|
|
Portable opposing-coils transient electromagnetic system and its application tests |
ZHOU Sheng1,2,3( ), CHEN Xing-Peng2( ), WANG Jun4, QI Qing-Xin2, ZHANG Zhi-Qing4, PAN Ji-Min2, XI Zhen-Zhu3, YANG Chun-Hua1 |
1. Geophysical and Geochemical Survey Institute of Hunan Province, Changsha 410014, China 2. Hunan 5D Geosciences Co., Ltd., Changsha 410205, China 3. School of Geosciences and Info-physics, Central South University, Changsha 410083, China 4. POWERCHINA Kunming Engineering Corporation Limited, Kunming 650031, China |
|
|
Abstract In shallow engineering investigations, the small-loop transient electromagnetic (TEM) system is challenged by limitations such as overweight equipment, significant transmitter-receiver mutual inductance, and high manpower requirements. Hence, this study introduced an improved system. Based on the opposing-coils transient electromagnetic (OCTEM) theory, this study calculated the magnetic field distribution of the generalized opposing-coils antenna device. Furthermore, it designed and developed efficient portable antennas and the supporting system (collectively referred to as the portable OCTEM system). Subsequent field experiments demonstrate that while ensuring exploration accuracy, the portable OCTEM system can enhance the investigation efficiency by effectively mitigating the transmitter-receiver mutual inductance and significantly reducing manpower requirements. This study preliminarily verifies the feasibility of the portable OCTEM system, providing a novel technology route for developing downsized shallow exploration equipment.
|
Received: 15 April 2024
Published: 08 January 2025
|
|
|
|
|
|
Schematic diagram of the opposing-coils transient electromagnetic system
|
|
The opposing-coils transient electromagnetic system of HPTEM-18
|
|
Generalized opposing-coils transient electromagnetic α device (a) and β device (b)
|
|
Coordinate system of the circular current-carrying coil magnetic field calculation column
|
|
Bz component of the magnetic field on the axis (a)and magnetic field Bz=0 on the axial plane (b) of the generalized α device
|
|
Bz component of the magnetic field on the axis (a)and magnetic field Bz=0 on the axial plane (b) of the generalized β device
|
|
Portable transient electromagnetic antenna base on generalized β device
|
|
Structure diagram of the portable opposing-coils transient electromagnetic system
|
|
Physical diagram of the portable opposing-coils transient electromagnetic system
|
|
The application of portable opposing-coils transient electromagnetic system a—field test application;b—layout of measurement lines and abnormal projection diagram for a certain transmission tower foundation;c—observation data of L0 line 38 m measuring point;d—section diagram of L0;e—section diagram of L6;f—section diagram of L12
|
[1] |
Blau L W. Methods and apparatus for geophysical exploration[P]. U.S.Patent,1,911,137, 1933.
|
[2] |
牛之琏. 时间域电磁法原理[M]. 长沙: 中南大学出版社, 2007.
|
[2] |
Niu Z L. Theory of time domain electromagnetic method[M]. Changsha: Central South University, 2007.
|
[3] |
牛之琏. 瞬变电磁测深译文集[J]. 中南矿冶学院报, 1985(6):1-198.
|
[3] |
Niu Z L. Transient electromagnetic bathymetry translations[J]. Journal of Central South Institute of Mining and Metallurgy, 1985(6):1-198.
|
[4] |
Kaufman A A, Keller G V. 频率域和时间域电磁测深法[M].王建谋,译. 北京: 地质出版社, 1987.
|
[4] |
Kaufman A A, Keller G V. Frequency and transient sounding[M].Wang J M,transl ate. Beijing: Geology Press, 1987.
|
[5] |
Cидоров B A. 脉冲感应电法勘探[M].牛之琏译. 长沙: 中南工业大学物探室, 1991.
|
[5] |
Cидоров B A. Pulse-induced electric exploration[M].Niu Z L,transl ate. Changsha: Geophysical Prospecting Laboratory, Central South University of Technology, 1991.
|
[6] |
Куфманн A A. 近区建场测深理论曲线图册[R].牛之琏,译. 长沙: 中南工业大学物探室, 1992.
|
[6] |
А.А.Куфманн. Atlas of theoretical curves of bathymetry in the near area[R].Niu Z L,translate. Changsha: Geophysical Prospecting Laboratory,Central South University of Technology, 1992.
|
[7] |
李貅. 瞬变电磁测深的理论与应用[M]. 西安: 陕西科学技术出版社, 2002.
|
[7] |
Li X. Theory and application of transient electromagnetic sounding[M]. Xi'an: Shaanxi Science and Technology Press, 2002.
|
[8] |
薛国强, 李貅, 底青云. 瞬变电磁法理论与应用研究进展[J]. 地球物理学进展, 2007, 22(4):1195-1200.
|
[8] |
Xue G Q, Li X, Di Q Y. The progress of TEM in theory and application[J]. Progress in Geophysics, 2007, 22(4):1195-1200.
|
[9] |
白登海, Maxwell M. 瞬变电磁法中两种关断电流对响应函数的影响及其应对策略[J]. 地震地质, 2001, 23(2):245-251.
|
[9] |
Bai D H, Maxwell M. The effect of two types of turn-off current on tem responses and the correction techniques[J]. Seismology and Geology, 2001, 23(2):245-251.
|
[10] |
于生宝, 林君. 瞬变电磁法中发射机关断时间的影响研究[J]. 石油仪器, 1999(6):15-17,51.
|
[10] |
Yu S B, Lin J. Study of the effect of transmitter turn-off time on transient electromagnetic method[J]. Petroleum Instruments, 1999(6):15-17,51.
|
[11] |
程久龙, 贾吉哲, 陈丁. 矿井瞬变电磁斜阶跃场源激励下的响应计算及关断效应分析[C]// 2015中国地球科学联合学术年会专题55煤炭资源与矿山安全地球物理, 2015.
|
[11] |
Cheng J L, Jia J Z, Chen D. Response calculation and shut-off effect analysis under excitation of mine transient electromagnetic inclined step field source[C]// Proceedings of the 2015 China Joint Academic Conference on Earth Sciences—Special Topic 55:Geophysics of Coal Resources and Mine Safety, 2015.
|
[12] |
孙怀凤, 李貅, 李术才, 等. 考虑关断时间的回线源激发TEM三维时域有限差分正演[J]. 地球物理学报, 2013, 56(3):1049-1064.
|
[12] |
Sun H F, Li X, Li S C, et al. Three-dimensional FDTD modeling of TEM excited by a loop source considering ramp time[J]. Chinese Journal of Geophysics, 2013, 56(3):1049-1064.
|
[13] |
杨云见, 王绪本, 何展翔. 考虑关断时间效应的瞬变电磁一维反演[J]. 物探与化探, 2005, 29(3):234-236.
|
[13] |
Yang Y J, Wang X B, He Z X. 1D inversion of transient electromagnetic data in consideration of ramp time effect[J]. Geophysical and Geochemical Exploration, 2005, 29(3):234-236.
|
[14] |
Fitterman D V, Anderson W L. Effect of transmitter turn-off time on transient soundings[J]. Geoexploration, 1987, 24(2):131-146.
|
[15] |
付志红. 电磁探测特种电源技术的研究[D]. 重庆: 重庆大学, 2007.
|
[15] |
Fu Z H. Research on the special power supply technology for electromagnetic detection[D]. Chongqing: Chongqing University, 2007.
|
[16] |
付志红, 赵俊丽, 周雒维, 等. WTEM高速关断瞬变电磁探测系统[J]. 仪器仪表学报, 2008, 29(5):933-936.
|
[16] |
Fu Z H, Zhao J L, Zhou L W, et al. WTEM fast turn-off transient electromagnetic detection system[J]. Chinese Journal of Scientific Instrument, 2008, 29(5):933-936.
|
[17] |
嵇艳鞠, 林君, 于生宝, 等. ATTEM系统中电流关断期间瞬变电磁场响应求解的研究[J]. 地球物理学报, 2006, 49(6):1884-1890.
|
[17] |
Ji Y J, Lin J, Yu S B, et al. A study on solution of transient electromagnetic response during transmitting current turn-off in the ATTEM system[J]. Chinese Journal of Geophysics, 2006, 49(6):1884-1890.
|
[18] |
王华军. 阻尼系数对瞬变电磁观测信号的影响特征[J]. 地球物理学报, 2010, 53(2):428-434.
|
[18] |
Wang H J. Characteristics of damping coefficient effect on transient electromagnetic signal[J]. Chinese Journal of Geophysics, 2010, 53(2):428-434.
|
[19] |
席振铢, 龙霞, 周胜, 等. 基于等值反磁通原理的浅层瞬变电磁法[J]. 地球物理学报, 2016, 59(9):3428-3435.
|
[19] |
Xi Z Z, Long X, Zhou S, et al. Opposing coils transient electromagnetic method for shallow subsurface detection[J]. Chinese Journal of Geophysics, 2016, 59(9):3428-3435.
|
[20] |
Xi Z Z, Long X, Huang L, et al. Opposing-coils transient electromagnetic method focused near-surface resolution[J]. Geophysics, 2016, 81(5):E279-E285.
|
[21] |
王浩文. 瞬变电磁小回线探测技术研究[D]. 重庆: 重庆大学, 2019.
|
[21] |
Wang H W. Research on transient electromagnetic small-loop detection technology[D]. Chongqing: Chongqing University, 2019.
|
[22] |
Fu Z H, Wang H W, Wang Y, et al. Elimination of mutual inductance effect for small-loop transient electromagnetic devices[J]. Geophysics, 2019, 84(3):1-47.
|
[23] |
Di Q Y, Xue G Q, Yin C C, et al. New methods of controlled-source electro-magnetic detection in China[J]. Science China Earth Sciences, 2020, 63(9):1268-1277.
|
[24] |
Nabighian M N. Electromagnetic methods in applied geophysics:Volume 1,Theory[M].Zhao J X translated. Beijing: Geology Press, 1992.
|
[1] |
JIANG Guo-Qing, HAO She-Feng, YU Yong-Xiang, Du Jian-Guo, LI Ming, SHANG Tong-Xiao, SONG Jing-Lei. Landslide survey based on three-dimensional resistivity inversion: A case study of the Xuelang Mountain scenic spot, Wuxi, China[J]. Geophysical and Geochemical Exploration, 2024, 48(6): 1720-1729. |
[2] |
MOU Xiao-Dong. A comprehensive crosshole tomography method for karst identification based on color fusion technology[J]. Geophysical and Geochemical Exploration, 2024, 48(6): 1730-1740. |
|
|
|
|