|
|
Spatiotemporal changes of soil organic matter in the Songnen and Sanjiang plains of Heilongjiang Province over 40 years |
YANG He-Ping1,2(), ZHAO Xiao-Jing1, SUN Jiang-Jun1 |
1. Natural Resources Survey Institute of Heilongjiang Province, Harbin 150036, China 2. Key Laboratory of Black Soil and Water Resources Research of Heilongjiang Province, Harbin 150036, China |
|
|
Abstract The spatiotemporal changes in soil organic matter (SOM) hold great significance forthe elevation of both regional soilquality and the potential of soil carbon sequestration. Based on two periods of soil data from the second soil reconnaissance surveyof Heilongjiang Province in 1980 and thesoil geochemical survey of Heilongjiang Province in 2020, this study analyzed the spatiotemporal changes in SOM content in surface soil (0~20 cm) in the Songnen and Sanjiang plains in Heilongjiang Province over 40 years through spatial analysis in GIS. Furthermore, this study summarized the distribution patterns of SOM lossof different soil types in various cities and counties. The results indicate that the average SOM content in the surface soil in the major two plains decreased by 5.68×10-3over 40 years, generallyexhibiting a downward trend. Areas with decreased SOM are primarily distributed in Qiqihar, Daqing, western Suihua of the Songnen Plain, along with Hegang and western Jiamusi of the Sanjiang Plain, with the largest decreased amplitudeobserved in the Qiqihar Zhaoyuan area along the Nenjiang River basin. Regarding soil types, swampsoils exhibited the highestSOM loss rate (-44.68%), while grassland soilsexhibited a contribution rate for SOM of 44.14%, which established these soilsas the soil type making the most significant contribution to SOM in both plains. The SOM loss area in Wangkui County, Zhaoyuan County, and Daqing City accounted for over 72.11% of the total. This study determines the spatiotemporal changes in SOM in the major two basins in Heilongjiang Province on a scale of 40 years, providing a theoretical basis for the primary prevention and control targets of regional black soil degradation.
|
Received: 28 March 2024
Published: 19 September 2024
|
|
|
|
|
|
Soil type in the two great plains of Heilongjiang Province
|
|
Situation of land use in the two great plains of Heilongjiang Province
|
时期/年 | 样本数 | 最小值/10-3 | 最大值/10-3 | 均值/10-3 | 标准差/10-3 | 变异系数/% | 1980 | 44766 | 0.10 | 936.00 | 47.31 | 39.90 | 84.34 | 2020 | 65374 | 0.34 | 608.10 | 41.63 | 23.34 | 56.07 |
|
Statistics of SOM content in surface soil (0~20 cm) in the two great plains of Heilongjiang Province from 1980 to 2020
|
土壤有机质 | 1980年 | 2020年 | 面积变化/km2 | 含量/10-3 | 等级 | 面积/km2 | 百分比/% | 面积/km2 | 百分比/% | >40 | 一等(丰富) | 146853.8 | 57.01 | 113415.2 | 44.03 | -33438.6 | >30~40 | 二等(较丰富) | 59087.0 | 22.94 | 73319.5 | 28.47 | 14232.5 | >20~30 | 三等(中等) | 46092.3 | 17.90 | 49780.6 | 19.33 | 3688.3 | >10~20 | 四等(较缺乏) | 4672.9 | 1.81 | 16525.9 | 6.42 | 11853.0 | ≤10 | 五等(缺乏) | 864.6 | 0.34 | 4529.4 | 1.76 | 3664.8 |
|
Statistics on the classification characteristics of SOM content insurface soil (0~20 cm) in the two great plains of Heilongjiang Province from 1980 to 2020
|
|
Spatial distribution of SOM in surface soil in the two great plains of Heilongjiang Province in 1980
|
|
Spatial distribution of SOM in surface soil in the two great plains of Heilongjiang Province in 2020
|
ΔSOM/10-3 | 变化分级 | 两大平原全域 | 松嫩平原 | 三江平原 | 面积/km2 | 百分比/% | 面积/km2 | 百分比/% | 面积/km2 | 百分比/% | >40 | 增四级 | 38.3 | 0.01 | 38.3 | 0.02 | 0 | 0 | 30~40 | 增三级 | 190.8 | 0.07 | 43.9 | 0.03 | 146.9 | 0.16 | 20~30 | 增二级 | 4607.6 | 1.79 | 1550.9 | 0.95 | 3056.7 | 3.25 | 10~20 | 增一级 | 26000.7 | 10.09 | 11133.9 | 6.81 | 14866.8 | 15.82 | -10~10 | 不明显 | 137768.9 | 53.49 | 92388.1 | 56.48 | 45380.5 | 48.28 | -20~-10 | 降一级 | 68976.7 | 26.78 | 46587.8 | 28.48 | 22388.9 | 23.82 | -30~-20 | 降二级 | 17273.1 | 6.71 | 9758.0 | 5.97 | 7515.2 | 8.00 | -40~-30 | 降三级 | 2551.8 | 0.99 | 1923.2 | 1.18 | 628.6 | 0.67 | ≤-40 | 降四级 | 163.2 | 0.06 | 157.3 | 0.10 | 5.9 | 0.01 |
|
Statistical characteristics of ΔSOM in surface soil (0~20 cm) in the two treat plains of Heilongjiang Province from 1980 to 2020
|
|
Spatial distribution of SOM changes in surface soil in the two great plains of Heilongjiang Province from 1980 to 2020
|
土地利 用方式 | 变化分级 | 增四级 | 增三级 | 增二级 | 增一级 | 不明显 | 降一级 | 降二级 | 降三级 | 降四级 | ΔSOM/10-3 | >40 | 30~40 | 20~30 | 10~20 | -10~10 | -20~-10 | -30~-20 | -40~-30 | ≤-40 | 旱地 | 面积/km2 | 50.7 | 4.3 | 1872.0 | 14235.6 | 62089.2 | 43361.7 | 8254.5 | 871.4 | 22.3 | 比例/% | 0.72 | 0.003 | 1.43 | 10.89 | 47.50 | 33.17 | 6.32 | 0.67 | 0.02 | 林地 | 面积/km2 | 0 | 5.2 | 1484.0 | 4483.2 | 36451.9 | 8197.6 | 2276.8 | 123.4 | 10.8 | 比例/% | 0 | 0.01 | 2.80 | 8.45 | 68.73 | 15.46 | 4.29 | 0.23 | 0.02 | 未利用地 | 面积/km2 | 31.3 | 167.0 | 671.2 | 4083.9 | 18120.2 | 5586.2 | 2613.8 | 813.4 | 77.0 | 比例/% | 0.10 | 0.52 | 2.09 | 12.70 | 56.34 | 17.37 | 8.13 | 2.53 | 0.24 | 草地 | 面积/km2 | 6.2 | 14.3 | 301.1 | 1814.9 | 10799.2 | 7542.6 | 2663.3 | 583.4 | 36.4 | 比例/% | 0.03 | 0.06 | 1.27 | 7.64 | 45.45 | 31.74 | 11.21 | 2.46 | 0.15 | 水田 | 面积/km2 | 0 | 0 | 202.6 | 920.1 | 3817.1 | 2474.8 | 771.7 | 14.5 | 0 | 比例/% | 0 | 0 | 2.47 | 11.22 | 46.55 | 30.18 | 9.41 | 0.18 | 0 |
|
Statistical characteristics of changes of SOM content levels in surface soil (0~20 cm) under different situation of land use in the two great plains from 1980 to 2020
|
土壤类型 | 变化分级 | 增四级 | 增三级 | 增二级 | 增一级 | 不明显 | 降一级 | 降二级 | 降三级 | 降四级 | ΔSOM/10-3 | >40 | 30~40 | 20~30 | 10~20 | -10~10 | -20~-10 | -30~-20 | -40~-30 | ≤-40 | 草甸土 | 面积/km2 | 7.4 | 11.6 | 1629.1 | 8589.6 | 40202.2 | 26114.7 | 7539.9 | 1299.2 | 86.5 | 比例/% | 0.01 | 0.01 | 1.91 | 10.05 | 47.03 | 30.55 | 8.82 | 1.52 | 0.10 | 暗棕壤 | 面积/km2 | 0 | 0 | 1284.4 | 3925.4 | 31018.9 | 8608.8 | 2489.3 | 85.0 | 5.1 | 比例/% | 0 | 0 | 2.71 | 8.28 | 65.42 | 18.16 | 5.25 | 0.18 | 0.01 | 黑土 | 面积/km2 | 0 | 0 | 298.9 | 3112.9 | 22914.5 | 13545.2 | 1645.5 | 91.0 | 0 | 比例/% | 0 | 0 | 0.72 | 7.48 | 55.07 | 32.55 | 3.95 | 0.22 | 0 | 白浆土 | 面积/km2 | 0 | 0 | 591.9 | 5525.8 | 12433.4 | 4175.5 | 1070.9 | 19.8 | 0 | 比例/% | 0 | 0 | 2.49 | 23.20 | 52.20 | 17.53 | 4.50 | 0.08 | 0 | 沼泽土 | 面积/km2 | 29.8 | 29.1 | 546.3 | 2107.0 | 16480.5 | 2348.1 | 422.7 | 83.6 | 1.1 | 比例/% | 0.14 | 0.13 | 2.48 | 9.56 | 74.75 | 10.65 | 1.92 | 0.38 | 0.01 | 黑钙土 | 面积/km2 | 0 | 0 | 52.4 | 1530.9 | 9024.4 | 9181.8 | 1381.4 | 223.6 | 2.5 | 比例/% | 0 | 0 | 0.24 | 7.15 | 42.18 | 42.91 | 6.46 | 1.05 | 0.01 | 风沙土 | 面积/km2 | 1.1 | 4.2 | 13.8 | 354.4 | 1906.4 | 2058.5 | 932.0 | 201.8 | 31.4 | 比例/% | 0.02 | 0.08 | 0.25 | 6.44 | 34.64 | 37.40 | 16.94 | 3.67 | 0.57 | 水稻土 | 面积/km2 | 0 | 0 | 62.7 | 461.9 | 1905.2 | 810.4 | 330.1 | 0 | 0 | 比例/% | 0 | 0 | 1.76 | 12.94 | 53.36 | 22.70 | 9.25 | 0 | 0 |
|
Statistical characteristics of changes of SOM content levels in surface soil (0~20 cm) of the main soil types in the two great plains from 1980 to 2020
|
土壤类型 | 面积/km2 | 1980年 | 2020年 | 流失量/ 10-3 | 流失率/% | 面积流失率 | 流失贡献率/% | 样本数 | 平均值/ 10-3 | 样本数 | 平均值/ 10-3 | 草甸土 | 85480.3 | 12308 | 51.7 | 21660 | 37.6 | -14.1 | -27.27 | -2331047.8 | 44.14 | 暗棕壤 | 47416.9 | 3902 | 63.6 | 12311 | 50.8 | -12.8 | -20.13 | -954502.2 | 18.08 | 黑土 | 41608.0 | 14869 | 43.2 | 10451 | 40.8 | -2.4 | -5.56 | -231340.5 | 4.38 | 白浆土 | 23817.3 | 3555 | 50.3 | 6099 | 43.0 | -7.3 | -14.51 | -345589.0 | 6.54 | 沼泽土 | 22048.2 | 732 | 105.2 | 5554 | 58.2 | -47.0 | -44.68 | -985113.6 | 18.65 | 黑钙土 | 21397.0 | 6916 | 33.2 | 5363 | 28.4 | -4.8 | -14.46 | -309400.6 | 5.86 | 风沙土 | 5503.6 | 892 | 15.0 | 1369 | 14.5 | -0.5 | -3.33 | -18327.0 | 0.35 | 水稻土 | 3570.3 | 1055 | 52.5 | 907 | 37.0 | -15.5 | -29.52 | -105395.3 | 2.00 |
|
Statistics on the characteristics of SOM content loss in surface soil (0~20 cm) of the main soil types in the two great plains from 1980 to 2020
|
市区县 | 流失面积/km2 | 调查面积/km2 | 比例/% | | 市区县 | 流失面积/km2 | 调查面积/km2 | 比例/% | 望奎县 | 1853.7 | 2316.9 | 80.01 | | 宾县县 | 1503.3 | 3263.2 | 46.07 | 肇源县 | 3037.1 | 4148.0 | 73.22 | | 密山市 | 3422.7 | 7491.7 | 45.69 | 大庆市 | 3645.2 | 5055.3 | 72.11 | | 桦南县 | 1438.8 | 3215.5 | 44.75 | 杜蒙县 | 4219.4 | 6041.4 | 69.84 | | 富裕县 | 1738.9 | 4003.5 | 43.43 | 佳木斯市 | 1305.2 | 1895.1 | 68.87 | | 林甸县 | 1487.4 | 3493.8 | 42.57 | 绥宾县 | 2156.6 | 3344.1 | 64.49 | | 萝北县 | 1602.9 | 3788.2 | 42.31 | 汤原县 | 1329.2 | 2167.3 | 61.33 | | 鸡西市 | 823.7 | 1992.1 | 41.35 | 依安县 | 2210.6 | 3679.3 | 60.08 | | 嘉荫县 | 1235.5 | 3051.7 | 40.49 | 泰来县 | 2311.3 | 3918.5 | 58.98 | | 鸡东县 | 1109.7 | 2770.4 | 40.06 | 明水县 | 1347.2 | 2297.8 | 58.63 | | 甘南县 | 1871 | 4778.2 | 39.16 | 肇东市 | 2514.1 | 4327.0 | 58.10 | | 木兰县 | 794.8 | 2057.0 | 38.64 | 巴彦县 | 1786.5 | 3139.8 | 56.90 | | 集贤县 | 698.9 | 1838.5 | 38.01 | 讷河市 | 3721.7 | 6559.3 | 56.74 | | 哈尔滨市 | 637.7 | 1746.3 | 36.52 | 齐齐哈尔市 | 2315.1 | 4156.3 | 55.70 | | 七台河市 | 591.7 | 1634.1 | 36.21 | 依兰县 | 1708.2 | 3214.0 | 53.15 | | 青岗县 | 937.6 | 2680.4 | 34.98 | 兰西县 | 1296.0 | 2484.8 | 52.16 | | 呼兰区 | 912.6 | 2615.6 | 34.89 | 龙江县 | 3058.6 | 5888.4 | 51.94 | | 五常市 | 1427.4 | 4112.2 | 34.71 | 林口县 | 1898.4 | 3669.1 | 51.74 | | 勃力县 | 989.4 | 2860.6 | 34.59 | 桦川县 | 1091.0 | 2151.5 | 50.71 | | 牡丹江市 | 377.1 | 1091.0 | 34.56 | 绥化市 | 1356.9 | 2753.0 | 49.29 | | 肇州县 | 816.9 | 2445.2 | 33.41 | 克山县 | 1554.0 | 3190.4 | 48.71 | | 双鸭山市 | 104.9 | 327.3 | 32.05 |
|
Statistics of SOM content loss area and proportion in surface soil (0~20 cm) in the main cities and counties in the two great plains from 1980 to 2020
|
[1] |
Yadav V, Malanson G. Progress in soil organic matter research:Litter decomposition,modelling,monitoring and sequestration[J]. Progress in Physical Geography, 2007, 31(2):131-154.
|
[2] |
Davidson E A, Trumbore S E, Amundson R. Biogeochemistry-soil warming and organic carbon content[J]. Nature, 2000, 408(6814):789-790.
|
[3] |
黄耀, 孙文娟. 近20年来中国大陆农田表土有机碳含量的变化趋势[J]. 科学通报, 2006, 51(7):750-763.
|
[3] |
Huang Y, Sun W J. Variation trend of organic carbon content in farmland topsoil in recent 20 years of the China[J]. Chinese Science Bulletin, 2006, 51(7):750-763.
|
[4] |
Powlson D S, Olk D. Long-terra soil organic matter dynamics[G]// Kirk G O D. Carbon and nitrogen dynamics in flooded soils,Proceedings of a Workshop, 2000:l9-22.
|
[5] |
Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000, 408(6809):184-187.
|
[6] |
潘根兴, 李恋卿, 张旭辉. 土壤有机碳库与全球变化研究的若干前沿问题——兼开展中国水稻土有机碳固定研究的建议[J]. 南京农业大学学报, 2002, 25(3):100-110.
|
[6] |
Pan G X, Li L Q, Zhang X H. Perspectives on issues of soil carbon pools and global change with suggestions for studying organic carbon sequestration in paddy soils of China[J]. Journal of Nanjing Agricultural University, 2002, 25(3):100-110.
|
[7] |
Ladha J K, Reddy C K, Padre A T, et al. Role of nitrogen fertilization in sustaining organic matter in cultivated soils[J]. Journal of Environmental Quality, 2011. 40:1756-1766.
|
[8] |
李长生. 土壤碳储量减少:中国农业之隐患——中美农业生态系统碳循环对比研究[J]. 第四纪研究, 2000, 20(4):345-350.
|
[8] |
Li C S. Loss of carbon threatens chinese agriculture:A comparison on agroecosystem carbon pool in China and the U.S[J]. Quaternary Sciences, 2000, 20(4):345-350.
|
[9] |
姜蓝齐, 臧淑英, 张丽娟, 等. 松嫩平原农田土壤有机碳变化及固碳潜力估算[J]. 生态学报, 2017, 37(21):7068-7081.
|
[9] |
Jiang L Q, Zang S Y, Zhang L J, et al. Temporal and spatial variations of organic carbon and evaluation of carbon sequestration potential in the agricultural topsoil of the Songnen Plain[J]. Acta Ecologica Sinica, 2017, 37(21):7068-7081.
|
[10] |
赵明松, 李德成, 王世航. 近30年安徽省耕地土壤有机碳变化及影响因素[J]. 土壤学报, 2018, 55(3):595-605.
|
[10] |
Zhao M S, Li D C, Wang S H. Variation of soil organic carbon in farmland of anhui and its influencing factors on the 30 years from 1980 to 2010[J]. Acta Pedologica Sinica, 2018, 55(3):595-605.
|
[11] |
杨安广, 苗正红, 邱发富, 等. 基于GIS的三江平原表层土壤有机碳储量估算及空间分布研究[J]. 水土保持通报, 2015, 35(2):155-158.
|
[11] |
Yang A G, Miao Z H, Qiu F F, et al. A study on storage and distribution of soil organic carbon in Sanjiang Plain based on GIS[J]. Bulletin of Soil and Water Conservation, 2015, 35(2):155-158.
|
[12] |
张立, 金晶泽, 姜侠, 等. 1986-2019年黑龙江省松嫩平原表层土壤有机碳变化及固碳潜力估算[J]. 现代地质, 2021, 35(4):914-922.
|
[12] |
Zhang L, Jin J Z, Jiang X, et al. Variations of organic carbon and evaluation of carbon sequestration potential in surface soil in Songnen Plain of Heilongjiang Province from 1986 to 2019[J]. Geoscience, 2021, 35(4):914-922.
|
[13] |
李光鑫. 黑龙江省“两大平原”耕地质量问题及解决对策[J]. 农民致富之友, 2014, 21:106.
|
[13] |
Li G X. Quality problems of cultivated land in "two great plains"of Heilongjiang Province and countermeasures[J]. Friends of farmers getting rich, 2014, 21:106.
|
[14] |
黑龙江省土地管理局, 黑龙江省土壤普査办公室. 黑龙江土壤[M]. 北京: 农业出版社, 1992:49-179.
|
[14] |
Heilongjiang Land Administration Bureau, Heilongjiang Soil Census Office. Heilongjiang soil[M]. Beijing: Agricultural Press, 1992:49-179.
|
[15] |
丁肇慰, 陈锡云, 陈昌华, 等. 开垦60年东北三江平原典型产粮区生态脆弱性时空格局演变分析——以859农场为例[J]. 干旱区资源与环境, 2018, 32(1):77-83.
|
[15] |
Ding Z W, Chen X Y, Chen C H, et al. Temporal and spatial dynamics of ecological vulnerability in typical grain-producing area of Sanjiang Plain in Northeast China during 60 years, reclamation[J]. Journal of Arid land Resources and Environment, 2018, 32(1):77-83.
|
[16] |
杨帆, 徐洋, 崔勇, 等. 近30年中国农田耕层土壤有机质含量变化[J]. 土壤学报, 2017, 54(5):1047-1056.
|
[16] |
Yang F, Xu Y, Cui Y, et al. Variation of soil organic matter content in croplands of china over the last three decades[J]. Acta Pedologica Sinica, 2017, 54(5):1047-1056.
|
[17] |
刘国栋, 戴慧敏, 杨泽, 等. 三江平原土壤碳库时空变化和影响因素研究[J]. 现代地质, 2021, 35(2):443-454.
|
[17] |
Liu G D, Dai H M, Yang Z, et al. Temporal and spatial changes of soil carbon pool and its influencing factors in the Sanjiang Plain[J]. Geoscience, 2021, 35(2):443-454.
|
[18] |
李忠佩, 林心雄, 车玉萍. 中国东部主要农田土壤有机碳库的平衡与趋势分析[J]. 土壤学报, 2002, 39(3):351-360.
|
[18] |
Li Z P, Lin X X, Che Y P. Analysis for the balance of organic carbon pools and their tendency in typical arable soils of eastern China[J]. Acta Pedologica Sinica, 2002, 39(3):351-360.
|
[19] |
Tang H J, Qin J J, Ranst E V, et al. Estimations of soil organic cathon storage in cropland of China based on DNDC model[J]. Geoderma, 2006, 134(1/2):200-206.
|
[20] |
徐艳, 张凤荣, 汪景宽, 等. 20年来我国潮土区与黑土区土壤有机质变化的对比研究[J]. 土壤通报, 2004, 35(2):102-105.
|
[20] |
Xu Y, Zhang F R, Wang J K, et al. Temporal changes of soil organic matter in ustic Cambisols and udic isohumosols of China in recent twenty years[J]. Chinese Journal of Soil Science, 2004, 35(2):102-105.
|
[21] |
苗正红. 1980-2010年三江平原土壤有机碳储量动态变化[D]. 长春: 中国科学院东北地理与农业生态研究所, 2013.
|
[21] |
Miao Z H. Changes and factors of soil carbon storage in the Sanjiang Plain,northeast China from 1980 to 2010[D]. Changchun: Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences, 2013.
|
[1] |
GAO Peng-Li, REN Da-Lu, LI Chao-Hui, FENG Zhi-Qiang, MIAO Hong-Yun, QIAO Lin, WANG Jian-Wu, YANG Yong-Liang, ZHANG Li-Ming, LI Guang-Hui. Predicting the spatial distribution of soil organic matter using the model consisting of the Boruta algorithm and the optimized GA combined with the geostatistical method[J]. Geophysical and Geochemical Exploration, 2024, 48(3): 747-758. |
[2] |
DENG Ru-Bing, YAN Jian-Guo, CHEN Qi, SONG Xin-Lei. A new time-varying gain limits inverse Q filtering with the continuous compensation function[J]. Geophysical and Geochemical Exploration, 2021, 45(3): 702-711. |
|
|
|
|