|
|
Application cases of the short-offset transient electromagnetic method in detecting goafs with thick overburden in a coal mine |
HUANG Shi-Mao1,2(), YANG Guang1,2(), WANG Jun-Cheng1,2, LUO Chuan-Gen1,2, XU Ming-Zuan1,2, ZHOU Nan-Nan3, ZHAO Peng4 |
1. Geological Exploration Technology Institute of Jiangsu Province, Nanjing 210049, China 2. Jiangsu Province Engineering Research Center of Airborne Detecting and Intelligent Perceptive Technology, Nanjing 210049, China 3. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 4. Beijing Zhongkediyuan Technology Co., Ltd., Beijing 100029, China |
|
|
Abstract Within a coal mine in Peixian County, Xuzhou City, brick-red Paleogene and Neogene strata were deposited in the faulted basin during the Cenozoic, with extensive Quaternary strata overlying various strata. The Quaternary, Jurassic, and Cretaceous strata exhibit thick overburden, up to over 500 m. This study explored the coal mine using the short-offset transient electromagnetic (SOTEM) method. Based on geoelectric conditions, reasonable observation parameters were designed to obtain the subterranean electric structure within a burial depth of 1500 m. Goafs were detected at a burial depth of 900 m, with their delineated boundaries aligning with the mining situation of the coal mine. The results of this study serve as a reference for detecting goafs with thick overburden in North China-type coalfields.
|
Received: 30 May 2023
Published: 21 October 2024
|
|
|
|
|
地层 | | 电阻率/(Ω·m) | 岩性描述 | 第四系 | Q | | 10~50 | 由东往西增厚,按成因分为全新统、更新统。全新统主要由粉砂岩组成;更新统由富砂姜的黏土夹中粗砂组成,底部含砾。 | 古近系 | E | 90.16 | F24以南揭露,底部为砾岩;中上部以砂质泥岩为主,夹砂岩薄层,含灰岩、砂岩、砂泥岩砾 | 侏罗—白垩系 | J-K | >576.49 | 10~90 | 该段在F24以南揭露,下部以砂质泥岩、泥岩与砾岩互层为主,上部以砂质泥岩为主,夹砂岩薄层 | | 由于受断块升降和剥蚀的影响,厚度变化大,每一断块由南向北增厚,由东向西变化不大,与煤系地层大致吻合。上部为粉砂岩、泥岩段,中部为杂色泥岩段,下部为紫褐色砂岩段 | 二叠系 | | | 15~1000 | 底部一层通称为奎山砂岩,个别孔其上保留有杂色泥岩、粉砂岩、砂岩 | | | 下段底部为分界砂岩,上部为砂质泥岩夹细砂岩,含煤线;中段以中细砂岩为主;上段以泥岩、黏土岩为主 | | | 主要由泥岩、粉砂岩、细砂岩、粉细互层、中粗砂岩、煤层组成,含有主采煤层7、9煤 | 石炭系 | C2 | | 45~1200 | 主要由粉砂岩、泥岩、薄—中厚石灰岩、中细砂岩、黏土岩及煤层组成。可采煤层17、21煤 | C1 | | 上部为灰岩夹黏土岩及中粗砂,下部为铁质泥岩 | 奥陶系 | O2 | >58.19 | >200 | 由厚层状灰岩夹砾状灰岩、白云质灰岩、白云岩,偶夹薄层泥岩组成 |
|
Stratigraphy and electrical properties of the study area
|
|
Outline of exploration zone structure
|
|
Schematic diagram of SOTEM device
|
|
SOTEM survey line and emission source layout
|
|
Measurement results at point 1500 on the line L10
|
|
Multi-channel voltage profile measured by the line L10
|
|
Inverse interpretation section of the line L10
|
|
Inverse interpretation section of the line L20
|
|
Inverse interpretation section of the line L30
|
[1] |
刘树才, 岳建华, 刘志新. 煤矿水文物探技术与应用[M]. 徐州: 中国矿业大学出版社, 2005.
|
[1] |
Liu S C, Yue J H, Liu Z X. Coal mine hydrographic geophysical exploration technology and its application[M]. Xuzhou: China University of Mining & Technology Press, 2005.
|
[2] |
张晓峰. 瞬变电磁法探测煤田采空区的应用研究[D]. 西安: 长安大学, 2007.
|
[2] |
Zhang X F. Study on the application of transient electromagnetic method in detecting coal goaf[D]. Xi’an: Changan University, 2007.
|
[3] |
陈卫营, 薛国强. 瞬变电磁法多装置探测技术在煤矿采空区调查中的应用[J]. 地球物理学进展, 2013, 28(5):2709-2717.
|
[3] |
Chen W Y, Xue G Q. Application on coal-mine voids detection with multidevice TEM technology[J]. Progress in Geophysics, 2013, 28(5):2709-2717.
|
[4] |
薛国强, 于景邨. 瞬变电磁法在煤炭领域的研究与应用新进展[J]. 地球物理学进展, 2017, 32(1):319-326.
|
[4] |
Xue G Q, Yu J C. New development of TEM research and application in coal mine exploration[J]. Progress in Geophysics, 2017, 32(1):319-326.
|
[5] |
石显新. 瞬变电磁法勘探中的低阻层屏蔽问题研究[D]. 北京: 煤炭科学研究总院, 2005.
|
[5] |
Shi X X. Study on shielding problem of low resistivity layer in transient electromagnetic exploration[D]. Beijing: China Coal Research Institute, 2005.
|
[6] |
闫述, 石显新, 陈明生. 华北型煤田水文地质电法勘探的深度问题[J]. 煤炭科学技术, 2006, 34(12):5-8.
|
[6] |
Yan S, Shi X X, Chen M S. Issues on probing depth of hydrogeological electrical magnetic method for exploration of North China coal field[J]. Coal Science and Technology, 2006, 34(12):5-8.
|
[7] |
何继善, 薛国强. 短偏移距电磁探测技术概述[J]. 地球物理学报, 2018, 61(1):1-8.
|
[7] |
He J S, Xue G Q. Review of the key techniques on short-offset electromagnetic detection[J]. Chinese Journal of Geophysics, 2018, 61(1):1-8.
|
[8] |
陈卫营. 电性源短偏移距瞬变电磁法研究与应用[D]. 北京: 中国科学院大学, 2015.
|
[8] |
Chen W Y. Research and application of short offset transient electromagnetic method for electrical source[D]. Beijing: University of Chinese Academy of Sciences, 2015.
|
[9] |
薛国强, 陈卫营, 周楠楠, 等. 接地源瞬变电磁短偏移深部探测技术[J]. 地球物理学报, 2013, 56(1):255-261.
|
[9] |
Xue G Q, Chen W Y, Zhou N N, et al. Short-offset TEM technique with a grounded wire source for deep sounding[J]. Chinese Journal of Geophysics, 2013, 56(1):255-261.
|
[10] |
卢云飞, 薛国强, 邱卫忠, 等. SOTEM研究及其在煤田采空区中的应用[J]. 物探与化探, 2017, 41(2):354-359.
|
[10] |
Lu Y F, Xue G Q, Qiu W Z, et al. The research on SOTEM and its application in mined-out area of coal mine[J]. Geophysical and Geochemical Exploration, 2017, 41(2):354-359.
|
[11] |
陈大磊, 陈卫营, 郭朋, 等. SOTEM法在城镇强干扰环境下的应用——以坊子煤矿采空区为例[J]. 物探与化探, 2020, 44(5):1226-1232.
|
[11] |
Chen D L, Chen W Y, Guo P, et al. The application of SOTEM method to populated areas:A case study of Fangzi coal mine goaf[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1226-1232.
|
[12] |
薛俊杰, 陈卫营, 王贺元. 电性源短偏移瞬变电磁探测深度分析与应用[J]. 物探与化探, 2017, 41(2):381-384.
|
[12] |
Xue J J, Chen W Y, Wang H Y. Analysis and application of the detection depth of electrical source Short-offset TEM[J]. Geophysical and Geochemical Exploration, 2017, 41(2):381-384.
|
[13] |
陈卫营, 薛国强, 崔江伟, 等. SOTEM响应特性分析与最佳观测区域研究[J]. 地球物理学报, 2016, 59(2):739-748.
|
[13] |
Chen W Y, Xue G Q, Cui J W, et al. Study on the response and optimal observation area for SOTEM[J]. Chinese Journal of Geophysics, 2016, 59(2):739-748.
|
[14] |
薛国强, 闫述, 陈卫营, 等. SOTEM深部探测关键问题分析[J]. 地球物理学进展, 2015, 30(1):121-125.
|
[14] |
Xue G Q, Yan S, Chen W Y, et al. The key problems of SOTEM used in deep detection[J]. Progress in Geophysics, 2015, 30(1):121-125.
|
|
|
|