|
|
Electrical structure characteristics and geothermal exploration directions of the upper crust on the eastern margin of the Yinchuan Basin |
WU Yang1(), ZHAO Fu-Yuan1(), HU Xin-Jun1,2, CHEN Xiao-Jing1, BU Jin-Bing1, GUO Shao-Peng1 |
1. Ningxia Geophysical and Geochemical Exploration Institute (Autonomous Regional Deep Earth Exploration Center), Yinchuan 750001, China 2. School of Earth Resources, China University of Geosciences (Wuhan), Wuhan 430074, China |
|
|
Abstract The successful operation of geothermal wells on the eastern margin of the Yinchuan Basin suggests a new geothermal exploration orientation around the Huanghe fault and its secondary faults. To further investigate the controlling effect of the Huanghe fault on geothermal resources in the study area and pinpoint the exploration target, this study arranged four magnetotelluric (MT) lines, obtaining 71 survey points.The preprocessing and two-dimensional inversion of MT data yielded a two-dimensional electrical structure of the study area within a depth of 10 km.Based on the previous geological, gravity, microtremor, and controllable source audio magnetotellurics(CSAMT) data in the study area, this study further interpreted the strata and fault structures of the study area.It posited that the relatively-low-resistivity zone within the high-resistivity zone of the Ordovician basement reflected by the MT lines may be the secondary-fault development site at the rear edge of the Huanghe fault, which is caused by the fragmentation and water filling of Ordovician strata, showing certain exploration potential for geothermal resources.
|
Received: 10 November 2023
Published: 21 October 2024
|
|
|
|
|
|
Location of the study area and magnetotelluric survey lines 1—normal fault;2—reverse fault;3—strike slip fault;4—place name;5—MT line;6—Yellow River; AB—Alashan Block;YCB—Yinchuan Basin;OB—Ordos Block;TP—Qinghai-Tibet plateau;the blue box represents the research area
|
|
Geological map and location map of magnetotelluric survey points in the study area 1 —Quaternary;2—Neogene; 3—geological inference fault;4—MT site;5—typical MT site;6—place name;7—geothermal pore;YCB—Yinchuan Basin;OB—Ordos Block
|
|
Apparent resistivity and impedance phase curve diagram of typical sites red lines—XY mode;blue lines—YX mode
|
|
The cloud maps of dimensionality for L1 line a—1D skew;b—2D skew;c—2D effective fator
|
|
Statistical images of geo-electrical strikes for L1 line a—rose diagram;b—frequency-based cloud diagram;c—site-based diagram
|
|
TM mode apparent resistivity and phase raw data (a、c) and response data (b、d) pseudo cross-sectional
|
|
Electrical structure model from 2D inversion of MT data along profiles
|
|
Comprehensive interpretation results of strata in the research area a—L1 line;b—L2 line;c—L3 line;d—L4 line
|
|
Comprehensive interpretation results of DRT-03 well logging
|
|
Comprehensive interpretation results of faults in the research area a—gravity anomaly in the research area;b—L1 line;c—L2 line;d—L3 line;e—L4 line
|
[1] |
赵红格, 刘池洋, 王锋, 等. 贺兰山隆升时限及其演化[J]. 中国科学:地球科学, 2007, 37(S1):185-192.
|
[1] |
Zhao H G, Liu C Y, Wang F, et al. Time limit and evolution of Helan Mountain uplift[J]. Scientia Sinica:Terrae, 2007, 37(S1):185-192.
|
[2] |
柳忠泉. 银川盆地盆山转换及与贺兰山的耦合关系[J]. 合肥工业大学学报:自然科学版, 2014, 37(11):1366-1371.
|
[2] |
Liu Z Q. Basin-mountain conversion of Yinchuan Basin and its coupling relation to Helan Mountain[J]. Journal of Hefei University of Technology:Natural Science Edition, 2014, 37(11):1366-1371.
|
[3] |
邓起东, 程绍平, 闵伟, 等. 鄂尔多斯块体新生代构造活动和动力学的讨论[J]. 地质力学学报, 1999, 5(3):13-21.
|
[3] |
Deng Q D, Cheng S P, Min W, et al. Discussion on Cenozoic tectonics and dynamics of Ordos Block[J]. Journal of Geomechanics, 1999, 5(3):13-21.
|
[4] |
刘保金, 酆少英, 姬计法, 等. 贺兰山和银川盆地的岩石圈结构和断裂特征——深地震反射剖面结果[J]. 中国科学:地球科学, 2017, 47(2):179-190.
|
[4] |
Liu B J, Feng S Y, Ji J F, et al. Lithospheric structure and faulting characteristics of the Helan Mountains and Yinchuan Basin:Results of deep seismic reflection profiling[J]. Scientia Sinica:Terrae, 2017, 47(2):179-190.
|
[5] |
陈一方, 陈九辉, 郭飚, 等. 鄂尔多斯西缘北段的地壳结构和块体间变形关系[J]. 地球物理学报, 2020, 63(3):886-896.
|
[5] |
Chen Y F, Chen J H, Guo B, et al. Crustal structure and deformation between different blocks in the northern part of the western margin of Ordos[J]. Chinese Journal of Geophysics, 2020, 63(3):886-896.
|
[6] |
吴建平, 刘雅宁, 钟世军, 等. 鄂尔多斯块体及周边地区岩石圈结构的接收函数与面波联合反演研究[J]. 中国科学:地球科学, 2022, 52(8):1532-1546.
|
[6] |
Wu J P, Liu Y N, Zhong S J, et al. Lithospheric structure beneath Ordos Block and surrounding areas from joint inversion of receiver function and surface wave dispersion[J]. Scientia Sinica:Terrae, 2022, 52(8):1532-1546.
|
[7] |
高翔, 郭飚, 陈九辉, 等. 地幔上涌对鄂尔多斯西缘岩石圈的改造:来自远震多尺度层析成像的证据[J]. 地球物理学报, 2018, 61(7):2736-2749.
|
[7] |
Gao X, Guo B, Chen J H, et al. Rebuilding of the lithosphere beneath the western margin of Ordos:Evidence from multiscale seismic tomography[J]. Chinese Journal of Geophysics, 2018, 61(7):2736-2749.
|
[8] |
赵凌强, 孙翔宇, 詹艳, 等. 贺兰山—银川盆地三维深部电性结构特征及其地球动力学意义[J]. 中国科学:地球科学, 2023, 53(3):481-496.
|
[8] |
Zhao L Q, Sun X Y, Zhan Y, et al. Characteristics of the three-dimensional deep electrical structure in the Helan Mountains-Yinchuan Basin and its geodynamic implications[J]. Scientia Sinica:Terrae, 2023, 53(3):481-496.
|
[9] |
陈晓晶, 虎新军, 李宁生, 等. 银川盆地东缘地热成藏模式探讨[J]. 物探与化探, 2021, 45(3):583-589.
|
[9] |
Chen X J, Hu X J, Li N S, et al. A discussion on geothermal accumulation model on the eastern margin of Yinchuan Basin[J]. Geophysical and Geochemical Exploration, 2021, 45(3):583-589.
|
[10] |
肖骑彬, 蔡新平, 徐兴旺, 等. 应用大地电磁测深勘查北京平谷盆地隐伏含水岩溶系统的结构[J]. 吉林大学学报:地球科学版, 2004, 34(S1):60-64.
|
[10] |
Xiao J B, Cai X P, Xu X W, et al. Application of magnetotelluric sounding to explore the structure of concealed water-bearing Karst system in Pinggu Basin,Beijing[J]. Journal of Jilin University:Earth Science Edition, 2004, 34(S1):60-64.
|
[11] |
赵凌强, 詹艳, 孙翔宇, 等. 利用大地电磁技术揭示2016年1月21日青海门源MS6.4地震隐伏地震构造和孕震环境[J]. 地球物理学报, 2019, 62(6):2088-2100.
|
[11] |
Zhao L Q, Zhan Y, Sun X Y, et al. The hidden seismogenic structure and dynamic environment of the 21 January Menyuan,Qinghai,MS6.4 earthquake derived from magnetotelluric imaging[J]. Chinese Journal of Geophysics, 2019, 62(6):2088-2100.
|
[12] |
朱怀亮, 刘志龙, 曹学刚, 等. 银川盆地东缘地热资源勘探远景评价——基于大地电磁测深和钻探探测[J]. 地质与勘探, 2020, 56(6):1287-1295.
|
[12] |
Zhu H L, Liu Z L, Cao X G, et al. Exploration prospect of geothermal resources in the eastern margin of Yinchuan Basin:Magnetotelluric sounding and drilling confirmation[J]. Geology and Exploration, 2020, 56(6):1287-1295.
|
[13] |
方盛明, 赵成彬, 柴炽章, 等. 银川断陷盆地地壳结构与构造的地震学证据[J]. 地球物理学报, 2009, 52(7):1768-1775.
|
[13] |
Fang S M, Zhao C B, Chai C Z, et al. Seismic evidence of crustal structures in the Yinchuan faulted basin[J]. Chinese Journal of Geophysics, 2009, 52(7):1768-1775.
|
[14] |
黄兴富, 施炜, 李恒强, 等. 银川盆地新生代构造演化:来自银川盆地主边界断裂运动学的约束[J]. 地学前缘, 2013, 20(4):199-210.
|
[14] |
Huang X F, Shi W, Li H Q, et al. Cenozoic tectonic evolution of the Yinchuan Basin:Constraints from the deformation of its boundary faults[J]. Earth Science Frontiers, 2013, 20(4):199-210.
|
[15] |
Swift C M. A magnetotelluric investigation of an electrical conductivity anomaly in the Southwestern United States[D]. Massachusetts: Massachusetts Institute of Technology,1967.
|
[16] |
Bahr K. Geological noise in magnetotelluric data:A classification of distortion types[J]. Physics of the Earth and Planetary Interiors, 1991, 66(1/2):24-38.
|
[17] |
Groom R W, Bailey R C. Decomposition of magnetotelluric impedance tensors in the presence of local three-dimensional galvanic distortion[J]. Journal of Geophysical Research, 94(B2):1913-1925.
|
[18] |
Caldwell T G, Bibby H M, Brown C. The magnetotelluric phase tensor[J]. Geophysical Journal International, 2004, 158(2):457-469.
|
[19] |
蔡军涛, 陈小斌, 赵国泽. 大地电磁资料精细处理和二维反演解释技术研究(一)——阻抗张量分解与构造维性分析[J]. 地球物理学报, 2010, 53(10):2516-2526.
|
[19] |
Cai J T, Chen X B, Zhao G Z. Refined techniques for data processing and two-dimensional inversion in magnetotelluric Ⅰ:Tensor decomposition and dimensionality analysis[J]. Chinese Journal of Geophysics, 2010, 53(10):2516-2526.
|
[20] |
蔡军涛, 陈小斌. 大地电磁资料精细处理和二维反演解释技术研究(二)——反演数据极化模式选择[J]. 地球物理学报, 2010, 53(11):2703-2714.
|
[20] |
Cai J T, Chen X B. Refined techniques for data processing and two-dimensional inversion in magnetotelluric Ⅱ:Which data polarization mode should be used in 2D inversion[J]. Chinese Journal of Geophysics, 2010, 53(11):2703-2714.
|
[21] |
侯旭波, 尹克敏, 林中凯, 等. 银川盆地构造反转及其演化与叠合关系分析[J]. 高校地质学报, 2014, 20(2):277-285.
|
[21] |
Hou X B, Yin K M, Lin Z K, et al. The study of tectonic inversion,evolution and superposition of Yinchuan Basin[J]. Geological Journal of China Universities, 2014, 20(2):277-285.
|
[22] |
李蒙. 鄂尔多斯西缘奥陶纪沉积与构造演化研究[D]. 西安: 西北大学, 2019.
|
[22] |
Li M. Analysis of sedimentary and tectonic evolution of the western margin of Ordos Area in Ordovician[D]. Xi’an: Northwest University, 2019.
|
[23] |
侯旭波, 崔红庄, 郇玉龙. 银川盆地不同构造层构造样式及形成演化分析[J]. 东北石油大学学报, 2012, 36(6):28-33,7.
|
[23] |
Hou X B, Cui H Z, Huan Y L. Analysis of structural style and tectonic evolution in Yinchuan Basin[J]. Journal of Northeast Petroleum University, 2012, 36(6):28-33,7.
|
[24] |
王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7):1923-1937.
|
[24] |
Wang G L, Lin W J. Main hydro-geothermal systems and their genetic models in China[J]. Acta Geologica Sinica, 2020, 94(7):1923-1937.
|
[25] |
程国强. 宁夏黄河东岸天山海世界对流型地热资源赋存地质条件及补给特征研究[J]. 中国资源综合利用, 2022, 40(12):59-61.
|
[25] |
Cheng G Q. Study on the occurrence geological conditions and recharge characteristics of convective geothermal resources in the Tianshan Sea world on the east bank of the Yellow River in Ningxia[J]. China Resources Comprehensive Utilization, 2022, 40(12):59-61.
|
[26] |
张薇, 王贵玲, 刘峰, 等. 中国沉积盆地型地热资源特征[J]. 中国地质, 2019, 46(2):255-268.
|
[26] |
Zhang W, Wang G L, Liu F, et al. Characteristics of geothermal resources in sedimentary basins[J]. Geology in China, 2019, 46(2):255-268.
|
[1] |
ZHU Jiang-Bo, WANG Qi-Nian, LIU Yu-Quan, GUAN Da-Wei, LI Tao, YOU Miao, ZHANG Jian. Electrical structure of the Bengbu-Huaibei area and its geological implications[J]. Geophysical and Geochemical Exploration, 2024, 48(4): 971-978. |
[2] |
WANG Wen-Jie, CHEN Lei, LEI Cong-Cong, SHI Xiao-Feng, YANG Biao, WANG Wen-Bao, SUN Da-Peng, XU Hao-Qing. Deep structural characteristics of the Yagan fault zone in northeastern Ejina Banner, Inner Mongolia: Evidence from magnetotelluric sounding[J]. Geophysical and Geochemical Exploration, 2024, 48(3): 640-650. |
|
|
|
|