves,microtremor arrays,and microtremor spectral ratios,this study synthetically extracted two kinds of characteristic curves for joint inversion from the multi-source frequency-domain seismic data obtained by multi-point three-component low-frequency sensors.Consequently,this study achieved multi-source frequency-domain seismic exploration that integrated three techniques and developed the two-source synthetic dispersive spectrum extraction technique,the two-source characteristic curve joint inversion technique,and the equivalent homogeneous medium forward modeling technique based on inhomogeneous media.Engineering practice results demonstrate the improvements in the exploration accuracy and efficiency.

Table and Figures | Reference | Related Articles | Metrics
Sulfur isotopic composition and related issues of typical gold ore districts in China
LAN Rui-Xuan, ZHAO Hong-Kun, TANG Shi-Xin, DUAN Zhuang, MA Sheng-Ming
Geophysical and Geochemical Exploration    2024, 48 (2): 296-313.   DOI: 10.11720/wtyht.2024.1177
Abstract156)   HTML9)    PDF (5941KB)(210)      

In the Prospecting Breakthrough Strategy (2011~2020), China has made significant progress in the exploration of gold deposits, demonstrating considerable prospecting potential. Element sulfur, a mineralizer, is closely associated with the formation of gold deposits, proved to be the most significant element in gold deposit formation by scholars at home and abroad. Sulfur isotopes have been extensively used to trace the sources of minerals in gold deposits. Different gold deposits reside in distinct geological settings. Since sulfur isotopic compositions are governed by various sulfur sources, sulfur isotopes in gold deposits can reflect the geological settings of mineralization. The ore-district-scale spatio-temporal distribution of sulfur isotopes has theoretical implications, playing a significant role in guiding ore prospecting. The gold resources in China are distributed in 42 gold ore districts, typified by Jiaodong, Xiaoqinling, and Yunnan-Guizhou-Guangxi. This study comparatively analyzed and summarized the characteristics of sulfur isotopes in the three typical gold ore districts, providing theoretical and methodological support for future gold prospecting.

Table and Figures | Reference | Related Articles | Metrics
Fine-scale prospecting targets of skarn iron deposits in the Pandian gravity-magnetic anomaly zone of northwestern Shandong Province: Insights from deep prospecting using the wide-field electromagnetic method
GUO Guo-Qiang, LI Ya-Dong, WANG Yang, YU Jia-Bin, WANG Run-Sheng, GAO Xiao-Feng, ZHANG Da-Ming, HU Dong-Ning, FANG Lei, GUO Wei-Fang
Geophysical and Geochemical Exploration    2024, 48 (2): 327-333.   DOI: 10.11720/wtyht.2024.1157
Abstract153)   HTML5)    PDF (4258KB)(267)      

Significant aeromagnetic and gravity anomalies were found in the ultra-deep coverage zone of the Pandian area in the northwestern Shandong Province. Through systematic verification of gravity and magnetic anomalies, a breakthrough in prospecting for deep skarn iron deposits has been achieved through several boreholes around the Pandian gravity-magnetic anomaly zone. However, the gravity-magnetic anomaly zone spreads extensively and its characteristics cannot directly indicate the prospecting target, thus some boreholes failed to find ores or revealed poor ore-finding conditions. Hence, to accurately delineate the ore-forming location in the gravity-magnetic anomaly zone and achieve a further breakthrough in ore prospecting, this study conducted the wide-field electromagnetic (WFEM) sounding in the verified Pandian gravity-magnetic anomaly zone. Combining the drilling verification, this study delineated the deep ore-forming interval of skarn iron deposits in the deep coverage zone and the favorable structural plane for ore-forming, suggesting the deep fine-scale prospecting targets.

Table and Figures | Reference | Related Articles | Metrics
Distribution patterns of the electromagnetic fields of orthogonal horizontal magnetic dipoles as sources in CSRMT
CHEN Xing-Peng, WANG Liang, LONG Xia, XI Zhen-Zhu, QI Qing-Xin, XUE Jun-Ping, DAI Yun-Feng, HU Zi-Jun
Geophysical and Geochemical Exploration    2024, 48 (3): 721-735.   DOI: 10.11720/wtyht.2024.1395
Abstract151)   HTML2)    PDF (7800KB)(141)      

Controlled source radio-magnetotellurics (CSRMT) measurements typically use artificial field sources transmitting at frequencies ranging from 1 to 1 000 kHz. Among the many transmitting sources of the artificial source electromagnetic method, the orthogonal horizontal electric dipole source and the orthogonal horizontal magnetic dipole source are preferred field sources for tensor resistivity measurements. Hence, using the analytical formulas for electromagnetic fields based on the horizontal electric dipole source and the horizontal magnetic dipole source, this study calculated the electromagnetic fields based on the orthogonal horizontal electric dipole source and the orthogonal horizontal magnetic dipole source in the homogeneous half-space model. The results show that: (1) The displacement current needs to be considered at transmitting frequencies above 100 kHz; (2) The effects of displacement current on the tensor apparent resistivity and the impedance phase can be ignored in the far zone; (3) With a constant model resistivity and varying distances between transmitter and receiver, model calculations indicate a larger measurement range in the far zone of the high-frequency electromagnetic field; (4) With a constant distance between transmitter and receiver and varying model resistivities, model calculations suggest that the far-zone range of the electromagnetic field is significantly influenced by resistivity, and that the high-resistivity model requires higher frequencies for achieving far-zone observation conditions.Compared with the electric dipole source, the magnetic dipole source exhibits smaller deviations on the tensor apparent resistivity and impedance phase with the actual value, which is more suitable for geological analysis.

Table and Figures | Reference | Related Articles | Metrics
Design and implementation of a geochemical field sampling system based on mobile GIS
ZHOU Yi-Ning, GAO Yan-Fang, CHANG Chan, ZHANG Bi-Min
Geophysical and Geochemical Exploration    2024, 48 (1): 201-209.   DOI: 10.11720/wtyht.2024.2410
Abstract146)   HTML1)    PDF (4751KB)(221)      

Cumbersome acquisition tools and laborious indoor data processing are bound to impair the quality and accuracy of conventional field geochemical surveys, especially in study areas with many samples and a harsh natural environment. The informatization and intelligence of field geochemical surveys are the requirements of the times and an inevitable trend for the advancement of methods and technologies. Based on the ArcGIS and Android platforms, this study developed a geochemical field sampling system, which comprises task planning, field data collecting, quality control, and other functions, to match the field geochemical survey process using mobile GIS and database technologies. This system enables the informatization and intelligence of the entire field geochemical survey process, simplifying the data collection procedure, reducing the time needed for fieldwork, and enhancing the data collection efficiency. Therefore, this system improves the quality and accuracy of field survey information, advancing the digitization of field geochemical surveys.

Table and Figures | Reference | Related Articles | Metrics
Stream sediment geochemistry and prospecting targets in Harper, Liberia
BAI Yang, CHEN Kai-Xu, CHEN Chong, LI Fu-Lin, ZHANG Ji-Chun, WEI Ling-Xiao, SI Ke-Fu, ZHENG Xiong-Wei, HU Yun-Fei, WU Ying, ZHANG Yuan-Pei
Geophysical and Geochemical Exploration    2024, 48 (2): 382-392.   DOI: 10.11720/wtyht.2024.1128
Abstract143)   HTML2)    PDF (8370KB)(166)      

Birimian rocks, the most significant Au ore-forming rocks in western Africa, are widespread in Harper, southeastern Liberia. As indicated by the geochemical parameters from the 1∶250 000 stream sediment survey of this region, elements Au and Hg exhibit high enrichment and high differentiation while element As manifests enrichment and high differentiation. These findings suggest considerable potential for Au prospecting. Based on the correlation analysis of elements, this study selected factors F1 (for the Au-Hg-Pb-Sn association) and F2 (for the As-Sb-W association) to effectively guide the exploration of gold deposits. Thirteen composite anomalies were delineated by extracting the anomaly information of Au, Hg, As, and Sb from the two principal factors, effectively reflecting the anomaly distributions of different gold deposits or ore occurrences. The geological and mineral surveys in anomaly areas reveal that areas HS1-HS3 and HS12-HS13 with composite anomalies characterized by directional distribution and high intensities show distinct Au mineralization information. Based on this, two major Au prospects, i.e., Seethum New and Behwan, have been identified for further detailed exploration.

Table and Figures | Reference | Related Articles | Metrics
A method for identifying lithology based on a feature-weighted KNN model
GUO Yu-Shan, WANG Wan-Yin
Geophysical and Geochemical Exploration    2024, 48 (2): 428-436.   DOI: 10.11720/wtyht.2024.1260
Abstract140)   HTML1)    PDF (4553KB)(123)      

Lithology identification, as a major geological task, strongly underpins the exploration of solid minerals, oil, and gas. Since the physical properties of rocks bridge lithologies and geophysical fields, their differences can be used for lithology identification. However, the physical property data of different rocks frequently overlap to some extent, posing challenges to accurate lithology identification using cross plots alone. The K-nearest neighbor (KNN) model is suitable for multi-class classification since it is a simple and direct machine learning method with high accuracy and sensitivity. This study introduced a feature-weighted KNN model for lithology identification. In this model, different weights were assigned to different features by combining the conventional KNN model with the information gain of attribute features. This allowed for intuitive reflection of the importance of attribute features to classification. Experiments show that compared to the conventional KNN model, the feature-weighted KNN model can more significantly identify lithologic boundaries, thus improving the overall accuracy and stability of lithology identification.

Table and Figures | Reference | Related Articles | Metrics
Petrogenesis and rubidium enrichment indication of the Fuling rock mass in southern Anhui Province
ZHANG Jun, TAO Nai, QI Shang-Xing, WANG Zhi-Qiang, DA Hao-Xiang
Geophysical and Geochemical Exploration    2024, 48 (3): 584-596.   DOI: 10.11720/wtyht.2024.1268
Abstract140)   HTML8)    PDF (7620KB)(138)      

The Fuling rock mass in southern Anhui Province, located in the eastern section of the Jiangnan uplift zone, is a complex granitic rock mass that has experienced multi-stage evolution. It primarily comprises two lithologies: Monzogranite and K-feldspar granite. By investigating the geological, petrographic, and petrogeochemical characteristics of the Fuling rock mass, this study delved into its evolutionary characteristics, genetic types, and tectonic environment, aiming to clarify its indication significance for rubidium enrichment. The results of this study are as follows: ① The geochemical characteristics of the Fuling rock mass demonstrate high SiO2, Na2O, K2O, and Al2O3 contents, high w(K2O)/w(Na2O) ratios, and aluminum saturation indices (A/CNK) ranging from 0.95~1.08 (average: 0.99), suggesting high-K calc-alkaline quasi-aluminous to peraluminous granites; ② In terms of trace elements, the Fuling rock mass possesses high Li, Rb, Nd, and Ta contents and significantly low Sr and Ba contents, which may be associated with the fractional crystallization of feldspar; ③ The w(Nb)/w(Ta) ratios ranging from 5.71~10.94 (average: 8.41) and Mg# values ranging from 0.02~0.31 (average: 0.13) indicate that the Fuling rock mass was primarily derived from the partial melting of lower crust rocks, suggesting A-type granites in a non-orogenic extensional environment; ④ The Rb content in the Fuling rock mass increases with the magmatic evolution degree. Compared to monzogranites, K-feldspar granites with a higher evolution degree display higher Rb content, implying that the Rb content in the Fuling rock mass is generally controlled by magmatic evolution. Overall, this study holds some reference significance for understanding the Yanshanian diagenesis and mineralization of southern Anhui Province.

Table and Figures | Reference | Related Articles | Metrics
Bayesian prestack seismic stochastic inversion based on the exact Zoeppritz equation
NIU Li-Ping, HU Hua-Feng, ZHOU Dan, ZHENG Xiao-Dong, GENG Jian-Hua
Geophysical and Geochemical Exploration    2024, 48 (1): 77-87.   DOI: 10.11720/wtyht.2024.2572
Abstract138)   HTML2)    PDF (8080KB)(173)      

The prestack seismic inversion method based on the exact Zoeppritz equation is challenged by seismic data with low signal-to-noise ratios(SNRs).The Markov chain Monte Carlo(MCMC) simulation is a heuristic global optimization algorithm that can achieve effective prestack nonlinear inversion of elastic parameters.The conventional MCMC-based prestack inversion method,which characterizes the statistical properties of elastic parameters via the Gaussian distribution,has significant limitations when applied to complex lithologic reservoirs.Besides,due to the influence of the huge parameter space of subsurface models and the noise in seismic data,the MCMC search process for the posterior probability distribution of elastic parameters is very sensitive to local extrema,making it difficult to obtain stable and accurate results from MCMC-based prestack inversion.This study proposed an improved MCMC-based elastic parameter inversion method to address the challenges faced by the prestack inversion based on the exact Zoeppritz equation under the conditions of actual complex reservoirs and seismic data with low SNRs.First,the method reduced the complexity of the posterior probability distribution by transforming the parameters to be inverted into the perturbations of the model parameters using a low-frequency model (LFM) constraint.Then,the seismic forward modeling process was constrained by taking the logarithm of the likelihood function and utilizing an LFM.Finally,a multi-chain algorithm based on random subspace sampling was employed to perform global optimization for the prestack nonlinear inversion problems,thus avoiding premature convergence of the sampling process to local extrema.As indicated by the tests on the simulated data with low SNRs and the actual data,the method proposed in this study can yield more accurate and stable inversion results while providing credible and quantitative uncertainty estimates for the inversion results.

Table and Figures | Reference | Related Articles | Metrics
Application of natural thermoluminescence measurement technique in natural gas hydrate exploration in permafrost areas
WANG Hui-Yan, TANG Rui-Ling, BI Jing
Geophysical and Geochemical Exploration    2024, 48 (1): 24-30.   DOI: 10.11720/wtyht.2024.1037
Abstract128)   HTML5)    PDF (2704KB)(191)      

Since natural gas hydrates (NGHs) in permafrost areas feature complex formation mechanisms and multiple sources, there is an urgent need to develop multiple techniques for micro-leakage information capture in order to increase the exploration success rate. This study applied the natural thermoluminescence measurement technique to NGH exploration in a permafrost area for the first time. Specifically, it tested the thermoluminescence intensity in soil samples from the Muli permafrost area of the Qilian Mountains using an RGD-6 thermoluminescent dosimeter. Then, it summarized the heating procedure for NGH exploration in the area, as well as size fractions for sampling. The results show that the soil samples from the Muli permafrost area demonstrated optimal size fractions for sampling ranging from -60~100 meshes, an optimal heating rate of 5 ℃/s, and an optimal heating range of 50~400 ℃. Based on the anomaly characteristics of the natural thermoluminescence intensity in soil samples, this study determined the anomaly boundary of NGHs on the surface of the permafrost area. It revealed that the natural thermoluminescence intensity displayed anomalies on the top, which correspond well to the hydrocarbon anomaly mode. The natural thermoluminescence measurements of soil, unaffected by microorganisms and boasting high sensitivity, can be popularized as a promising method for NGH explorations in permafrost areas.

Table and Figures | Reference | Related Articles | Metrics
An experimental study on the influence of step topographies in strip mines on the exploration performed using the high-density resistivity method
ZHAO Zi-Hao, LI Peng-Hui, LYU Hai-Jian, KANG Sen
Geophysical and Geochemical Exploration    2024, 48 (2): 565-572.   DOI: 10.11720/wtyht.2024.3503
Abstract125)   HTML2)    PDF (4709KB)(187)      

The stability assessment of strip mine slopes is a fundamental means to prevent slope accidents. To investigate the influence of step topographies on the exploration using the high-density resistivity method on strip mine steps, this study conducted flume experiments for simulation using similar materials to explore the current field distribution in the profile to be surveyed. The experimental results show that: (1) The shallow positions near the upper and lower slope lines and the breadth line of the cleaning berm exhibited high current densities and even current distributions; (2) The middle positions manifested sharply changed current densities, with their contours akin to the step topography; (3) The deep positions displayed low current densities and tardy current changes; (4) A significant current gathering effect was observed near the slope bottom line on the profile; (5) Compared to flat topographies, step topographies exhibited high current densities and uneven current distributions. This suggests that in the exploration using the high-density resistivity method, step topographies in strip mines can cause abnormal inversion results for the middle positions and positions near the slope bottom line.

Table and Figures | Reference | Related Articles | Metrics
Application of the cross-borehole resistivity method in the monitoring of leakage for urban water supply pipelines
ZHANG Wei, ZHOU Yu-Kun, LIU Li-Yan, CHEN Jun-Liang
Geophysical and Geochemical Exploration    2024, 48 (3): 884-890.   DOI: 10.11720/wtyht.2024.1368
Abstract125)   HTML4)    PDF (3195KB)(155)      

Urban main water supply pipelines are mostly buried along roads. Large pipe diameters and deep burial depths make it hard to detect their leakage in the early stage. Their leakage will severely influence urban traffic and residents' daily life. Hence, the leakage monitoring of water supply pipelines is particularly important. However, factors such as dense traffic lines, hardened road surfaces, and electromagnetic interference limit the application of the ground resistivity method and geological radars in pipeline monitoring. To make up for the shortcomings of existing monitoring methods, this study explored the cross-hole resistivity method for pipeline leakage monitoring. First of all, pipelines with and without leakage were simulated using forward modeling and inversion methods, analyzing the detection characteristics of the cross-borehole resistivity method. Then, electrode materials and burial methods were examined through experiments, solving the problems of electrode corrosion and weak electric field signals. Finally, an experimental site was set up near a water supply pipeline in Beijing, obtaining multi-phase monitoring data using the cross-borehole resistivity method. Through comparative analysis of multi-phase resistivity sections, this study analyzed the changes in pipeline leakage, delineating the leakage influence scope, which was verified by the leakage data from the waterworks. The satisfactory monitoring results suggest that the method proposed in this study can be referenced for similar pipeline leakage monitoring in cities.

Table and Figures | Reference | Related Articles | Metrics
Practices and future research directions of geophysical exploration for normal-pressure shale gas in complex structural areas,southeastern Chongqing
HE Xi-Peng, LIU Ming, XUE Ye, LI Yan-Jing, HE Gui-Song, MENG Qing-Li, ZHANG Yong, LIU Hao-Juan, LAN Jia-Da, YANG Fan
Geophysical and Geochemical Exploration    2024, 48 (2): 314-326.   DOI: 10.11720/wtyht.2024.1202
Abstract124)   HTML7)    PDF (7986KB)(260)      

Southern China boasts great potential for normal-pressure shale gas resources,with distribution areas primarily including the peripheral complex structural areas and the extrabasinal fold belts of the Sichuan Basin.These areas exhibit intricate surface and subsurface geological conditions,leading to poor seismic acquisition quality,low imaging accuracy,and unclear varying patterns of sweet spot parameters.This study systematically summarized the research achievements and technical advances in the seismic acquisition,image processing,and reservoir prediction for normal-pressure shale gas in southeastern Chongqing,including:①The development of variable-density 3D observation system design technique and the seismic excitation and reception technique for complex mountains with limestone surfaces,ensuring sufficient sampling of the reflected wave field in complex subsurface structures and improving data quality and construction efficiency;②The optimization of prestack seismic preprocessing technique for complex mountains,imaging techniques for complex structures in basin-margin transition zones, and imaging techniques for synclinal structures in extrabasinal fold belts,achieving resulting profiles with high signal-to-noise ratios,wide effective frequency bands,and high structural imaging accuracy;③The quantitative prediction of the thickness,formation pressure coefficient,and brittleness of high-quality shales based on research on petrophysical characteristics;the quantitative prediction of the organic carbon content,gas content,and porosity of shales based on statistical petrophysics;the quantitative prediction of fractures formed due to the superimposed effect of multi-stage structural modifications based on the paleo-stress field evolution revealed using the finite element simulation technique;and the ascertainment of the distribution patterns of the current in-situ stress field using the current stress field prediction technique developed using the combined spring model.The above breakthroughs have effectively guided the sweet spot prediction,exploration,and production of normal-pressure shale gas,providing a basis for the discovery of the Nanchuan normal-pressure shale gas field.Subsequent research should focus on more scientific and reasonable seismic acquisition techniques based on seismic reception using 5G wireless nodes,high-precision automatic image processing technologies for high-steep structures in complex mountains,and integrated geology-engineering-economy seismic evaluation methods for sweet spots.

Table and Figures | Reference | Related Articles | Metrics
Application of supervised descent method for 2D magnetotelluric inversion and its application
FU Xing, TAN Han-Dong, DONG Yan, WANG Mao
Geophysical and Geochemical Exploration    2024, 48 (1): 175-184.   DOI: 10.11720/wtyht.2024.1417
Abstract123)   HTML1)    PDF (5394KB)(206)      

Traditional two-dimensional inversion methods of magnetotelluric are mature, but there are still some problems, such as reliance on the initial model, reliance on regularization parameter selection, and easy to fall into local minimum. In order to solve the above problems, this paper adopts the supervised descent method to improve the effect of two-dimensional inversion of magnetotelluric. The supervised descent method is a machine learning algorithm that learns the average descending direction to predict the residual of data. Based on the theory of supervised descent method, this paper develops the two-dimensional inversion algorithm of magnetotelluric, designs the theoretical model synthesis example to verify the correctness of the algorithm, and inverts the measured data on the Tibet Plateau to test the practicability of the supervised descent method. The inversion results of the theoretical model synthesis data and the measured data show that, compared with the traditional nonlinear conjugate gradient inversion, the inversion based on the supervised descent method has the characteristics of fast convergence speed, good inversion effect, and strong anti-noise ability.

Table and Figures | Reference | Related Articles | Metrics
Exploring electromagnetic noise suppression technologies for magnetotelluric sounding in high-interference ore districts
HAO She-Feng, TIAN Shao-Bing, MEI Rong, PENG Rong-Hua, LI Zhao-Ling
Geophysical and Geochemical Exploration    2024, 48 (1): 162-174.   DOI: 10.11720/wtyht.2024.1140
Abstract121)   HTML3)    PDF (9636KB)(258)      

Magnetotelluric sounding (MT) has been extensively applied in mineral resource exploration. However, strong anthropogenic electromagnetic interference severely constrains the acquisition of high-quality original MT data. This study provided a detailed summary of the common types of electromagnetic noise sources in China and analyzed the characteristics of electromagnetic noise they produced. By comparing the methods for MT electromagnetic noise reduction at home and abroad, this study developed a rapid and effective construction and processing technology for MT data denoising in high-interference ore districts based on actual production demands. The results indicate that Robust processing, remote reference technique, and manual selection are effective and necessary in enhancing MT data quality. Besides, theoretical calculations suggest that the distance between the remote reference stations should be set at 3.56-fold skin depth or above, as verified by the MT experiments in the ore district of the Hongze salt basin, Jiangsu Province.

Table and Figures | Reference | Related Articles | Metrics
Metalleogenic geochemistry:Science problems and research ideas
XI Xiao-Huan
Geophysical and Geochemical Exploration    2024, 48 (4): 891-917.   DOI: 10.11720/wtyht.2024.0282
Abstract119)   HTML5)    PDF (791KB)(157)      

In geoscientific field, the essential object of all the research problems is the physical world which is derived from the crust-mantle interaction and has deeply influenced globally the environment and resources. The metallogenic geochemical theory believes that the metallogenic materials are the internal factors for the metallogenic system to influence the metallogenic process, and taking metallogenic materials as the main body to study the problems of metallogenic materials and metallogenic processes is the basic meaning of the metallogenic geochemical theory, and the core subject of the studies of metallogenic rules and theories. During the mineralization process of metallogenic system, metallogenic materials formed into metallogenic series of corresponding scale. This paper outlines several scientific topics of the metallogenic geochemical studies, among which, the topic of global metallogenic system mainly studies the metallogenic processes and relations of the series of metallogenic regions, provinces and belts formed by metallogenic materials in the context of global metallogenic process; the topic of regional metallogenic system mainly studies the metallogenic processes and relations of ore field series in the context of regional metallogenic process; the topic of ore field metallogenic system mainly studies the metallogenic processes and relations of mineral deposit series in the context of ore field metallogenic process; the topic of mineral deposit metallogenic system mainly studies the metallogenic processes and relations of ore-body series in the context of mineral deposit metallogenic process. The basic research ideas concerning above mentioned studies are discussed in this paper, including the metallogenic materials' geneses and sources, migration and evolution, differentiation and concentration, as well as the zoning relations of each level's metallogenic system and series of the world during the metallogenic processes. The purpose is to summary the metallogenic rules, explore the metallogenic mechanism and guide the mineral resources exploration. Supported by modern technologies and methods of IT(information technology), modeling and AI(artificial intelligence), the metallogenic geochemical theory uses the earth system scientific ideas to study the problems of metallogenic system and metallogenic series, construct the theoretical framework for metallogenic geochemical research, and provide a theoretical basis for the mineral resources exploration, evaluation and development technics and methods.

Table and Figures | Reference | Related Articles | Metrics
A key seismic processing technique for deep geothermal exploration in igneous province in southern China
ZHENG Hao, CUI Yue, XU Lu, QI Peng
Geophysical and Geochemical Exploration    2024, 48 (1): 88-97.   DOI: 10.11720/wtyht.2024.1084
Abstract118)   HTML4)    PDF (15267KB)(223)      

Southern China's igneous province,as a significant geothermal resource area in China,possesses abundant geothermal resources owing to its favorable accumulation conditions for medium-to-high temperature geothermal resources.However,gravity-magnetic-magnetotelluric exploration methods fail to sufficiently characterize the formation structures,geothermal reservoir boundaries,and the spatial distribution of geothermal reservoirs within the concealed fault zones,posing challenges in exploring deep geothermal resources.Hence,this study delved into the key seismic processing techniques for deep geothermal exploration based on 3D seismic exploration data,establishing a targeted processing flow.First,the problem of low signal-to-noise ratios in deep layers was solved through fine-scale preprocessing for deep geothermal reservoirs,laying a solid data foundation.Then,a high-precision velocity model was built via fault-guided tomography velocity modeling.Finally,the high-precision imaging of deep geothermal reservoirs was achieved using the amplitude-preserving low-frequency reverse-time migration technology,thus improving the imaging quality and the characterization accuracy of geothermal reservoir spaces and high-steep boundaries.Field data-based testing verified the validity and practicability of the processing flow.

Table and Figures | Reference | Related Articles | Metrics
REE geochemical anomalies in soils of the Ximeng-Lancang area in southwestern Yunnan and their discovery and their implications for ore prospecting
XIE Kui-Rui, SONG Xu-Feng, ZHOU Kun, ZHOU Yu-Guo, SHE Zhong-Ming, TANG Jian
Geophysical and Geochemical Exploration    2024, 48 (3): 660-667.   DOI: 10.11720/wtyht.2024.2014
Abstract118)   HTML3)    PDF (2521KB)(141)      

The Ximeng-Lancang area in southwestern Yunnan resides in the southern section of the Nujiang-Lancangjiang-Jinshajiang orogenic belt in Southwest China. The 1∶50,000 geochemical soil survey revealed 24 rare-earth-element (REE) geochemical anomalies, which are primarily distributed in the Carboniferous Pingzhang Formation mafic volcanic rocks and the Carboniferous-Permian Yutangzhai Formation sedimentary carbonate rocks within and near the Changning-Menglian deep fault zone. Furthermore, the AP00 REE geochemical anomalies ranking high in the evaluation were analyzed in detail through a 1∶10,000 geochemical soil survey, a 1∶10,000 special geological survey, and light-duty prospecting engineering in mountainous areas. A new type of REE ores in weathering crusts has been first discovered in sedimentary carbonate strata, with preliminarily estimated REE resources reaching a medium scale, suggesting a prospecting breakthrough. This finding shows a new prospecting approach, which can be referenced for similar research. As revealed by a comprehensive analysis of the regional geological and geochemical settings and the data of AP00 REE anomalies, the AP00 REE ores in weathering crusts have undergone a gradual enrichment and mineralization process involving four different geological processes, suggesting polygenetic compound REE ores. Considering the low leaching efficiency of AP00 REE ores and significant structural (magmatic) superimposed mineralization of the heavy REE yttrium, it is inferred that yttrium-dominated primary REE ores might exist in the deep part, implying high potential for heavy-REE ores.

Table and Figures | Reference | Related Articles | Metrics
Determining double-layer goafs in coal mines using CSAMT-derived apparent resistivity and impedance phase
QIN Chang-Chun, NIU Zheng, LI Jing
Geophysical and Geochemical Exploration    2024, 48 (3): 690-697.   DOI: 10.11720/wtyht.2024.1338
Abstract118)   HTML5)    PDF (4081KB)(204)      

The goaf and subsidence areas formed ue to the mining of subsurface coal seams can cause damage to surrounding ecological environments.At present, the detection effects of double-layer goafs in coal mines, especially the second-layer goafs, are unsatisfactory. In response to this challenge, this study delineated goafs using apparent resistivity and impedance phase derived from the data acquired by an efficient controllable source audio-frequency magnetotelluric instrument. In the case of a shallow water-bearing goaf with low resistivity, the apparent resistivity displays shadow effects, leading to an extended abnormal range of the upper target, which is unfavorable to the identification of the lower high-resistivity goaf. In contrast, the impedance phase, exhibiting minor shadow and static effects, shows a significant response to the lower goaf. As indicated by the theoretical model testing results, the combination of apparent resistivity and impedance phase can effectively determine shallow water-bearing goafs and deep unfilled high-resistivity goafs. This combination method was employed to interpret the double-layer goaf in the Shenfu mining area of the Jurassic coal field in northern Shaanxi, achieving satisfactory results through the mutual verification of the two parameters. Engineering verification results indicate that this method demonstrates reliable inference and expected exploration effects. Overall, this method provides a new approach for CSAMT-based inference and interpretation in the exploration of double-layer goafs in coal mines, thus holding critical technical promotion and reference significance.

Table and Figures | Reference | Related Articles | Metrics
Classification of carbonate reservoirs based on pore throat radius distributions
ZHAO Bing
Geophysical and Geochemical Exploration    2024, 48 (1): 134-141.   DOI: 10.11720/wtyht.2024.2576
Abstract117)   HTML1)    PDF (5937KB)(179)      

Since carbonate reservoirs characterized by diverse reservoir spaces and high heterogeneity exhibit intricate internal pore structures,conventional petrophysical classification methods fail to accurately classify these reservoirs,especially the reservoirs with complex porous systems whose pore throat radii manifest a multimodal(e.g.,bimodal,and trimodal) distribution.By investigating the M Formation's carbonate reservoirs in an oil field in the Middle East,this study clarified that the internal pore structures of rocks determine the pore throat radius distribution,which in turn affects the classification of rocks.Hence,starting with the pore throat size distribution,and considering the contribution of pore components corresponding to each peak in the multimodal samples to the rock reservoir space and seepage capacity,this study proposed a pore throat radius parameter Rmax* combining pore throat sizes and their proportions to characterize the pore structures of rocks based on the cumulative permeability curve.Then,this study classified the selected 114 bimodal and 43 trimodal rock samples.Moreover,the characteristics of each type of reservoir were examined in depth by combining with physical properties,mercury injection data,thin-section observational data,and logs.The results of this study show that Rmax* can better characterize the pore structures of reservoirs and improve the reservoir classification effectiveness compared with the classification based on a single pore throat radius(R35,corresponding to mercury saturation of 35%).

Table and Figures | Reference | Related Articles | Metrics
Analysis of critical parameters in the field acquisition of short-offset transient electromagnetic data
CHEN Wei-Ying, XUE Guo-Qiang, LI Hai
Geophysical and Geochemical Exploration    2024, 48 (5): 1169-1175.   DOI: 10.11720/wtyht.2024.1197
Abstract117)   HTML3)    PDF (2409KB)(133)      

The grounded-source short-offset transient electromagnetic (SOTEM) method involves many parameters in field data acquisition. The selection of these parameters is closely associated with the signal quality and detection sensitivity of measured data. Based on the relevant provisions in the organization standard, Technical specification for grounded-source short-offset transient electromagnetic method (T/CGS 002—2021), issued by the Chinese Geophysical Society, numerical emulations, and practical cases, this study analyzed and expounded the selection criteria of critical parameters like transmitting source length, transmitting fundamental frequency, offset, device type, and observation component. The insights obtained in this study are significant for guiding the field construction of the SOTEM device and leveraging its detection performance.

Table and Figures | Reference | Related Articles | Metrics
Geophysical identification of Cretaceous reservoirs in the Shinan area, Junggar Basin
LI Lu-Lu, JIANG Guo-Yu, LIU Tao, HE Yan, ZHANG Yong-Bo
Geophysical and Geochemical Exploration    2024, 48 (2): 334-341.   DOI: 10.11720/wtyht.2024.1077
Abstract115)   HTML4)    PDF (7477KB)(179)      

Industrial oil flows have been successively obtained from the basal conglomerates of the Cretaceous Qingshuihe Formation in the Shinan area, Junggar Basin. However, this set of reservoirs exhibits multi-layer three-dimensional oil-bearing properties and significant vertical and horizontal variations. Therefore, there is an urgent need to overcome the challenge of the identification and fine-scale characterization of reservoirs. Based on the accurate calibration of seismic and geological horizons, this study reconstructed the paleogeomorphology of the first member of the Cretaceous Qingshuihe Formation using based on the seismic flattening and residual thickness methods in three steps. By combining the reservoir prediction through natural gamma-ray pseudo-acoustic wave inversion, this study roughly identified the predominant factors controlling sedimentation and the spatial distributions of sand bodies. The results of this study provide an effective method combination for predicting Cretaceous reservoirs in the Shinan area. Furthermore, these results offer a sufficient scientific basis for oil and gas exploration in the glutenite reservoirs of the Cretaceous Qingshuihe Formation, thus effectively reducing the exploration risk.

Table and Figures | Reference | Related Articles | Metrics
Data integration based on MapGIS and ASCII code files
ZHAO Hong-Yan, LI Cong, CHANG Qiu-Ling, GUAN Xiao-Rong, DU Cheng-Yuan, CHEN Xin, WANG Jing
Geophysical and Geochemical Exploration    2024, 48 (3): 804-811.   DOI: 10.11720/wtyht.2024.1367
Abstract113)   HTML4)    PDF (3914KB)(139)      

Data integration based on MapGIS includes data conversion, data normalization, data fusion, and related research. A synthesis of existing research suggests that data conversion has been intensively studied, while there is a lack in studies of data normalization and data fusion. This study improved the data normalization method based on the complex and extensively applied geological maps, achieving the normalized annotation and color filling for thousands of geobodies at one time. A technical process for data fusion was established by analyzing the applicable conditions of various commonly used methods for data fusion and making some supplementation. Besides, ASCII code files were prepared for mapping small coal pillars in batches. The results of this study show that improving the data normalization method, establishing the technical process for data fusion, and making full use of ASCII code files can significantly enhance the efficiency of data integration and broaden the mind for problem solving.

Table and Figures | Reference | Related Articles | Metrics
Application of comprehensive geophysical prospecting in the exploration of geothermal resources in the Linjiadi area, Aohan Banner, Inner Mongolia
HAN Shu-He, PEI Qiu-Ming, XU Jian, SONG Zhi-Yong, MO Hai-Bin
Geophysical and Geochemical Exploration    2024, 48 (4): 962-970.   DOI: 10.11720/wtyht.2024.1315
Abstract112)   HTML2)    PDF (4495KB)(132)      

In the context of the goals of both peak carbon dioxide emissions and carbon neutrality, scientific and efficient exploration and exploitation of geothermal resources are criticalfor the geothermal industry. To address the commonly concernedtechnical challenges in the exploration of moderately deep geothermal resources, this study investigated the effectiveness of comprehensive geophysical prospecting in the exploration of geothermal resources inthe Linjiadi area, Aohan Banner, Inner Mongolia. Based on the analysis ofthe geological and hydrogeological conditions, this studypreliminarilyascertainedthe geothermal field characteristicsand the hydrochemicalcharacteristics of groundwater in the Linjiadi area. By comprehensively employingcontrolled source audio-frequency magnetotellurics (CSAMT), CSAMT; microtremor survey; radioactive radon survey; this study roughly determined the distribution of strata, magmatic rocks, and fault structures in the study area, inferring the factors controllinggeothermal anomaly areas and hot-water migration.Accordingly, exploration boreholes were arranged, allowing for drilling verificationwith a total length of 960 m. The results show that the comprehensiveapplication of CSAMT and microtremor survey, combined with radioactive radon survey for auxiliary verification, is effective in exploringmoderately deep geothermal resources. This study will provide a methodological reference for geothermal resource exploration in other areas.

Table and Figures | Reference | Related Articles | Metrics
Geophysical forecasting of deep reservoirs in the Z gas field
HE Xian-Ke, LOU Min, LI Bing-Ying, LIU Jiang, HU Wei, CAI Hua
Geophysical and Geochemical Exploration    2024, 48 (3): 609-617.   DOI: 10.11720/wtyht.2024.1352
Abstract109)   HTML2)    PDF (12226KB)(137)      

Fine-scale characterization of reservoirs is critical for oil and gas exploration and production. Reservoirs in the Z gas field exhibit considerable burial depths and superposed sandstone and mudstone impedance characterized by dark spots, complicating their identification using conventional seismic methods. This study achieved the characterization of deep reservoirs in the Z gas field based on the dominant-channel stacking technique. First of all, this study analyzed the seismic response characteristics of deep reservoirs through forward modeling, positing that poor physical properties are the primary factor contributing to the formation of dark spots. Then, starting with the investigation of the near-well prestack gathers of the target layer, this study examined their amplitude variation with offset (AVO) characteristics and seismic phase stability at different angles, determining the dominant-angle seismic channels that can accurately reflect the phase stability of reservoirs. Finally, this study derived a lithology-sensitive 3D data volume through partial stacking of dominant-angle seismic channels, achieving the characterization of deep reservoirs. The near-trace superimposition (3°~15°) of phase-shift seismic data (-90°) allowed for effectively characterized the H3a reservoir in the Z gas field, providing a geophysical basis for subsequent well deployment. Therefore, the dominant-channel stacking technique can effectively characterize the spatial distribution of deep river-channel reservoirs, guiding the reservoir characterization of similar oil and gas fields.

Table and Figures | Reference | Related Articles | Metrics
Prospecting potential of medium-fine-grained rock-type lithium resources in the Xianghualing orefield, Hunan Province, China
SONG Zhi-Fang, YANG Qi-Zhi, ZHU Zhen-Zhen, CAO Neng-Wen
Geophysical and Geochemical Exploration    2024, 48 (2): 366-374.   DOI: 10.11720/wtyht.2024.1040
Abstract107)   HTML1)    PDF (6844KB)(150)      

This study aims to explore the distribution characteristics and occurrence patterns of lithium in medium-fine-grained rocks and its paragenetic or associated relationship with minerals such as tungsten, tin, niobium, tantalum, beryllium, and rubidium. Hence, it analyzed the distribution characteristics and diagenetic and metallogenic processes of nonferrous-rare metals in the Xianghualing orefield. With the exposed granitic rock masses as the center, this study divided three ore-forming sections of rare metal lithium, i.e., the Laiziling-Nanjichong, Jianfengling-Xianghuapu, and Tongtianmiao-Yaoshanli ore-forming sections. Moreover, lithium-rich mineralized bodies were discovered in the medium-fine-grained rocks of the former two ore-forming sections. Lithium converges and accumulates in the interior and top of medium-fine-grained granitic rock masses, at the automorphism and alteration positions of high-emplacement apophyses and vein fronts and edges, or in the areas enclosed by silicon-rich quartz veins at the contact zone with silicon-rich surrounding rocks. Dividing these mineralization and alteration sections serves as a crucial approach for exploring medium-fine-grained rock type lithium ore bodies in the Xianghualing orefield.

Table and Figures | Reference | Related Articles | Metrics
Deep structural characteristics of the Yagan fault zone in northeastern Ejina Banner, Inner Mongolia: Evidence from magnetotelluric sounding
WANG Wen-Jie, CHEN Lei, LEI Cong-Cong, SHI Xiao-Feng, YANG Biao, WANG Wen-Bao, SUN Da-Peng, XU Hao-Qing
Geophysical and Geochemical Exploration    2024, 48 (3): 640-650.   DOI: 10.11720/wtyht.2024.1478
Abstract104)   HTML5)    PDF (14674KB)(195)      

There exists a continued debate concerning the spatial distribution and deep structural characteristics of the Yagan fault zone in northeastern Ejina Banner, Inner Mongolia. Adhering to the known-to-unknown research approach, this study completed five magnetotelluric sounding (MT) profiles. First, it delved into the relationship between the electrical structure characteristics of a MT profile (MT01) on the west side of the study area and the geological structure information of the Yagan fault zone within the profile. In terms of electrical characteristics, the Yagan fault zone was determined as a resistivity gradient zone characterized by northward dip, high dip angles, and deep depths. Based on these characteristics, and combined with the inversion interpretation results of four MT profiles (MT02~MT05) on the east side, this study identified the deep positions and structural characteristics of the Yagan fault zone within all the MT profiles. Moreover, it determined the major electrical directions of all the MT profiles using the impedance tensor decomposition technique, and the spatial trend of the Yagan fault zone based on the two-dimensional inversion interpretation results. As revealed by the results, the Yagan fault zone within the study area exhibits an overall nearly EW strike at the shallow surface and a strike of NE45° in the deep part, with an average width of approximately 6.8 km. It is a reverse fault with a gradual arc deflection to the north from west to east, manifesting a generally northward dip direction, dip angles ranging from 60° to 67°, and a fault depth of about 20 km. The obtained deep electrical structure model effectively reveals the deep structural characteristics of the study area. providing certain reference significance for the study of regional tectonic evolution

Table and Figures | Reference | Related Articles | Metrics
Analysis of soil heavy metal influencing factors and sources in typical small watersheds in shallow mountainous area
SHI Jing-Tao, LIU Jun-Jian, ZHANG Jun-Chao, WANG Jiang-Yu-Long, JIANG Yu-Ge, WANG Mo, LI Heng-Fei, YANG Wen-Hao, YAN Xiang-Jin
Geophysical and Geochemical Exploration    2024, 48 (3): 834-846.   DOI: 10.11720/wtyht.2024.1270
Abstract104)   HTML0)    PDF (6471KB)(122)      

This study investigated the contents of eight heavy metals and related oxides in rocks with different lithologies and the soils formed in the Puhe river basin of Pingquan City. Based on the above investigation, this study analyzed the influencing factors and sources of soil heavy metals in the typical small watershed of the shallow mountainous area, aiming to provide theoretical support for water conservation and ecological restoration in the Beijing-Tianjin-Hebei region. Based on the contents and spatial distributions of soil heavy metals and combined with regional geological setting, this study delved into the influencing factors and sources of heavy metal elements in topsoil, deep soil, and soil parent materials using multiple statistical methods. The results show that heavy metals in topsoil and deep soil exhibited relatively similar contents and coupled spatial distributions. In terms of vertical distributions, the correlation coefficients of heavy metals were negative between topsoil and soil parent materials but positive between deep soil and soil parent materials. As indicated by the results, in the topsoil, elements Cr, Ni, Cu, Zn, and Pb are primarily derived from soil parent materials, while elements Cd, Hg, and As are subjected to the influence of mining. In contrast, the eight heavy metals in the deep soil predominantly stem from soil parent materials, with anthropogenic factors contributing to Cd and As.

Table and Figures | Reference | Related Articles | Metrics
Comparative study on lithology classification of oil logging data based on different machine learning models
JIANG Li, ZHANG Zhi-Mo, WANG Qi-Wei, FENG Zhi-Bing, ZHANG Bo-Cheng, REN Teng-Fei
Geophysical and Geochemical Exploration    2024, 48 (2): 489-497.   DOI: 10.11720/wtyht.2024.1492
Abstract102)   HTML0)    PDF (2671KB)(138)      

Specific computational tools assist geologists in identifying and classifying the lithology of rocks in oil well exploration,reducing costs,and enhancing operational efficiency. Machine learning methods integrate a vast amount of information,enabling efficient pattern recognition and accurate decision-making. This article categorizes the lithology of five oil wells in the Norwegian Sea,randomly dividing the data into a training set (70%) and a test set (30%). Using multivariate well log parameter data for training and validation,the application effectiveness of models such as Multilayer Perceptron (MLP),Decision Tree,Random Forest,and XGBoost is compared. The research results indicate that the XGBoost model outperforms others in terms of data generalization,achieving an accuracy of 95%. The Random Forest model follows with an accuracy of 94%. Meanwhile,Multilayer Perceptron (MLP) and Decision Tree models exhibit good robustness,with accuracies of 92% and 90%,respectively.

Table and Figures | Reference | Related Articles | Metrics
Geochemical characteristics and formation mechanism of thermal spring water in the Chuhe fault zone in Anhui Province
WANG Guo-Jian, HU Wen-Hui, LI Guang-Zhi, ZHU Huai-Ping, HU Bin, XIAO Peng-Fei, ZHANG Ying
Geophysical and Geochemical Exploration    2024, 48 (5): 1223-1231.   DOI: 10.11720/wtyht.2024.1145
Abstract101)   HTML4)    PDF (3297KB)(76)      

Several thermal springs associated with tectonic activity occur along the Chuhe fault zone. Except for the Bantang thermal spring at the southern end, other springs along the fault zone exhibit unideal utilization of thermal energy. This affects the development of local industries. Therefore, it is necessary to delve into the geochemical characteristics and formation mechanism of typical thermal springs along the Chuhe fault zone. The purpose is to provide scientific evidence for the rational utilization and exploration methods of geothermal resources in the thermal spring groups in the future. Therefore, this study investigated thermal springs in the Bantang, Zhaoguan, and Xiangquan areas along the Chuhe fault zone, where nine samples of thermal spring water, cold well water, and surface water were collected individually. For these samples, the composition tests of 25 indices, including anions, cations, and major and trace elements, were tested, and the hydrogen and oxygen isotope values were determined. The analyses of the 25 measured indices, along with the investigation of the geothermal water source and controlling factors through hydrogen and oxygen isotope tracing, indicate that the thermal spring water in the three areas tends to be of the CaSO4 type and is all closely related to the interactions between groundwater and surrounding rocks. The thermal spring water, cold well water, and surface water in Bantang and Zhaoguan show consanguinity, with geothermal water being directly recharged with local precipitation and surface water. In contrast, the thermal spring water, surface water, and cold well water in the Xiangquan area show weaker consanguinity, indicating different sources for the underground cold water runoff and geothermal water. This should be noted when determining the primary factors controlling the thermal spring in this area. The temperatures calculated using a chalcedony geothermometer were close to the temperatures of the hot water recovered on the surface. In contrast, the temperatures calculated using a quartz geothermometer approached the temperatures of deep geothermal reservoirs. The results of this study preliminarily reveal the geochemical characteristics, recharge relationships, and water-rock interactions of thermal spring water in the Chuhe fault zone and propose effective geochemical geothermometers for the study area. These contribute to deeper insights into the mechanisms and controlling factors of the thermal springs along the fault zone, as well as providing practical value and a methodological model for enhancing thermal spring functionality and geothermal resource exploitation and utilization in the future.

Table and Figures | Reference | Related Articles | Metrics
An observation device based on asymmetric design for high-density resistivity imaging
PANG Yong-Hao, SHEN Zhao-Ang, CHANG Zhi-Xi, LI Guang-Chang, CHEN Mei, XIE Zhi-Wei, WANG Wei
Geophysical and Geochemical Exploration    2024, 48 (3): 786-793.   DOI: 10.11720/wtyht.2024.1454
Abstract101)   HTML0)    PDF (5600KB)(147)      

For the high-density resistivity method, favorable grounding conditions are required to ensure the establishment and measurement of the geoelectric field. Otherwise, unfavorable grounding conditions, like rigid pavement, will prevent some electrodes from being inserted into the ground, leading to the loss of valid data from standard observation devices and reducing the imaging quality. Therefore, this study proposed a method for the fast observation device design. This method supplemented data using an asymmetric quadrupole electrode array according to the spatial positions of missing data's recording points. Numerical simulations show that the method proposed in this study significantly improved the imaging effects of Wenner, Schlumberger, and dipole-dipole arrays, with a second-scale design time. In this study, an observation device based on asymmetric design for high-density resistivity imaging was successfully applied to the embankment detection in Ningbo, reducing the influence of motor lanes on data quality and accurately locating the embankment position.

Table and Figures | Reference | Related Articles | Metrics
Element geochemical characteristics of weathering crust profiles of the Wenchuan section in the upper arid valley of the Minjiang River
ZHOU Xue-Ni, CAO Ya-Ting, JI Yang
Geophysical and Geochemical Exploration    2024, 48 (3): 597-608.   DOI: 10.11720/wtyht.2024.1255
Abstract100)   HTML6)    PDF (6076KB)(119)      

This study conducted geochemical tests and analyses for vertical rock-soil profiles with different bedrock types in the Wenchuan section in the upper arid valley of the Minjiang River. Based on the above, this study explored the vertical distributions of elements in these weathering crust profiles to investigate the influence of bedrocks on the contents of chemical elements in soils. From a geological perspective, this study provided proposals for planting in agricultural production and eco-environmental restoration for the study area. The results of this study are as follows: (1) From top to bottom, weathering crust profiles can be divided into four layers: the humus layer (A), the illuvial layer (B), the soil parent material layer (C), and the bedrock layer (R). The humus layers exhibit higher average values of Al, Ca, K, Mg, Fe, Se, Zn, Cu, Cd, and Pb and lower average values of Si, Na, Mn, Cr, As, Cd, and Hg, compared to corresponding national average values in soils; (2) In weathering crust profiles with different bedrock types, except for elements with higher contents in both bedrocks and corresponding soil layers, the same elements manifest similar contents in other soil layers; (3) The chemical weathering intensity increased from the bedrock to the humus layers, with soil weathering degrees generally higher than bedrock weathering degrees; (4) In addition to characteristics inherited from soil parent materials, elements in weathering crust profiles show content differentiation, characterized by enriched Al, K, and Se in humus layers, enriched Na, Fe, Si, Pb, Cu, Zn, Mn, As, Cd, Cr, and Hg in illuvial layers, and enriched Mg and Ca in soil parent material layers.

Table and Figures | Reference | Related Articles | Metrics
Exploring geological conditions for tunnel construction in hydropower engineering using a 3D resistivity method
HUANG Yao
Geophysical and Geochemical Exploration    2024, 48 (1): 281-286.   DOI: 10.11720/wtyht.2024.2602
Abstract99)   HTML1)    PDF (2923KB)(237)      

To explore the geological conditions for the tunnel construction in hydropower engineering, this study built a calculation model for tunnel geological conditions using a 3D resistivity method. Through numerical simulations, this study determined the 3D resistivity distribution of the tunnel model. Then, the model was applied to the field exploration of a water resource allocation project in Yunnan, yielding satisfactory exploration results, as verified through drilling. The findings suggest that the 3D resistivity method can be effectively applied to the exploration of geological conditions for tunnel construction in hydropower engineering by accurately determining formation thicknesses, as well as the sizes, locations, and filling characteristics of karst cavities. The quantitative and qualitative data obtained from exploration in this study lay a reliable foundation for the management, informatization, and disaster prevention of tunnel construction.

Table and Figures | Reference | Related Articles | Metrics
京ICP备05055290号-3
Copyright © 2021 Geophysical and Geochemical Exploration, All Rights Reserved.
Tel:(8610)62301569   Email:wt@caict.ac.cn