|
|
A log-based lithofacies identification method based on random forest and sedimentary microfacies characteristics:A case study of tight sandstones in the second member of the Xujiahe Formation in the Xinchang area |
HE Xiao-Long(), ZHANG Bing(), YANG Kai, HE Yi-Fan, LI Zhuo |
Key Laboratory of Earth Exploration and Information Techniques,Ministry of Education,Chengdu University of Technology,Chengdu 610059,China |
|
|
Abstract Tight sandstones serve as significant oil and gas reservoirs.Their lithofacies identification can assist in further understanding the developmental characteristics of reservoirs.Combining core observations with log data processing,this study analyzed the lithofacies and sedimentary microfacies characteristics of tight sandstones in the Xinchang area and the internal relationships between lithofacies and sedimentary microfacies.Moreover,it constructed a random forest classification model with geological implications through data mining of sedimentary microfacies characteristics.The results show that:(1)Tight sandstones in the Xinchang area can be classified into seven typical lithofacies,including mudstone,siltstone with ripple lamination,massive fine sandstone,fine sandstone with parallel bedding,massive medium- to coarse-grained sandstone,and medium- to coarse-grained sandstone with parallel/cross bedding;(2)The sedimentary microfacies in the Xinchang area consist primarily of subaqueous distributary channel,subaqueous distributary bay,river-mouth bar,and prodeltaic mud,which are closely associated with the sedimentation of lithofacies;(3)In the classification model,the relative centroid(RM),root mean square deviation(GS),average median(AM),and average slope(M) of the gamma ray(GR) curve can be used as the characteristic parameters of sedimentary microfacies to increase the number of characteristics in the dataset;(4)Considering the characteristics of sedimentary microfacies,especially the energy and turbulence of water bodies,can significantly enhance the performance of the random forest classification model.Overall,the results of this study provide a novel approach for lithofacies identification using machine learning methods and a significant reference for oil and gas exploration in tight sandstones.
|
Received: 25 April 2024
Published: 21 October 2024
|
|
|
|
|
|
Map of structural position(a) and comprehensive columnar section(b) of the Xujiahe Formation in the Xinchang area,Western Sichuan Basin
|
|
Typical sandstone sedimentary structure of the second member of Xujiahe Formation in the Western Sichuan depression
|
|
Main sedimentary microfacies of the Xujiahe Formation in the Xinchang area
|
|
Decision tree classification diagram
|
|
Matrix plot of petrophysical logging parameters associated with rock facies
|
参数 | 搜索范围 | 步长 | 网格宽度 | n-estimators | 100~300 | 20 | 11 | max-depth | 5~25,None | 2 | 12 | min-samples-split | 2~12 | 1 | 11 | min-samples-leaf | 1~11 | 1 | 11 | max-features | 1/9~1 | 1/9 | 9 |
|
Setting of hyperparameter grid search space
|
|
Distribution of F1 scores from grid search and hyperparameter optimization
|
标签 | 精确率 | 召回率 | F1分数 | 测试样本数 | CMms | 0.97 | 0.90 | 0.94 | 41 | CMpl | 0.82 | 0.88 | 0.85 | 16 | CMx | 0.87 | 0.91 | 0.89 | 22 | Fms | 0.84 | 0.89 | 0.86 | 18 | Fpl | 1.00 | 1.00 | 1.00 | 14 | MS | 0.94 | 1.00 | 0.97 | 15 | S | 0.95 | 0.90 | 0.93 | 21 | 加权平均 | 0.92 | 0.92 | 0.92 | 147 | 准确率 | 0.92 | 147 |
|
Random forest classification report(including sedimentary microfacies related parameters)
|
|
Confusion matrix of classification results
|
|
SHAP model importance analysis(a) and CL562 well lithofacies prediction results(b)
|
[1] |
辜穗, 王文婧, 高琼, 等. 致密砂岩气规模效益开发管理机制[J]. 天然气工业, 2023, 43(5):100-107.
|
[1] |
Gu S, Wang W J, Gao Q, et al. Management mechanism of large-scale benefit development of tight sandstone gas[J]. Natural Gas Industry, 2023, 43(5):100-107.
|
[2] |
任瑞川, 曾济楚, 梁斌. 港西油田F19区块砂体构型特征及模式研究[J]. 录井工程, 2022, 33(2):122-128.
|
[2] |
Ren R C, Zeng J C, Liang B. Study on sandstone architecture and patterns of F19 block in Gangxi Oilfield[J]. Mud Logging Engineering, 2022, 33(2):122-128.
|
[3] |
Miall A D. Lithofacies types and vertical profile models in braided river deposits:a summary[G]//Miall A D. Fluvial Sedimentology.AAPG Memoir 5,1977:597-604.
|
[4] |
Blair T C, McPherson J G. Alluvial fans and their natural distinction from rivers based on morphology,hydraulic processes,sedimentary processes,and facies assemblages[J]. Journal of Sedimentary Research, 1994, 64(3a):450-489.
|
[5] |
Sulpizio R, Dellino P, Doronzo D M, et al. Pyroclastic density currents:State of the art and perspectives[J]. Journal of Volcanology and Geothermal Research, 2014,283:36-65.
|
[6] |
邓远, 陈轩, 覃建华, 等. 吉木萨尔凹陷二叠系芦草沟组一段沉积期古地貌特征及有利储层分布[J]. 岩性油气藏, 2024, 36(1):136-144.
|
[6] |
Deng Y, Chen X, Qin J H, et al. Paleogeomorphology and favorable reservior distribution of the first member of Permian Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs, 2024, 36(1):136-144.
|
[7] |
赖锦, 李红斌, 张梅, 等. 非常规油气时代测井地质学研究进展[J]. 古地理学报, 2023, 25(5):1118-1138.
|
[7] |
Lai J, Li H B, Zhang M, et al. Advances in well logging geology in the era of unconventional hydrocarbon resources[J]. Journal of Palaeogeography:Chinese Edition, 2023, 25(5):1118-1138.
|
[8] |
车世琦. 测井资料用于页岩岩相划分及识别——以涪陵气田五峰组—龙马溪组为例[J]. 岩性油气藏, 2018, 30(1):121-132.
|
[8] |
Che S Q. Shale lithofacies identification and classification by using logging data:A case of Wufeng-Longmaxi Formation in Fuling gas field,Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1):121-132.
|
[9] |
刘君龙, 刘忠群, 肖开华, 等. 四川盆地新场地区三叠系须家河组二段致密砂岩有利岩石相表征及油气地质意义[J]. 石油勘探与开发, 2020, 47(6):1111-1121.
|
[9] |
Liu J L, Liu Z Q, Xiao K H, et al. Characterization of favorable lithofacies in tight sandstone reservoirs and its significance for gas exploration and exploitation:A case study of the 2nd Member of Triassic Xujiahe Formation in the Xinchang Area,Sichuan Basin[J]. Petroleum Exploration and Development, 2020, 47(6):1111-1121.
|
[10] |
杨洋, 石万忠, 张晓明, 等. 页岩岩相的测井曲线识别方法——以焦石坝地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(2):135-146.
|
[10] |
Yang Y, Shi W Z, Zhang X M, et al. Identification method of shale lithofacies by logging curves:A case study from Wufeng-Longmaxi Formation in Jiaoshiba Area,SW China[J]. Lithologic Reservoirs, 2021, 33(2):135-146.
|
[11] |
Al-Mudhafar W J. Integrating well log interpretations for lithofacies classification and permeability modeling through advanced machine learning algorithms[J]. Journal of Petroleum Exploration and Production Technology, 2017, 7(4):1023-1033.
|
[12] |
江丽, 张智谟, 王琦玮, 等. 基于不同机器学习模型的石油测井数据岩性分类对比研究[J]. 物探与化探, 2024, 48(2):489-497.
|
[12] |
Jiang L, Zhang Z M, Wang Q W, et al. Comparative study on lithology classification of oil logging data based on different machine learning models[J]. Geophysical and Geochemical Exploration, 2024, 48(2):489-497.
|
[13] |
王民, 杨金路, 王鑫, 等. 基于随机森林算法的泥页岩岩相测井识别[J]. 地球科学, 2023, 48(1):130-142.
|
[13] |
Wang M, Yang J L, Wang X, et al. Identification of shale lithofacies by well logs based on random forest algorithm[J]. Earth Science, 2023, 48(1):130-142.
|
[14] |
高飞, 曲志鹏, 魏震, 等. 基于机器学习方法的测井岩相分类研究[J]. 地球物理学进展, 2024, 39(3):1173-1192.
|
[14] |
Gao F, Qu Z P, Wei Z, et al. A study on well-log lithofacies classification based on machine learning methods[J]. Progress in Geophysics, 2024, 39(3):1173-1192..
|
[15] |
李红斌, 王贵文, 王松, 等. 基于Kohonen神经网络的页岩油岩相测井识别方法——以吉木萨尔凹陷二叠系芦草沟组为例[J]. 沉积学报, 2022, 40(3):626-640.
|
[15] |
Li H B, Wang G W, Wang S, et al. Shale oil lithofacies identification by kohonen neural network method:The case of the Permian Lucaogou Formation in Jimusaer Sag[J]. Acta Sedimentologica Sinica, 2022, 40(3):626-640.
|
[16] |
庞国印, 唐俊, 王琪, 等. 利用概率神经网络预测成岩相——以鄂尔多斯盆地合水地区延长组长8段储层为例[J]. 特种油气藏, 2013, 20(2):43-47,152-153.
|
[16] |
Pang G Y, Tang J, Wang Q, et al. Prediction of diagenetic facies with probabilistic neural network:Taking member Chang 8 of Heshui Area in Ordos Basin as an example[J]. Special Oil & Gas Reservoirs, 2013, 20(2):43-47,152-153.
|
[17] |
张昌民, 张祥辉, Adrian J.Hartley, 等. 分支河流体系分类初探[J]. 岩性油气藏, 2023, 35(4):1-15.
|
[17] |
Zhang C M, Zhang X H, Hartley A J, et al. On classification of distributive fluvial system[J]. Lithologic Reservoirs, 2023, 35(4):1-15.
|
[18] |
李朋威, 胡宗全, 刘忠群, 等. 川西新场地区须二段深层致密砂岩储层类型与差异控储作用[J]. 天然气地球科学, 2024, 35(7):1136-1149.
|
[18] |
Li P W, Hu Z Q, Liu Z Q, et al. Types of the deep tight sandstone reservoirs and their different controlling in the T3x2 member of Xujiahe formation in Xinchang area,western Sichuan Basin[J]. Natural Gas Geoscience, 2024, 35(7):1136-1149..
|
[19] |
王志康. 川西新场地区须家河组二段物源特征及其与储层的关系[D]. 成都: 成都理工大学, 2021.
|
[19] |
Wang Z K. Provenance characteristics and its relationship with the reservoir of the 2nd member of Xujiahe Formation in Xinchang,western Sichuan depression[D]. Chengdu: Chengdu University of Technology, 2021.
|
[20] |
郑和荣, 刘忠群, 徐士林, 等. 四川盆地中国石化探区须家河组致密砂岩气勘探开发进展与攻关方向[J]. 石油与天然气地质, 2021, 42(4):765-783.
|
[20] |
Zheng H R, Liu Z Q, Xu S L, et al. Progress and key research directions of tight gas exploration and development in Xujiahe Formation,Sinopec exploration areas,Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4):765-783.
|
[21] |
苏加亮, 林良彪, 余瑜, 等. 川西新场地区上三叠统须家河组二、四段物源及储层特征差异对比研究[J]. 沉积学报, 2023, 41(5):1451-1467.
|
[21] |
Su J L, Lin L B, Yu Y, et al. Comparative study on the provenance and reservoir characteristics of the second and fourth members of the Upper Triassic Xujiahe Formation in the Xinchang Area,western Sichuan,China[J]. Acta Sedimentologica Sinica, 2023, 41(5):1451-1467.
|
[22] |
刘君龙, 纪友亮, 杨克明, 等. 川西须家河组前陆盆地构造层序及沉积充填响应特征[J]. 中国石油大学学报:自然科学版, 2015, 39(6):11-23.
|
[22] |
Liu J L, Ji Y L, Yang K M, et al. Tectono-stratigraphy and sedimentary infill characteristics of Xujiahe Formation in western Sichuan foreland basin[J]. Journal of China University of Petroleum:Edition of Natural Science, 2015, 39(6):11-23.
|
[23] |
Efron B, Tibshirani R J. An introduction to the bootstrap[M]. New York: Chapman and Hall/CRC,1994.
|
[24] |
潘冬, 诸葛月英, 叶文军, 等. 马西地区测井相流体识别新方法研究[C]// 西安石油大学,陕西省石油学会.2018油气田勘探与开发国际会议(IFEDC 2018)论文集.中国石油集团测井有限公司华北分公司,2018:10.
|
[24] |
Pan D, Zhuge Y Y, Ye W J, et al. New method for identification of fluid with log facies in Maxi area[C]// Xi'an Shiyou University,Shaanxi Petroleum Society.Proceedings of the 2018 International Field Exploration and Development Conference(IFEDC 2018).Hebei Branch,CNPC Logging Co.,Ltd.,2018:10.
|
[25] |
李志华, 黄文辉. 辫状河三角洲岩相特征及沉积模式——以鄂尔多斯盆地苏南地区盒8段为例[J]. 岩性油气藏, 2017, 29(1):43-50.
|
[25] |
Li Z H, Huang W H. Lithofacies characteristics and sedimentary model of braided delta:A case study of He8 member in the southern Sulige,Ordos Basin[J]. Lithologic Reservoirs, 2017, 29(1):43-50.
|
[1] |
SHANG Ya-Zhou, ZHANG Zhao-Hui, XU Duo-Nian, ZHAO Wen-Wen, CHEN Hua-Yong, HAN Hai-Bo. Log-based lithology identification of volcanic rocks using random forest method: A case study of Carboniferous strata in the Dixi area, Junggar Basin[J]. Geophysical and Geochemical Exploration, 2024, 48(4): 1025-1036. |
[2] |
CAO Shao-He, REN Feng-Ru, WANG Xiao-Xiao. Critical techniques for sweet spot prediction for tight sandstone reservoirs in the Dongsheng gas field and their application effects[J]. Geophysical and Geochemical Exploration, 2024, 48(4): 954-961. |
|
|
|
|