E-mail Alert Rss
 
Office Online
News
gfff
More>>
Information
Web: http://www.wutanyuhuatan.com
Editor in Chief: XIONG ShengQing
Published by:
The Geological Publishing House (31 Xueyuan Road,Beijing 100083,China)
Printer:
Beijing Changning Printing Co. Ltd.
Distributor: Beijing Post Office
Abroad Distributor:
China International Book Trading Corporation
Subscription Hander:
Local Post Offices of China
Sponsored by:
China Aero Geophysical Survey and Remote Sensing Center for Natural Resources
Edited by:
Editorial Office of Geophysical and Geochemical Exploration
Add:
29 Xueyuan Road, Beijing 100083,China
Tel: 86-010-62060192/62060193
Fax: 86-010-62060193
Email: whtbjb@sina.com ,
           whtbjb@163.com
Links
More>>
Published in last 1 year| In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

Published in last 1 year
Please wait a minute...
For Selected: Toggle Thumbnails
New progress in the technology and applications of SOTEM
XUE Guo-Qiang
Geophysical and Geochemical Exploration    2024, 48 (5): 1165-1168.   DOI: 10.11720/wtyht.2024.0325
Abstract455)   HTML10)    PDF (380KB)(467)      

The artificial source electromagnetic method is an important technique for deep resource exploration. The key challenge is to improve the depth and precision of detection through innovative technology. The detection mode of electromagnetic methods is evolving from far-field to near-field, and the study of near-source electromagnetic methods has become an international research frontier in recent years. Building on the recent advancements in wide-field electromagnetic methods and multi-channel transient electromagnetic methods, the short-offset transient electromagnetic method (SOTEM) has been further developed and proposed. The distinguishing features of SOTEM are its stronger signals and wider bandwidth, which are advantageous for achieving the detection requirements of greater depth and higher precision. This special issue presents eight articles covering the methods, techniques, software, and applications of SOTEM, providing strong support for the growing need for high-resolution subsurface detection.

Reference | Related Articles | Metrics
Application of comprehensive geophysical prospecting in the exploration of geothermal resources in the Linjiadi area, Aohan Banner, Inner Mongolia
HAN Shu-He, PEI Qiu-Ming, XU Jian, SONG Zhi-Yong, MO Hai-Bin
Geophysical and Geochemical Exploration    2024, 48 (4): 962-970.   DOI: 10.11720/wtyht.2024.1315
Abstract216)   HTML5)    PDF (4495KB)(315)      

In the context of the goals of both peak carbon dioxide emissions and carbon neutrality, scientific and efficient exploration and exploitation of geothermal resources are criticalfor the geothermal industry. To address the commonly concernedtechnical challenges in the exploration of moderately deep geothermal resources, this study investigated the effectiveness of comprehensive geophysical prospecting in the exploration of geothermal resources inthe Linjiadi area, Aohan Banner, Inner Mongolia. Based on the analysis ofthe geological and hydrogeological conditions, this studypreliminarilyascertainedthe geothermal field characteristicsand the hydrochemicalcharacteristics of groundwater in the Linjiadi area. By comprehensively employingcontrolled source audio-frequency magnetotellurics (CSAMT), CSAMT; microtremor survey; radioactive radon survey; this study roughly determined the distribution of strata, magmatic rocks, and fault structures in the study area, inferring the factors controllinggeothermal anomaly areas and hot-water migration.Accordingly, exploration boreholes were arranged, allowing for drilling verificationwith a total length of 960 m. The results show that the comprehensiveapplication of CSAMT and microtremor survey, combined with radioactive radon survey for auxiliary verification, is effective in exploringmoderately deep geothermal resources. This study will provide a methodological reference for geothermal resource exploration in other areas.

Table and Figures | Reference | Related Articles | Metrics
Metalleogenic geochemistry:Science problems and research ideas
XI Xiao-Huan
Geophysical and Geochemical Exploration    2024, 48 (4): 891-917.   DOI: 10.11720/wtyht.2024.0282
Abstract167)   HTML6)    PDF (791KB)(301)      

In geoscientific field, the essential object of all the research problems is the physical world which is derived from the crust-mantle interaction and has deeply influenced globally the environment and resources. The metallogenic geochemical theory believes that the metallogenic materials are the internal factors for the metallogenic system to influence the metallogenic process, and taking metallogenic materials as the main body to study the problems of metallogenic materials and metallogenic processes is the basic meaning of the metallogenic geochemical theory, and the core subject of the studies of metallogenic rules and theories. During the mineralization process of metallogenic system, metallogenic materials formed into metallogenic series of corresponding scale. This paper outlines several scientific topics of the metallogenic geochemical studies, among which, the topic of global metallogenic system mainly studies the metallogenic processes and relations of the series of metallogenic regions, provinces and belts formed by metallogenic materials in the context of global metallogenic process; the topic of regional metallogenic system mainly studies the metallogenic processes and relations of ore field series in the context of regional metallogenic process; the topic of ore field metallogenic system mainly studies the metallogenic processes and relations of mineral deposit series in the context of ore field metallogenic process; the topic of mineral deposit metallogenic system mainly studies the metallogenic processes and relations of ore-body series in the context of mineral deposit metallogenic process. The basic research ideas concerning above mentioned studies are discussed in this paper, including the metallogenic materials' geneses and sources, migration and evolution, differentiation and concentration, as well as the zoning relations of each level's metallogenic system and series of the world during the metallogenic processes. The purpose is to summary the metallogenic rules, explore the metallogenic mechanism and guide the mineral resources exploration. Supported by modern technologies and methods of IT(information technology), modeling and AI(artificial intelligence), the metallogenic geochemical theory uses the earth system scientific ideas to study the problems of metallogenic system and metallogenic series, construct the theoretical framework for metallogenic geochemical research, and provide a theoretical basis for the mineral resources exploration, evaluation and development technics and methods.

Table and Figures | Reference | Related Articles | Metrics
AMT-based geological-geophysical prospecting model for the gold ore zone in the Daduhe area, Shimian County, Sichuan Province
YAO Wen, GUO Jun, SUN Chong-Bo, ZHOU Hong-Bing, ZHANG Hong-Chao
Geophysical and Geochemical Exploration    2024, 48 (5): 1247-1257.   DOI: 10.11720/wtyht.2024.1545
Abstract102)   HTML2)    PDF (8840KB)(301)      

The gold ore zone in the Daduhe area of Shimian County, Sichuan Province, is located in the rare metal-precious metal-nonferrous polymetal metallogenic belt in the southern segment of the Songpan-Ganzi orogenic belt. It exhibits complex structures and steep terrains, severely restricting prospecting and exploration. Based on the geological settings, conditions, and geophysical characteristics for regional mineralization, this study investigated the typical Luoluoping gold deposit in Shimian by conducting deep geophysical exploration centered on audio-frequency magnetotellurics (AMT). Three low-resistivity anomalies (M1, M2, and M3) were identified, corresponding to the mineralized alteration zone I, the gold mineralization zone III, and the gold-copper ore body, respectively, demonstrating the effectiveness and applicability of geophysical methods for deep prospecting. Combined with geological understanding and engineering verification, this study summarized geological and geophysical prospecting markers for the typical gold deposit, establishing the geological-geophysical prospecting model for the gold ore zone in the study area. Therefore, this study provides technical support for deep prospecting in the study area.

Table and Figures | Reference | Related Articles | Metrics
Factors influencing the application of ESPAC-based microtremor survey in shallow surface environments
YANG Lang-Yong-Hang, LI Hong-Xing
Geophysical and Geochemical Exploration    2024, 48 (5): 1322-1330.   DOI: 10.11720/wtyht.2024.1479
Abstract153)   HTML5)    PDF (5302KB)(300)      

The extended spatial autocorrelation (ESPAC)-based microtremor exploration(natural-source surface wave exploration) technology has been extensively used in shallow formation exploration owing to its simplicity,efficiency,and accuracy.However,the imaging effect of dispersion energy extracted based on the ESPAC method is unsatisfactory in practical applications.In particular,different observation array arrangements influence the extraction of dispersion curves from collected data.By investigating the imaging principle of the ESPAC method,this study conducted the simulation experiment of natural-source microtremor recording through ambient noise simulation.It compared the differences in dispersion energy under various dominant frequency distributions of wavelets.Moreover,it quantitatively analyzed the influence of different station arrangements and acquisition durations on the imaging quality of dispersion energy.The comparative study reveals the imaging patterns of the ESPAC method in shallow surface exploration.The ESPAC method can maximize the imaging quality of dispersion energy in the fundamental mode while considering both efficiency and exploration costs.The results of this study were applied to engineering application cases to further verify the simulation results.

Table and Figures | Reference | Related Articles | Metrics
Application of the opposing coils transient electromagnetic method in a shallow groundwater-rich area: A case study of Xiacun Town, Xinyu City
ZHU Xiao-Wei, DING Chen, XUE Kai-Xi, CHEN Jun, HAN Kai-Min, LUO Qiang, YI Guang-Sheng
Geophysical and Geochemical Exploration    2024, 48 (5): 1424-1436.   DOI: 10.11720/wtyht.2024.1574
Abstract167)   HTML4)    PDF (7265KB)(297)      

Unfavorable geobodies such as Karsts, weak soil, and water-rich areas are extensively distributed in China. Under heavy rainfall, they are prone to geologic hazards like collapse. A severe geological collapse occurred in Xiacun Town, Yushui District, Xinyu City, near the Shanghai-Kunming high-speed railway. The space around the collapsed foundation pit was limited, with many interference sources like underground pipelines. With early signals subjected to the mutual inductance effects of receiver and transmitter coils, the conventional transient electromagnetic method exhibited low detection accuracy and anti-interference ability, encountering significant shallow blind zones. To locate unfavorable geobodies in the study area and provide suggestions for the prevention and control of geologic hazards, this study innovatively applied the opposing-coils transient electromagnetic method (OCTEM), supplemented by borehole-based verification. The results show that: (1) The OCTEM exhibited high accuracy, as demonstrated by the high consistency between the geophysical exploration results and the drilling results of the study area; (2) The low-resistivity zone spread across the study area, and the low-resistivity anomalies revealed by geophysical exploration were caused by groundwater according to borehole-based verification; (3) The strata from top to bottom were composed of soft plastic silty clay, hard plastic silty clay, soft plastic silty clay, and moderately weathered limestones; (4) The subsurface micro-confined water in the collapse area surged upward, gradually eroding the soft plastic silty clay layer around the area. The static water level in the collapsed foundation pit manifested an elevation of 55.60 m, located approximately 1.4 m below the surface; (5) A groundwater channel existed under the collapse area, with soil caves formed in the limestone layer under the prolonged erosion effect of water flow; (6) Long-term groundwater extraction may expand the underground seepage zone; (7) The administrative department in charge must promptly contain groundwater in the collapse area to prevent it from further eroding the surrounding unconsolidated soil layer.

Table and Figures | Reference | Related Articles | Metrics
Analysis of critical parameters in the field acquisition of short-offset transient electromagnetic data
CHEN Wei-Ying, XUE Guo-Qiang, LI Hai
Geophysical and Geochemical Exploration    2024, 48 (5): 1169-1175.   DOI: 10.11720/wtyht.2024.1197
Abstract254)   HTML6)    PDF (2409KB)(296)      

The grounded-source short-offset transient electromagnetic (SOTEM) method involves many parameters in field data acquisition. The selection of these parameters is closely associated with the signal quality and detection sensitivity of measured data. Based on the relevant provisions in the organization standard, Technical specification for grounded-source short-offset transient electromagnetic method (T/CGS 002—2021), issued by the Chinese Geophysical Society, numerical emulations, and practical cases, this study analyzed and expounded the selection criteria of critical parameters like transmitting source length, transmitting fundamental frequency, offset, device type, and observation component. The insights obtained in this study are significant for guiding the field construction of the SOTEM device and leveraging its detection performance.

Table and Figures | Reference | Related Articles | Metrics
Quasi-two-dimensional joint inversion of the data from the controlled source audio-frequency magnetotellurics and the microtremor survey
ZHANG Ji-Wei, TAN Hui
Geophysical and Geochemical Exploration    2024, 48 (4): 1094-1102.   DOI: 10.11720/wtyht.2024.1477
Abstract182)   HTML4)    PDF (4316KB)(293)      

Both the controlled source audio-frequency magnetotellurics (CSAMT) and the microtremor survey exhibit promising application prospectsunder strong urban interference. However,single geophysical inversion methods are challenged by a multiplicity of solutions. To achieve the complementary advantages of different geophysical methods, and address the lateral discontinuity of single-point inversion, this studyexplored the quasi-two-dimensional joint inversion of the CSAMTand microtremor survey data. It enabled the joint inversionby introducing a lateral constraint matrix into the objective function for joint inversion and employing the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm. The reliability and effectiveness of the joint inversion were verified using the inversion example of synthetic data from theoretical models. The results show that compared to single data inversion, the joint inversion can effectively improve the accuracy of inversion results, with the resistivity model more consistent with theshear-wave velocity structure. Moreover,lateral constraints can effectively reduce the discontinuity of the physical parameters of adjacentsurvey points. The quasi-two-dimensional joint inversion with lateral constraints enhances the inversion reliability by obtaining more reasonable profile results of physical parameters and structures with the efficiency of single-point inversion.

Table and Figures | Reference | Related Articles | Metrics
Geochemical characteristics of soils and prospecting potential of the northern Laojunmiao gold deposit in the Beishan area, Gansu Province
ZHANG Wen-Bin, ZHOU Xian-Jun, HOU Cui-Xia, WANG Ning-Zu, SUN Ping-Yuan, ZHAO Zhen-Guan, HE Bi
Geophysical and Geochemical Exploration    2024, 48 (4): 945-953.   DOI: 10.11720/wtyht.2024.1342
Abstract166)   HTML4)    PDF (5615KB)(286)      

Thenorthern Laojunmiao gold deposit is located in the southern zone of the Beishan area, Gansu Province, and on the northeastern margin of the Tarim block. It resides in a tectonic environment of the Yaodongliang-Xiaoxigong Paleoproterozoic rift basin. This study delineated five comprehensive anomaly zones in the area through a 1∶10,000 geochemical soil survey. As verified by trenching exploration, three gold ore bodies, one gold-silver ore body, and two low-grade gold ore bodies were identified in the comprehensive anomaly zones, suggesting satisfactory prospecting results. Based on the comprehensive geological and geochemical anomaly characteristics of the deposit, this study established an integrated geological-geochemical prospecting model centering on the HT1 comprehensive anomaly zone. Moreover, it proposed the subsequent prospecting direction, providing a significant reference for the deep and peripheral prospecting in the area.

Table and Figures | Reference | Related Articles | Metrics
2D/3D electrical exploration based on borrowing-line telecontrol electrode arrays
GE Wei-Zhong, LIANG Bing-He, GAO Jian-Dong, Lv Yu-Zeng, CHEN Long
Geophysical and Geochemical Exploration    2024, 48 (6): 1437-1447.   DOI: 10.11720/wtyht.2024.0170
Abstract150)   HTML12)    PDF (3061KB)(270)      

The telecontrol electrode array is a new type of electrode array for power supply and observations that utilizes the carrier waves of the power-supply and measurement wires used in conventional electrical prospecting to transmit signals. By remotely controlling a series of coded electrode switches between various wires and their connections, this array allows for orderly power supply and measurements. This array enables flexible spacings between electrodes and the gradual expansion of the distances between power supply electrodes via remote control, thus achieving a gradient-based sounding array. The borrowing-line remote controller can be used combined with single-channel, multi-channel, and high-density resistivity instruments, and the combined arrays can perform 2D/3D electrical prospecting more effectively. Followed by the brief introduction of the principle of the borrowed-line telecontrol electrode array, this study discusses the applications and examples of this array and several combined arrays in the resistivity method and induced polarization (IP).

Table and Figures | Reference | Related Articles | Metrics
Bedrock surface and fault structures in the Rongcheng uplift revealed from reflection seismic profiles and their implications for the geothermal origin
LIU Hong-Kai, GAO Lei, ZHANG Jie, HOU He-Sheng, XIE Min-Ying, LI Hong-Qiang
Geophysical and Geochemical Exploration    2024, 48 (4): 934-944.   DOI: 10.11720/wtyht.2024.1316
Abstract136)   HTML6)    PDF (9585KB)(268)      

The Rongcheng uplift in North China boasts abundant geothermal resources. Research indicates that the Rongcheng uplift exhibits significantly different physical properties between the bedrock surface and the overlying Cenozoic strata. Moreover, the bedrock surface serves as the primary top boundary of the geothermal reservoir in the Wumishan Formation. Investigating the fine-scale structures, burial depths, and faults of the bedrock surface in the Rongcheng uplift holds critical significance for understanding the distribution and enrichment of geothermal resources in the area and guiding their exploration and production. Through elaborative processing of the north-south reflection seismic profile data of the Rongcheng uplift, collected by the Chinese Academy of Geological Sciences in 2018, this study obtained the high-precision geometric structure of the Rongcheng uplift within a depth of 4 km. The geometric structure was calibrated using geothermal borehole data before interpretation. Key findings are as follows: (1) The Cenozoic sedimentary strata overlying the bedrock surface of the Rongcheng uplift exhibit a nearly horizontal layered distribution, serving as cap rocks of the Rongcheng geothermal field; (2) The bedrock surface of the Rongcheng uplift manifests burial depths ranging from 700 to 3 000 m, with gentle changes in the central portion, and rapidly deepening to around 3 000 m towards the periphery; (3) The Niunan and Rongdong faults converge in the deep part, constituting a fault system along with other medium and small faults, thus facilitating the conduction of water and heat; (4) The geometric structure of the Rongcheng uplift on the bedrock surface contributes to the convergence of heat flow beneath the uplift.

Table and Figures | Reference | Related Articles | Metrics
Impacts of coastal effects on the distortion of magnetotelluric data
YANG Fu-Qiang, LIAO Hai-Zhi, WANG Zheng, MO Ya-Jun, LI Ye-Fei, LIU Ying
Geophysical and Geochemical Exploration    2024, 48 (5): 1284-1293.   DOI: 10.11720/wtyht.2024.1528
Abstract99)   HTML2)    PDF (14816KB)(265)      

Magnetotelluric (MT) data collected from offshore areas are generally distorted due to coastal effects, posing challenges in obtaining true subterranean electrical structures. Based on the model of half-space with seawater, 2D electrical isotropy and anisotropy models, and 3D electrical isotropy model, this study analyzed the distortion patterns of MT responses under coastal effects through forward modeling. Moreover, it conducted 2D and 3D inversions of MT data with or without seawater constraints. Key findings are as follows: (1) The initial frequency points of distortion in MT apparent resistivity curves are closely correlated to the distances from survey points to seawater; (2) Compared to MT responses free from coastal effects, the high-frequency sections exhibit increased amplitudes in real induction vectors only at survey points in offshore areas and higher phase tensor ellipticity, whereas the low-frequency sections display expanded influence areas subjected to coastal effects; (3) Excluding seawater constraints, the inversion results show false anomalies in offshore areas and poor reconstruction effects on subsurface anomalies. Considering seawater constraints, the constrained inversion can effectively suppress the distortion caused by coastal effects. Overall, this study will provide a significant reference for the collection, processing, and interpretation of MT data from offshore areas.

Table and Figures | Reference | Related Articles | Metrics
Seismic impedance optimization inversion combining model inversion with deep learning inversion
HUANG Wen-Lu, YAN Jian-Guo, REN Li-Long, XIE Rui
Geophysical and Geochemical Exploration    2024, 48 (4): 1076-1085.   DOI: 10.11720/wtyht.2024.1288
Abstract134)   HTML1)    PDF (7559KB)(257)      

Based on the combination ofdata- and model-driven approaches, this study expanded the labels of the training set through model inversion results, and added the model inversion objective function to the deep learning algorithm. By constructing a new loss function, this study proposed a seismic impedance optimization inversion method combining model inversion with deep learning inversion. The semi-supervised deep learning network inversion under a pseudo-label was achieved using the RNN network structure. The network inversion results were used as the initial model to participate in the model inversion. The final optimization inversion was completed by continuous iterative optimization of both network and model inversion. The method proposed in this study proves to possess high inversion accuracy and practicability, as demonstrated by the synthesis of the Marmousi model and the actual data.

Table and Figures | Reference | Related Articles | Metrics
Application cases of the short-offset transient electromagnetic method in detecting goafs with thick overburden in a coal mine
HUANG Shi-Mao, YANG Guang, WANG Jun-Cheng, LUO Chuan-Gen, XU Ming-Zuan, ZHOU Nan-Nan, ZHAO Peng
Geophysical and Geochemical Exploration    2024, 48 (5): 1208-1214.   DOI: 10.11720/wtyht.2024.1232
Abstract131)   HTML2)    PDF (4749KB)(251)      

Within a coal mine in Peixian County, Xuzhou City, brick-red Paleogene and Neogene strata were deposited in the faulted basin during the Cenozoic, with extensive Quaternary strata overlying various strata. The Quaternary, Jurassic, and Cretaceous strata exhibit thick overburden, up to over 500 m. This study explored the coal mine using the short-offset transient electromagnetic (SOTEM) method. Based on geoelectric conditions, reasonable observation parameters were designed to obtain the subterranean electric structure within a burial depth of 1500 m. Goafs were detected at a burial depth of 900 m, with their delineated boundaries aligning with the mining situation of the coal mine. The results of this study serve as a reference for detecting goafs with thick overburden in North China-type coalfields.

Table and Figures | Reference | Related Articles | Metrics
Electrical structure of the Bengbu-Huaibei area and its geological implications
ZHU Jiang-Bo, WANG Qi-Nian, LIU Yu-Quan, GUAN Da-Wei, LI Tao, YOU Miao, ZHANG Jian
Geophysical and Geochemical Exploration    2024, 48 (4): 971-978.   DOI: 10.11720/wtyht.2024.1502
Abstract124)   HTML4)    PDF (5817KB)(250)      

This study conducted magnetotelluric profiling in the Bengbu-Huaibei area of Anhui Province. Combined with gravity and magnetic anomalies, it obtained the deep electrical structure, the distribution of primary strata, and the properties of faults in the area, particularly the morphology of the Xuzhou-Suzhouarcuate nappe structure and the development of deep coal-measure strata. The results indicate that: (1) The Upper Paleozoic strataare primarily distributed under the high-resistivity nappe on the surface of the Xuzhou-Suzhouarcuate nappe structure. Theymanifest low-resistivity and low-densityphysical properties and high continuity, suggesting high exploration potential for coal beneath the nappe structure;(2)On the profile, early-stage faulting was dominated by reverse faults, resulting in local Lower Paleozoic and Proterozoicstrata overlying the Upper Paleozoic strata. In the later stage, normal faults predominated, controlling the Cenozoic deposition;(3) The Xuzhou-Suzhouarcuate nappe structure exhibits a 'high-low' double-layer electrical structure at burial depths shallower than 4 km, withthe dominant thrust fault plane composed of F5 and F6 faults. The leading edge of the high-resistivity nappe on the surface extends northwestward to Xiaoxian County and southward to northern Guzhen County, experiencing significant denudation in the Zhahe area. The above results provide critical geophysical information for the basic geological research and mineral exploration in the study area.

Table and Figures | Reference | Related Articles | Metrics
Geochemical characteristics and bioavailability of selenium and zinc in soils in an area subjected to water and soil erosion : A case study of Changting County, Fujian Province
TANG Zhi-Min, ZHANG Xiao-Dong, MEI Li-Hui, ZHAN Long, CHEN Guo-Guang, LIU Hong-Ying, ZHOU Mo, ZHANG Ming, ZHANG Jie
Geophysical and Geochemical Exploration    2024, 48 (4): 1125-1135.   DOI: 10.11720/wtyht.2024.1336
Abstract104)   HTML2)    PDF (5570KB)(250)      

Water and soil erosion affects the distribution and partitioning of elements in soils. The distribution and partitioning patterns and bioavailability of trace beneficial elements such as selenium (Se) and zinc (Zn) in water and soil erosion areas serve as significant factors for measuring the ecological effects of water and soil erosion. Through the geochemical survey of soil and crops, this study investigated the geochemical characteristics and bioavailability of Se and Zn in the water and soil erosion area of Changting County, Fujian Province, obtaining the critical geochemical parameters of Se and Zn in soil and crops in the study area. The results are as follows: (1) The soil Se and Zn contents in the study area show median values of 0.43×10-6 and 46×10-6, respectively; (2) Se is enriched in the soil developed from metamorphic rocks, whereas Zn is enriched in the soil developed from metamorphic rocks and granites; (3) The soil Se and Zn contents are higher in bamboo forests compared to other land-use types; (4) The soil Se content shows a decreasing trend as the water and soil erosion intensifies; (5) The bio-concentration factors of Se and Zn are significantly positively correlated with w(Si)/w(Al) ratios, and negatively correlated with Se, Zn, and organic matter. As indicated by the results above, the distribution and partitioning of soil trace beneficial elements like Se and Zn in the study area are primarily subjected to metamorphic rocks and granites. The water and soil erosion is accompanied by a significant soil Se loss. The bioavailability of soil Se and Zn is reduced by the adsorption of clay minerals and organic matter. Additionally, there may be a large proportion of inactive Se and Zn in the soil of the water and soil erosion area.

Table and Figures | Reference | Related Articles | Metrics
Influence of induced polarization effects on AMT forward modeling and its numerical simulations for sandstone uranium deposits
HU Ying-Cai, WANG Rui-Ting, LI Xiu
Geophysical and Geochemical Exploration    2024, 48 (4): 1006-1017.   DOI: 10.11720/wtyht.2024.1218
Abstract153)   HTML3)    PDF (8319KB)(249)      

The extensively applied audio magnetotellurics (AMT) has become a primary method for deep geophysical exploration of solid mineral resources. However, its data processing and interpretation often only consider electromagnetic effects but ignore induced polarization (IP) effects, which is inconsistent with actual geological conditions. Based on the two-dimensional AMT finite-element forward modeling with IP effects, this study simulated the magnitude and regularity of the influence of various parameters of IP effects on the two-dimensional forward response. Moreover, this study conducted a numerical simulation on the geoelectric model of sandstone uranium deposits in the Erlian Basin. The results show that: (1) With an increase in the values of polarizability, frequency correlation coefficient, and time constant, the two-dimensional AMT forward modeling with IP effects based on the Cole-Cole model primarily reduced the abnormal response value of two-dimensional forward modeling apparent resistivity and increased the abnormal response value of impedance phase. This is beneficial for detecting low-resistivity targets rather than high-resistivity targets; (2) The zero-frequency resistivity and polarizability in IP effects exhibit a significant influence on the two-dimensional forward response. The influence of both frequency correlation coefficient and time constant on the forward response primarily depends on the polarizability. High polarizability suggests their significant influence on the forward response; (3) In the case of disseminated and sulfide-bearing lithologies in the sand bodies of sandstone uranium deposits, greater IP effects will significantly influence the detection of target sand bodies using frequency-domain AMT. Therefore, forward modeling is necessary before detection to determine the magnitude of IP effects.

Table and Figures | Reference | Related Articles | Metrics
Application and indication of seismic methods in deep gold prospecting in the Xilin fault zone in the Jiaodong area
KONG Xiao-Min, SUN Chao, ZHOU Yi-Kang, TIAN Si-Qing, SU Hai-Gang, ZHOU Ming-Lei
Geophysical and Geochemical Exploration    2024, 48 (4): 979-985.   DOI: 10.11720/wtyht.2024.1408
Abstract132)   HTML3)    PDF (8914KB)(248)      

The Xilin fault zone,intimately associated with gold and polymetallic mineralization,exhibits high potential for gold resources.In deep exploration,identifying the deep structural characteristics of ore-controlling faults plays a critical role in achieving breakthroughs in gold exploration.Through the analysis of gold metallization regularity and the reflection seismic methods,this study clarified the seismic response to the changes in the attitude of the dominant ore-controlling fault zone in the Jiaodong area.It posited that the changes in energy intensity of the seismic event on the seismic time profile,as well as large continuity deterioration zones,can indicate the changes in the fault attitude,demonstrating high mineralization potential.Moreover,this study predicted and verified the metallization targets in the area.

Table and Figures | Reference | Related Articles | Metrics
Forward modeling and wave field analysis of seismic surface waves and guided P-waves
LIU Tong, SUN Cheng-Yu, CAI Rui-Qian
Geophysical and Geochemical Exploration    2024, 48 (4): 986-995.   DOI: 10.11720/wtyht.2024.1387
Abstract139)   HTML4)    PDF (4815KB)(242)      

Surface waves and guided P-waves,as two boundary-related wave phenomena,are a crucial part of the near-surface seismic wave field.This study investigated their generation mechanism and propagation regularity using the high-order staggered-grid finite-difference algorithm.First,it solved the problems like numerical dispersion and boundary conditions in numerical simulation.Based on this,it designed medium models under different thicknesses and elastic parameters for forward modeling.Furthermore,it extracted dispersion profiles and amplitude versus offset curves for analysis.In the case of a low-velocity thin layer on the surface,guided P-waves can be generated when the phase velocities of P and SV waves from the same source exceed the S-wave velocity but are less than the P-wave velocity of the underlying high-velocity layer.In media with high Poisson's ratios(>0.4),the phase velocities of surface waves and guided P-waves are sensitive to the S- and P-wave velocities,respectively.Surface waves and guided P-waves usually contain near-surface information that is unavailable in refracted and reflected waves.The appropriate acquisition,analysis,and inversion of near-surface information enable the establishment of a high-resolution near-surface model.This study generalized the generation conditions and wave field characteristics of surface waves and guided P-waves under the same source and deepened the understanding of their propagation regularity,laying a foundation for inversion and denoising research.

Table and Figures | Reference | Related Articles | Metrics
Marine controlled-source electromagnetics-based technology for generating arbitrary-frequency waveforms
WANG Jie, WANG Meng, REN Zhi-Bin, WANG Chen-Tao, WANG Hui-Min
Geophysical and Geochemical Exploration    2024, 48 (6): 1448-1454.   DOI: 10.11720/wtyht.2024.0165
Abstract107)   HTML4)    PDF (2713KB)(240)      

Marine controlled-source electromagnetics (MCSEM) is used to explore resources such as oil and gas hydrates, as well as deep geological structures, by revealing resistivity differences below the seabed. Different excitation frequencies correspond to varying detection depths. To enhance the resistivity imaging of targets beneath the seabed, this study investigated the MCSEM-based technology for generating arbitrary-frequency waveforms to flexibly alter the excitation frequency and improve the exploration effectiveness and efficiency. Using the direct digital frequency synthesis (DDS) chip AD9833 and the joint control of a microcontroller and a complex programmable logic device (CPLD), this study achieved the generation of arbitrary-frequency waveforms with limited precision. The test results indicate that this technology can effectively enhance the spectral adaptability and flexibility of MCSEM.

Table and Figures | Reference | Related Articles | Metrics
Assessment of primary soil fertility indicators of different forest stand types in the Nanshan forest farm in Jiyuan City
WANG Yong-Feng, WANG Jian, PANG Guo-Tao, ZHU Wei-Ping, WANG Ke-Chao, WANG Xiao-En, WANG Zu-Zhen, LIU Jie
Geophysical and Geochemical Exploration    2024, 48 (5): 1400-1408.   DOI: 10.11720/wtyht.2024.1570
Abstract82)   HTML2)    PDF (2696KB)(240)      

Soil fertility is a significant indicator that measures the ability of soil to provide various nutrients required by vegetation and reflects the crop producing power of soil. To ascertain the soil fertility of different forest stand types in the Nanshan forest farm of Jiyuan City, this study investigated the soil of four forest stand types: Platycladus orientalis, Robinia pseudoacacia, Quercus variabilis, and walnut trees. It analyzed the soil nutrients of the forest stand types by determining the pH, organic matter, total nutrients (TN,TP,TK), and available nutrients (AN,AP,AK) of soil at different depths (0~40 cm). Moreover, it assessed the comprehensive soil fertility using the improved Nemerow comprehensive index method. The results show that: (1) Except pH, the physicochemical factors of the soil of the forest stand types in the study area exhibited moderate variations, and the soil TP, TK, AP, AK, and pH manifested significant differences; (2) With an increase in soil depth, the soil in the study area showed increased pH and bulk density, decreased organic matter, TN, and available nutrients, and almost unchanged TP and TK; (3) The assessment of soil nutrient abundance indicated that the TN, TP, and available nutrients were relatively poor in the soil of the study area; (4) Based on a comprehensive assessment, the soil fertility of four forest stand types at different depths decreased in the order of Robinia pseudoacacia, Quercus variabilis, Platycladus orientalis, and walnut trees. Their soil fertility was generally at an average level, with low values observed at depths ranging from 20 to 40 cm. The comprehensive analysis indicates that TN, TP, and available nutrients are deficient in the study area. Therefore, applying appropriate organic fertilizers, nitrogen, and phosphorus is recommended for the study area.

Table and Figures | Reference | Related Articles | Metrics
Seismic prediction of unfavorable geobodies in tunnels using the borehole-roadway transient electromagnetic method
LI He, LI Xiu, QI Zhi-Peng, CAO Hua-Ke
Geophysical and Geochemical Exploration    2024, 48 (5): 1215-1222.   DOI: 10.11720/wtyht.2024.1277
Abstract110)   HTML2)    PDF (8377KB)(239)      

Tunnel detection in complex environments requires fine-scale detection of small unfavorable geobodies like karst caves and fissures. Hence, this study designed a tunnel construction model with a small karst cave in front of the tunnel face. A borehole was drilled at the center point of the tunnel face towards the construction direction, and then an electrical source was put into the borehole for excitation. Array data acquisition was conducted on the tunnel face. The 3D forward modeling based on transient electromagnetic data was performed using the time-domain finite element method. As indicated by the results, the electromagnetic sounding of the target was achieved through the movement of the electrical source, and the planar position of the unfavorable geobody was determined based on the distribution patterns of the electromagnetic field on the tunnel face. Therefore, electrical source excitation in a borehole can enhance the detection ability of the transient electromagnetic method on small karst caves, serving as a feasible method for improving the accuracy of tunnel seismic prediction.

Table and Figures | Reference | Related Articles | Metrics
A model-based study of the filtering effects of thin-interbedded reservoirs on seismic reflection waves
LUO Jing, SUN Cheng-Yu
Geophysical and Geochemical Exploration    2024, 48 (4): 996-1005.   DOI: 10.11720/wtyht.2024.1457
Abstract76)   HTML1)    PDF (5443KB)(238)      

The exploitation of thin-bedded and thin-interbedded hydrocarbon reservoirs has garnered increasing attention.However,seismic data of thin-bedded reservoirs exhibit low resolution,and conventional convolution models fail to simulate the complex wave field propagation phenomena in thin-bedded reservoirs,complicating the seismic prediction of such reservoirs.Hence,based on the transfer matrix method for layered media,this study developed a normal-incidence reflectance method.Using the new method,it conducted forward modeling on several typical thin-interbedded reservoir models.Then,the forward modeling results were analyzed through frequency spectrum analysis to explore the filtering effects of thin-interbedded reservoirs on seismic reflection waves.Compared to the transfer matrix method for layered media,the normal-incidence reflectance method is more applicable to the investigation of thin-interbedded reservoirs under longitudinal wave incidence,significantly enhancing the forward modeling efficiency.Moreover,studying the reflection filtering effects of thin-interbedded reservoirs in the frequency domain somewhat eliminates the shortcomings of insufficient resolution in the time domain.The frequency spectrum analysis of thin-interbedded reservoir models shows that the normal-incidence reflectance method can effectively preserve the interbed information of thin-interbedded reservoirs.As revealed by the frequency spectrum analysis of the forward modeling results based on this method,the changes in the amplitudes and notch points of frequency spectrum curves can reflect the changes in the number of interbeds and sandstone-mudstone ratios in thin-interbedded reservoirs.This finding is critical for determining the spatial distributions and properties of thin-bedded reservoirs in the fine-scale exploration of oilfields.

Table and Figures | Reference | Related Articles | Metrics
Organic carbon content-baesd prediction and influencing factors of black soil layer thicknesses
LIU Kai, DAI Hui-Min, LIU Guo-Dong, LIANG Shuai, WEI Ming-Hui, YANG Ze, SONG Yun-Hong
Geophysical and Geochemical Exploration    2024, 48 (5): 1368-1376.   DOI: 10.11720/wtyht.2024.1436
Abstract181)   HTML6)    PDF (4274KB)(237)      

Black soil layer thicknesses, anessential attribute of black soil,serves as a significant indicator for measuring the fertility and erosion degree of black soil. Their spatial prediction holds critical significance for supporting China's black land conservation and ensuring food security.Considering the diagnostic characteristics of black soil layers in soil system classification, this study regarded soil layers with organic carbon content higher than 6×10-3 of soil parent materials as black soil layers.Moreover, it derived the calculation formula for the thicknesses of black soil layers relying on the exponential distribution pattern of organic carbon in the vertical soil profile. Based on the 62 896 topsoil and 15 687 deepsoil organic carbon data obtained from the multi-purpose regional geochemical survey, this study conducted detailed spatial prediction of the thicknesses of black soil layers in the Songliao Plain and analyzed their relationship with soil types and climate factors. Key findings are as follows:(1) The thicknesses of black soil layers in the Songliao Plain range from 0 to 165 cm, with a median of 23.33 cm;(2) The spatial distribution of black soil layers exhibits significant heterogeneity, characterized by thin southwestern and thick northeastern portions;(3) The black soil layers of swampy soil and peat soil manifest the largest average thicknesses between 60 and 80 cm, followed by those of typical black soil (average thickness: 56 cm) and those of albic soil and meadow soil (average thickness: 40~50 cm);(4) The spatial distributions of the thicknesses of black soil layers are closely associated with climatic conditions, primarily showing a significant negative correlation with temperature and a positive correlation with rainfall;(5) The mean annual temperature of 0 ℃ is a significant temperature threshold for the development of thick black soil layers.Above this temperature, the average thickness of black soil layers exceeds 80 cm and no longer changes with temperature. With global warming, the southward shift of this 0 ℃ is otherm may significantly influence the thicknesses of black soil layers.

Table and Figures | Reference | Related Articles | Metrics
Elemental geochemical characteristics and genetic mechanisms of Se-rich soils in the Lixiahe area in Jiangsu Province
LIAO Qi-Lin, HUANG Shun-Sheng, XU Wei-Wei, CUI Xiao-Dan, JIN Yang, LIU Ling, WANG Yuan-Yuan, LI Wen-Bo, ZHOU Qiang
Geophysical and Geochemical Exploration    2024, 48 (4): 1114-1124.   DOI: 10.11720/wtyht.2024.1369
Abstract139)   HTML2)    PDF (2070KB)(231)      

Based on relevant eco-geochemical survey data collected fromthe Lixiahe plain area in Jiangsu Province,this study systematically explored the geochemical characteristics of elements in Se-rich soils and the genetic mechanism through elemental distribution contrast, correlation analysis, R-type cluster analysis, and principal component analysis. This study can be referenced for the rational production and utilization of Se-rich land resources of the Quaternary sedimentary type. Key findings are as follows: (1)Se-rich soilsin the Lixiahe area are typical Quaternary sediments, and the closed lagoon facies sedimentary environment characterized by rich organic matter and slightly reducing conditions plays a foundational role in the formation of local Se-rich soils;(2) Typical element association, Se-OM-N-K-Fe-Co, in Se-rich soils is primarily located within a depth of 30 cm from the surface, with Se content ranging mostly from 0.3×10-6 to 0.4×10-6 in a uniform distribution; (3) Significant positive correlations between Se and some other elements can be observed in the soils, with the correlation coefficients (r)between Se and OM,and Se and CEC being 0.74 and 0.66, respectively.In contrast, Se exhibits a significant negative correlation with pH, with a correlation coefficient of -0.35; (4) The formation of Se-rich soilsmight have experienced three Se enrichment stages: the initial enrichment in soil parent materials, the re-enrichment during soil formation, and the supergene enrichment after soil formation, accompanied by interference from non-lagoon facies sediments (such as marine sediments). Organic matter adsorption, colloid adsorption, and biogeochemistry constitute the main causes of Se enrichment in the soils; (5) The Se-rich soils are also relatively enriched in heavy metal elements like Cu, Pb, Zn, Ni, Co, and V, which are within the national limit standards.

Table and Figures | Reference | Related Articles | Metrics
Response of the geochemical anomalies of cobalt to ore-bearing geological bodies in the Mangyahedong area, eastern Kunlun
MA Wen-Jun, XIE Hai-Lin, GUO Wei, LI Fei-Fei, TENG Xiao-Yan, CHEN Su-Liong, LI Shao-Nan, LIU Xiu-Feng, MA Zhong-Ying, MA Hai-Yun
Geophysical and Geochemical Exploration    2024, 48 (5): 1232-1246.   DOI: 10.11720/wtyht.2024.0031
Abstract150)   HTML5)    PDF (14076KB)(229)      

Over recent years, large-scale geochemical surveys on a scale of 1:25,000 have been conducted in the eastern Kunlun region for geological prospecting. These surveys, characterized by the rapid and accurate location of anomaly sources, have been widely applied in mineral explorations, yielding encouraging mineral prospecting results. Using 1:25,000-scale stream sediment surveys, this study delineated 12 geochemical integrated anomalies of the element associations of Cu, Co, and Ni in the Hedong area, Mangya City, eastern Kunlun. These anomalies include one integrated anomaly dominated by Co, where various element anomalies exhibit high-degree overlap, relatively large scales, high intensity, and distinct concentration zoning. The Co anomaly is closely associated with the Ordovician Qimantag Group, demonstrating a high degree of spatial consistency. The subsequent anomaly verification reveals four cobalt mineralized zones within anomalies GA16, GA26, GA11, and GA39, with three ore bodies and multiple mineralized bodies of cobalt being identified within the mineralized zones. The comprehensive analysis indicates that the eastern Kunlun region enjoys excellent metallogenic geological conditions and favorable geochemical characteristics, with promising prospecting results having been achieved. Therefore, this region has the prospecting potential of medium to large-scale cobalt deposits.

Table and Figures | Reference | Related Articles | Metrics
Application of wide-field electromagnetic sounding method to deep prospecting in the Mangling ore concentration area in North Qinling: A case study of the Yaozhuang ore district
ZHANG Xiao-Tuan, LI Xin-Lin, ZHOU Bin, GAO Wei-Qiang
Geophysical and Geochemical Exploration    2024, 48 (6): 1609-1617.   DOI: 10.11720/wtyht.2024.0056
Abstract152)   HTML3)    PDF (6000KB)(229)      

The Mangling ore concentration area with intense magmatic activity has become a focal area for deep prospecting in the North Qinling tectonic belt in recent years. The formation of molybdenum deposits in this area is closely related to small Late Jurassic acidic intrusions. To achieve breakthroughs in deep ore prospection within this area, this study conducted the wide-field electromagnetic sounding over the concealed Yaozhuang intrusion delineated based on gravity anomalies. The results indicate the presence of pronounced high-resistivity anomalies at depth, and it is inferred that the protruding part of the anomalies corresponds to the concealed Yaozhuang intrusion. The resistivity inversion results roughly delineated the variations in the top surface of the intrusion, with the elevations and N-S width of the top surface estimated at -300~620 m and 1300~1600 m, respectively. Drilling in the most favorable deep mineralized part confirmed the presence of the concealed intrusion and concealed molybdenum ore bodies. The results of this study demonstrate that the wide-field electromagnetic sounding method exhibits great sounding depths and high resolutions, serving as an effective method for deep ore prospecting in the Mangling ore concentration area.

Table and Figures | Reference | Related Articles | Metrics
Critical techniques for sweet spot prediction for tight sandstone reservoirs in the Dongsheng gas field and their application effects
CAO Shao-He, REN Feng-Ru, WANG Xiao-Xiao
Geophysical and Geochemical Exploration    2024, 48 (4): 954-961.   DOI: 10.11720/wtyht.2024.1423
Abstract137)   HTML4)    PDF (7524KB)(228)      

The Xinzhao gas zone of the Dongsheng gas field resides at the junction of three first-order tectonic units:Yishan slope,Yimeng uplift,and Tianhuan depression.Due to the influence of paleogeomorphology and provenance,different channel sediments vary significantly in this zone.The main target layer is the first member of the Shihezi Formation,which hosts a braided river sedimentary system,with tight reservoirs characterized by typical low porosities and permeabilities.The effective sandstone reservoir exhibits a small thickness,pronounced heterogeneity in gas content,and low-resolution seismic data,complicating sweet spot prediction.Hence,this study delved into the critical seismic prediction techniques for sweet spots in braided-river tight sandstone reservoirs.Firstly,the stratigraphic framework was established based on the three-dimensional seismic relative isochronous surface,characterizing the spatial distributions of channel sand bodies at different stages using the relative-spatial-resolution stratal slicing technique.Then,the seismic data were transformed from the time domain to the frequency domain using the wavelet transform time-frequency analysis technique.Based on the analysis of instantaneous spectrum differences in seismic data of different channels,the qualitative gas content prediction was achieved using the low-frequency energy ratio and the ABV absorption attribute,effectively supporting well deployment.Finally,the facies-controlled geostatistical inversion in the depth domain combining logs and seismic data was conducted for quantitative reservoir prediction, guiding the accurate design and optimization of horizontal well trajectories.The application of these techniques has increased the probability of penetration of gas reservoirs in the study area by seven percentage points, demonstrating satisfactory application effects.

Table and Figures | Reference | Related Articles | Metrics
3D simulations of geological structures in coastal cities using a electrical resistivity method
LIU Hong-Hua, ZHANG Hui, WANG Ru-Jie, YU Peng, QIN Sheng-Qiang, LI Wen-Yu, CHE Rong-Qi
Geophysical and Geochemical Exploration    2024, 48 (4): 1037-1044.   DOI: 10.11720/wtyht.2024.1344
Abstract113)   HTML1)    PDF (7138KB)(226)      

For the underground construction of coastal cities in China, there is an urgent need to accurately position unfavorable geobodies such as faults and boulders. Based on the geological characteristics of coastal cities, this study conducted 3D numerical simulations using a high-density resistivity method, determining the effects of the electrical properties and thickness of the overburden on the survey results, as well as the DC electric field characteristics varying with the sizes and burial depths of detection targets. The results show that the resistivity difference between the overburden and the targets serves as a critical factor in determining the influence of the overburden. For low-resistivity fracture zones, a higher resistivity of the overburden signifies more prominent responses from the fracture zone. Under middle- to high-resistivity overburden conditions, shallowly buried boulders can be easily found, and larger boulders exhibit more significant high-resistivity characteristics. In the exploration along the Qingdao metro line 5, the high-density resistivity method played a vital role in exploring fracture zones and boulders, verifying the effective application effects of the method. The results of this study provide a basis for selecting engineering exploration methods and determining operating parameters in coastal cities.

Table and Figures | Reference | Related Articles | Metrics
Application of three-dimensional magnetic anomaly inversion in magnetite exploration
ZHAO Bai-Ru, LI Hou-Pu, ZHANG Heng-Lei
Geophysical and Geochemical Exploration    2024, 48 (6): 1626-1632.   DOI: 10.11720/wtyht.2024.0167
Abstract123)   HTML3)    PDF (3579KB)(226)      

The Galinge iron deposit in Qinghai is overlain by deposits measuring greater than 150 m in thickness. The great burial depths of ore bodies lead to gentle magnetic anomaly morphology, making it difficult to characterize the spatial distribution of ore bodies. Therefore, this study employed three-dimensional magnetic anomaly inversion to determine the three-dimensional distribution characteristics of subsurface magnetic intensity in the study area. Given the prior information of non-magnetic surrounding rocks, the three-dimensional magnetic intensity model clearly presented the spatial distribution of the ore bodies and reflected the presence of intense magnetic bodies at depths of less than 500 m in existing boreholes. Accordingly, it can be inferred that there exist concealed ore bodies at depths exceeding 500 m in the study area. The results of this study suggest that three-dimensional magnetic anomaly inversion can effectively improve target identification, providing clear information on the horizontal positions, depths, and scales of magnetic ore bodies. The proposed inversion method can offer strong support for drilling design and reserve estimation, warranting promotion in detailed exploration of solid minerals.

Table and Figures | Reference | Related Articles | Metrics
Application of the unmanned aerial vehicle-airborne gamma-ray spectrometry system to follow-up geochemical surveys in high-relief areas
ZHONG Hui-Rong, YANG Cheng-Zhi, YANG Qing-Hua, XIN Chao, YANG Lei, WANG Wei
Geophysical and Geochemical Exploration    2024, 48 (5): 1268-1274.   DOI: 10.11720/wtyht.2024.1565
Abstract105)   HTML3)    PDF (3183KB)(224)      

In response to the need for large-scale exploration of radioactive minerals in high-relief areas, this study developed an airborne gamma-ray spectrometer based on small-sized NaI (Tl) crystals, which was integrated with the F-120 unmanned aerial vehicle (UAV) to form an airborne gamma-ray spectrometry (AGRS) system. The UAV-AGRS system was applied to the follow-up geochemical survey of uranium deposits in a certain area of South China. The survey results show roughly consistent locations and morphologies for high-anomaly zones with the ground gamma-ray spectrometry results. Moreover, the results of this study exhibit more detailed anomaly morphologies, and more significant responses of uranium content-related uranium channel data to known uranium occurrences in the study area, suggesting superior data. Therefore, the UAV-AGRS system shows promising potential as an effective alternative to ground gamma-ray spectrometry for the follow-up geochemical survey of uranium deposits in high-relief areas.

Table and Figures | Reference | Related Articles | Metrics
Electrical structure characteristics and geothermal exploration directions of the upper crust on the eastern margin of the Yinchuan Basin
WU Yang, ZHAO Fu-Yuan, HU Xin-Jun, CHEN Xiao-Jing, BU Jin-Bing, GUO Shao-Peng
Geophysical and Geochemical Exploration    2024, 48 (5): 1258-1267.   DOI: 10.11720/wtyht.2024.1489
Abstract100)   HTML4)    PDF (8811KB)(219)      

The successful operation of geothermal wells on the eastern margin of the Yinchuan Basin suggests a new geothermal exploration orientation around the Huanghe fault and its secondary faults. To further investigate the controlling effect of the Huanghe fault on geothermal resources in the study area and pinpoint the exploration target, this study arranged four magnetotelluric (MT) lines, obtaining 71 survey points.The preprocessing and two-dimensional inversion of MT data yielded a two-dimensional electrical structure of the study area within a depth of 10 km.Based on the previous geological, gravity, microtremor, and controllable source audio magnetotellurics(CSAMT) data in the study area, this study further interpreted the strata and fault structures of the study area.It posited that the relatively-low-resistivity zone within the high-resistivity zone of the Ordovician basement reflected by the MT lines may be the secondary-fault development site at the rear edge of the Huanghe fault, which is caused by the fragmentation and water filling of Ordovician strata, showing certain exploration potential for geothermal resources.

Table and Figures | Reference | Related Articles | Metrics
Deriving analytical solution of the pseudo wavefield from transient electromagnetic data
LI Hai, ZHAO Pan, LI Ke-Ying, LIU Zheng
Geophysical and Geochemical Exploration    2024, 48 (5): 1193-1198.   DOI: 10.11720/wtyht.2024.1188
Abstract118)   HTML2)    PDF (1705KB)(216)      

The transform from transient electromagnetic (TEM) field to pseudo wavefield is the basis for using the imaging technique. The TEM field follows the diffusion equation, while the pseudo wavefield follows the wave equation. These two can be transformed into each other via the Q-transform. As the integral transformation from TEM field to pseudo wavefield is ill-posed, numerical method is used to get the desired pseudo wavefield. As a result, it is often the case that the methods and parameters are need to be optimized to get a optimal pseudo wavefield. Therefore, here in this paper, we derived the analytical solution of the pseudo wavefield from the TEM field. We start from the analytical formula of TEM field, and utilize the Laplace transform to establish the analytical solution pairs. The pairs can be used to test the accuracy and stability of the numerical method, as well as examining the features of the pseudo wavefield to get an effective imaging method.

Table and Figures | Reference | Related Articles | Metrics
Spatiotemporal changes of soil organic matter in the Songnen and Sanjiang plains of Heilongjiang Province over 40 years
YANG He-Ping, ZHAO Xiao-Jing, SUN Jiang-Jun
Geophysical and Geochemical Exploration    2024, 48 (4): 1103-1113.   DOI: 10.11720/wtyht.2024.0129
Abstract81)   HTML2)    PDF (5288KB)(214)      

The spatiotemporal changes in soil organic matter (SOM) hold great significance forthe elevation of both regional soilquality and the potential of soil carbon sequestration. Based on two periods of soil data from the second soil reconnaissance surveyof Heilongjiang Province in 1980 and thesoil geochemical survey of Heilongjiang Province in 2020, this study analyzed the spatiotemporal changes in SOM content in surface soil (0~20 cm) in the Songnen and Sanjiang plains in Heilongjiang Province over 40 years through spatial analysis in GIS. Furthermore, this study summarized the distribution patterns of SOM lossof different soil types in various cities and counties. The results indicate that the average SOM content in the surface soil in the major two plains decreased by 5.68×10-3over 40 years, generallyexhibiting a downward trend. Areas with decreased SOM are primarily distributed in Qiqihar, Daqing, western Suihua of the Songnen Plain, along with Hegang and western Jiamusi of the Sanjiang Plain, with the largest decreased amplitudeobserved in the Qiqihar Zhaoyuan area along the Nenjiang River basin. Regarding soil types, swampsoils exhibited the highestSOM loss rate (-44.68%), while grassland soilsexhibited a contribution rate for SOM of 44.14%, which established these soilsas the soil type making the most significant contribution to SOM in both plains. The SOM loss area in Wangkui County, Zhaoyuan County, and Daqing City accounted for over 72.11% of the total. This study determines the spatiotemporal changes in SOM in the major two basins in Heilongjiang Province on a scale of 40 years, providing a theoretical basis for the primary prevention and control targets of regional black soil degradation.

Table and Figures | Reference | Related Articles | Metrics
A method for identifying faults based on well-controlled multi-attribute fusion using a feedforward neural network
ZHAO Jun, RAN Qi, ZHU Bo-Hua, LI Yang, LIANG Shu-Yuan, CHANG Jian-Qiang
Geophysical and Geochemical Exploration    2024, 48 (4): 1045-1053.   DOI: 10.11720/wtyht.2024.1524
Abstract117)   HTML5)    PDF (3756KB)(210)      

The fault-controlled fractured-vuggy carbonate reservoirs in the Tarim Basin exhibitconsiderable burial depths, complex structures, and highly developed faults. Faults serve asa dominant factor controlling oil and gas accumulation and possible hydrocarbon migration pathways in the study area. Hence, it is critical to predict their spatial distributions and sizes. There existvariousfault detection attributes, which characterize fault scales and features differently due totheir different calculation methods.Moreover, conventional attribute detection ignores the use and constraints of logs. For more complete and accurate fault prediction results, this study selected multiple fault detection attributes for fusion using the feedforward neural network algorithm, with logs as prior information. First of all, a sample database for fault feature identification was established using fault attributes (like AFE, likelihood, and dip angle) with distinct characteristics anddiscrimination criteria of fault types, including lost circulation data, imaging logs, and seismic event dislocations.The deep feedforward neural network was trained based on the sample database.A neural network prediction model with a minimum prediction error was obtained by comparing and testing the learning effects under different hidden layer depths. Finally, the neural network prediction model was applied to the fault prediction of the study area. The comparative analysis reveals thatthe fault prediction using deeplearning-based fused attributesyielded prediction results more consistent with the log-based interpretation results, and could synthesize the information of faults with different scale characteristics, thus effectively improving the prediction accuracy and reliability.

Table and Figures | Reference | Related Articles | Metrics
Staining algorithm-based reverse time migration imaging for pre-salt structures
ZHAO Guo-Yong, ZHANG Jian, LIU Chang, REN Yi, XING Bo-Shen, LI Zi-Zheng, QU Ying-Ming
Geophysical and Geochemical Exploration    2024, 48 (4): 1086-1093.   DOI: 10.11720/wtyht.2024.1286
Abstract97)   HTML1)    PDF (4043KB)(208)      

The reverse time migration (RTM) technique can accurately simulate the propagation of seismic waves in subsurface media and image subsurface structures.However,seismic waves can be reflected,refracted,or scattered in weakly illuminated areas,leading to locally reduced signal-to-noise ratios (SNRs) in RTM imaging results.The staining algorithm can achieve the tracking and imaging of known geobodies by generalizing the wave equation to the complex domain.It requires a conventional real velocity and an imaginary velocity field as inputs.A conventional staining algorithm requires known real subsurface structures,which is impractical in this study.Hence,this study put forward regional staining to promote the practical development of the staining algorithm.Focusing on subsalt imaging,this study proposed a staining algorithm-based RTM imaging method for subsalt structures.The salt dome model demonstrated that the method proposed in this study can significantly improve the imaging SNRs and resolution of self-selected target regions.

Table and Figures | Reference | Related Articles | Metrics
Active/passive source-based observation experiments and applications of fiber-optic rotational seismometers
CAO Yu-Jia, CHEN Yan-Jun, LI Zheng-Bin, TENG Yun-Tian, ZHANG Ding-Fan
Geophysical and Geochemical Exploration    2024, 48 (6): 1486-1497.   DOI: 10.11720/wtyht.2024.0142
Abstract100)   HTML3)    PDF (9597KB)(207)      

In the past two decades, high-sensitivity ring laser gyroscopes have demonstrated the potential of rotational observation data in global seismology. Commercial fiber-optic three-component rotational seismometers have heralded a new development phase of rotational seismography. Field experiments for high-sensitivity portable fiber-optic rotational seismometers in China remain in the initial stage, whereas their relevant data analysis results have been obtained internationally. This study elucidated the co-located observation experiments on six components (6C, including three components of translational motions and three components of rotational motions) of an active source and a natural earthquake, involving experimental schemes, implementation steps, and subsequent data analysis. Moreover, this study revealed the primary factors influencing the experiment results by comparatively analyzing the similarities and differences of experiments. Fiber-optic rotational and conventional seismometers need to be fixed on the same rigid panel to ensure the consistency of received signals. Besides, proper ground coupling and burial processing contribute to high-quality experimental data. The experimental results indicate that water bodies will affect surface wave manifestation and P-wave clarity. These findings, enriching the practical experience in seismic rotational observation experiments, serve as a reference for the design of subsequent rotational observation experiments, thereby assisting in completing the experiments and obtaining higher-quality data. In terms of data application, this study optimized and substantiated the feasibility of the preprocessing scheme, with the backazimuth calculation accuracy improved by 58.8° and 50° at the two active-source measuring points, and by 24.1° and 29.4° at the two passive-source measuring points. The application of six-component seismic data from a single seismic station suggests that additional observation of rotational components can acquire more seismic wavefield information, thus the observation of rotational components can be employed to enhance the utilization of China's massive seismic observation data. Overall, fiber-optic rotational seismometers broaden the boundary of seismic monitoring technology, boost seismology research, and create new possibilities for future earthquake research.

Table and Figures | Reference | Related Articles | Metrics
Log-based lithology identification of volcanic rocks using random forest method: A case study of Carboniferous strata in the Dixi area, Junggar Basin
SHANG Ya-Zhou, ZHANG Zhao-Hui, XU Duo-Nian, ZHAO Wen-Wen, CHEN Hua-Yong, HAN Hai-Bo
Geophysical and Geochemical Exploration    2024, 48 (4): 1025-1036.   DOI: 10.11720/wtyht.2024.1303
Abstract117)   HTML2)    PDF (9065KB)(207)      

The accurate lithologyidentification of volcanic rocksserves as a significant foundation for the efficient exploration and exploitation of volcanic reservoirs. However, volcanic reservoirs exhibit intricate lithologies, longitudinalmultistagesuperimposition, and fast transverse phase transition, which reduce the accuracy of crossplots in lithologyidentification ofvolcanic reservoirs. Based on the optimal parameter combination of the model determined through grid search and orthogonal experiments, this study quantitatively evaluatedthe effects of conventional log curves on the lithologyidentification of volcanic rocks. Withthe natural gamma ray, compensated neutron, sonic interval transit time, and formation resistivity as lithologic indicators, this study builtan intelligent model for the lithology identification of Carboniferous volcanic rocks in the Dixi area in the Junggar Basin using therandom forest method. This study identified the lithologies of thecored intervalswith a cumulative thickness of 870 m infive cored wells in the study area, with the coincidence ratesof the identification results with thin section identification results and core description resultsreaching 76.67% and 85.98%, respectively. This suggestssignificant identification effects. Therefore, this studysets the stagefor the fine-scale evaluation of volcanic reservoirs in the study area.

Table and Figures | Reference | Related Articles | Metrics
Creep characteristics of fractured Beishan granite under the condition of multi-field coupling
ZHANG Hai-Yang, LIU Fei-Yang, LIU Jian
Geophysical and Geochemical Exploration    2024, 48 (6): 1539-1544.   DOI: 10.11720/wtyht.2024.1557
Abstract55)   HTML1)    PDF (2483KB)(206)      

After a disposal repository for high-level radioactive waste operates, the near-field surrounding rocks will be long in a thermal-hydrological-mechanical coupling environment. Therefore, their mechanical and permeability characteristics are crucial to the performance evaluation of the disposal repository. The surrounding rocks of the Beishan preselected area for the disposal of high-level radioactive waste in China are typical sparsely fractured granites, whose creep characteristics are directly related to the long-term safety of the disposal repository. Using water jet and wire cutting techniques, along with fracture surface blocking and combined sealing at rock sample ends, this study addressed the challenges of the sample preparation and sealing of fractured granite in thermal-hydrological-mechanical coupling triaxial tests. Based on this, multi-loading triaxial creep tests were conducted. The test results indicate that under the condition of multi-field coupling, the triaxial creep strength of the fractured granite was approximately 80% of its triaxial strength. Creep deformation increased with the axial load level, with lateral creeps more pronounced than axial creeps. For the compacted and crack propagation sections of the rock samples, both the axial strain rate and permeability decreased initially and then increased. In the case of consistent osmotic pressure difference, a higher osmotic water pressure within fractures would lead to decreased peak strength of the rock samples and result in greater lateral creep deformation.The results provide scientific support for the site selection, surrounding rock evaluation, engineering design and construction of the repository.

Table and Figures | Reference | Related Articles | Metrics
Three-dimensional numerical simulation of short-offset transient electromagnetic responses to water-rich bodies in coal mines
CHANG Jiang-Hao, XUE Jun-Jie, MENG Qing-Xin, ZHAO Peng
Geophysical and Geochemical Exploration    2024, 48 (5): 1176-1184.   DOI: 10.11720/wtyht.2024.1300
Abstract140)   HTML4)    PDF (7711KB)(205)      

This study performed forward modeling for the short-offset transient electromagnetic (SOTEM) responses of a three-dimensional geoelectric model using the three-dimensional finite-difference time-domain method. The results reveal that: (1) The attenuation curves of the Ex responses from the electric field above the goaf or collapse column were above the background response curve at early times but below it at later times; (2) A shorter offset corresponded to a higher relative anomaly of ∂Bz/∂t response signals. Increasing the length of the transmitting source could enhance the signal intensity while slightly decreasing the relative anomaly; (3) In the case of survey lines close to the transmitting source, the overall ∂Bz/∂t responses of the goaf or collapse column were weaker than the background responses. For survey lines away from the transmitting source, the overall ∂Bz/∂t responses of the goaf or collapse column were stronger than the background responses. In summary, the calculation results demonstrate significant implications for understanding the ability of the SOTEM method to detect typical water-rich bodies in coal mines, laying a theoretical foundation for the parameter selection of SOTEM devices and their generalized application in the coal sector.

Table and Figures | Reference | Related Articles | Metrics
京ICP备05055290号-3
Copyright © 2021 Geophysical and Geochemical Exploration, All Rights Reserved.
Tel: (8610)62301569   Email: whtbjb@sina.com , whtbjb@163.com