|
|
A model-based study of the filtering effects of thin-interbedded reservoirs on seismic reflection waves |
LUO Jing(), SUN Cheng-Yu() |
School of Geosciences,China University of Petroleum (East China),Qingdao 266580,China |
|
|
Abstract The exploitation of thin-bedded and thin-interbedded hydrocarbon reservoirs has garnered increasing attention.However,seismic data of thin-bedded reservoirs exhibit low resolution,and conventional convolution models fail to simulate the complex wave field propagation phenomena in thin-bedded reservoirs,complicating the seismic prediction of such reservoirs.Hence,based on the transfer matrix method for layered media,this study developed a normal-incidence reflectance method.Using the new method,it conducted forward modeling on several typical thin-interbedded reservoir models.Then,the forward modeling results were analyzed through frequency spectrum analysis to explore the filtering effects of thin-interbedded reservoirs on seismic reflection waves.Compared to the transfer matrix method for layered media,the normal-incidence reflectance method is more applicable to the investigation of thin-interbedded reservoirs under longitudinal wave incidence,significantly enhancing the forward modeling efficiency.Moreover,studying the reflection filtering effects of thin-interbedded reservoirs in the frequency domain somewhat eliminates the shortcomings of insufficient resolution in the time domain.The frequency spectrum analysis of thin-interbedded reservoir models shows that the normal-incidence reflectance method can effectively preserve the interbed information of thin-interbedded reservoirs.As revealed by the frequency spectrum analysis of the forward modeling results based on this method,the changes in the amplitudes and notch points of frequency spectrum curves can reflect the changes in the number of interbeds and sandstone-mudstone ratios in thin-interbedded reservoirs.This finding is critical for determining the spatial distributions and properties of thin-bedded reservoirs in the fine-scale exploration of oilfields.
|
Received: 01 November 2023
Published: 19 September 2024
|
|
|
|
|
|
Layered media model
|
|
Rhythmic thin interlayer models the thickness of thin interlayer is:a—21×1 m;b—21×2 m;c—42×1 m;d—42×2 m
|
|
Incremental thin interlayer models the thickness of thin interlayer is:a—21×1 m;b—21×2 m;c—42×1 m;d—42×2 m
|
|
Decreasing thin interlayer models the thickness of thin interlayer is:a—21×1 m;b—21×2 m;c—42×1 m;d—42×2 m
|
|
Sandstone cumulative thickness invariant thin interlayer models the stratification of sandstone is:a—1×18 m;b—2×9 m;c—3×6 m;d—6×3 m;e—9×2 m;f—18×1 m
|
|
Total thickness invariant thin interlayer models the stratification of thin interlayer is:a—1×15 m;b—3×5 m;c—5×3 m;d—15×1 m
|
|
Sand to mud ratio in a single set of sand and mud layers variant thin interlayer models the sand to mud ratio of a single set of sand and mud layer is:a—0.3;b—1;c—3;d—9
|
|
Forward shot record of stratigraphic structure variant thin interlayer models a—forward shot record of rhythmic thin interlayer models;b—forward shot record of incremental thin interlayer models;c—forward shot record of decreasing thin interlayer models;the thickness of the thin interlayer from left to right is:21×1 m;21×2 m;42×1 m;42×2 m
|
|
Forward shot record of sand to mud ratio variant thin interlayer models a—forward shot record of sandstone cumulative thickness invariant thin interlayer models,the stratification of sandstone from left to right is:1×18 m,2×9 m,3×6 m,6×3 m,9×2 m,18×1 m;b—forward shot record of total thickness invariant thin interlayer models,the stratification of thin interlayer from left to right is:1×15 m,3×5 m,5×3 m,15×1 m;c—forward shot record of sand to mud ratio in a single set of sand and mud layers variant thin interlayer models,the sand to mud ratio of a single set of sand and mud layer from left to right is:0.3,1,3,9
|
|
Reflected waveform of stratigraphic structure variant thin interlayer models a—rhythmic thin interlayer models;b—incremental thin interlayer models;c—decreasing thin interlayer models
|
|
Reflected waveform of sand to mud ratio variant thin interlayer models a—sandstone cumulative thickness invariant thin interlayer models;b—total thickness invariant thin interlayer models;c—sand to mud ratio in a single set of sand and mud layers variant thin interlayer models
|
|
Spectrogram of stratigraphic structure variant thin interlayer models a—rhythmic thin interlayer models;b—incremental thin interlayer models;c—decreasing thin interlayer models
|
|
Spectrogram of sand to mud ratio variant thin interlayer models a—sandstone cumulative thickness invariant thin interlayer models;b—total thickness invariant thin interlayer models;c—sand to mud ratio in a single set of sand and mud layers variant thin interlayer models
|
[1] |
Ricker N. Wavelet contraction,wavelet expansion,and the control of seismic resolution[J]. Geophysics, 1953, 18(4):769.
|
[2] |
Sengbush R L, Lawrence P L, McDonal F J. Interpretation of synthetic seismograms[J]. Geophysics, 1961, 26(2):138-157.
|
[3] |
Widess M B. How thin is a thin bed?[J]. Geophysics, 1973, 38(6):1176-1180.
|
[4] |
Kallweit R S, Wood L C. The limits of resolution of zero-phase wavelets[J]. Geophysics, 1982, 47(7):1035-1046.
|
[5] |
Thomson W T. Transmission of elastic waves through a stratified solid medium[J]. Journal of Applied Physics, 1950, 21(2):89-93.
|
[6] |
Fuchs K. The reflection of spherical waves from transition zones with arbitrary depth-dependent elastic moduli and density[J]. Journal of Physics of the Earth, 1968, 16:27-41.
|
[7] |
Fuchs K, Müller G. Computation of synthetic seismograms with the reflectivity method and comparison with observations[J]. Geophysical Journal International, 1971, 23(4):417-433.
|
[8] |
Mueller G. The reflectivity method:A tutorial[J]. Journal of Geophysics, 1985, 58(1):153-174.
|
[9] |
Kennett B L N. Seismic waves in laterally inhomogeneous media[J]. Geophysical Journal International, 1972, 27(3):301-325.
|
[10] |
Kennett B L N, Kerry N J. Seismic waves in a stratified half space[J]. Geophysical Journal International, 1979, 57(3):557-583.
|
[11] |
Kennett B L N. Seismic waves in a stratified half space—II.Theoretical seismograms[J]. Geophysical Journal International, 1980, 61(1):1-10.
|
[12] |
Kennett B L N, Illingworth M R. Seismic waves in a stratified half space—III.Piecewise smooth models[J]. Geophysical Journal International, 1981, 66(3):633-675.
|
[13] |
Kennett B. Seismic wave propagation in stratified media[M]. Canberra: ANU Press, 2009.
|
[14] |
Phinney R, Odom R, Fryer G. Rapid generation of synthetic seismograms in layered media by vectorization of the algorithm[J]. Bulletin of the Seismological Society of America, 1987, 77:2218-2226.
|
[15] |
Carcione J M. Wave fields in real media[M]. Oxford: Elsevier, 2001.
|
[16] |
杨凯, 雷晓. 在频率域中求取薄层厚度和反射系数的新方法[J]. 西南石油学院学报, 1993, 15(S1):73-75.
|
[16] |
Yang K, Lei X. A new method for calculating the thickness and reflection coefficient of thin layer in frequency domain[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 1993, 15(S1):73-75.
|
[17] |
张玉芬, 熊维纲. 石油地震勘探中的薄层解释研究方法综述[J]. 地质科技情报, 1993, 12(4):81-88.
|
[17] |
Zhang Y F, Xiong W G. Advancement of thin-bed studies in oil seismic exploration[J]. Geological Science and Technology Information, 1993, 12(4):81-88.
|
[18] |
邵治龙, 贺振华, 黄德济. 小波变换与最大熵法联合计算薄层厚度[J]. 石油地球物理勘探, 1998, 33(2):204-213.
|
[18] |
Shao Z L, He Z H, Huang D J. Thin-layer thickness estimation using wavelet transform and maximum entropy method[J]. Oil Geophysical Prospecting, 1998, 33(2):204-213.
|
[19] |
蒋龙聪. 薄互层储层地震响应时频分析研究[D]. 武汉: 中国地质大学, 2008.
|
[19] |
Jiang L C. The method of time-frequency analysis applied in thin interbedded reservoir[D]. Wuhan: China University of Geosciences, 2008.
|
[20] |
张晶. 薄互层时频变化规律正演模拟研究[D]. 大庆: 东北石油大学, 2013.
|
[20] |
Zhang J. Forward modeling studies on the time-frequency transform law of thin interbed[D]. Daqing: Northeast Petroleum University, 2013.
|
[21] |
王赟, 杨春, 芦俊. 薄互层弹性波反演面临的困境[J]. 地球物理学报, 2018, 61(3):1118-1135.
|
[21] |
Wang Y, Yang C, Lu J. Dilemma faced by elastic wave inversion in thinly layered media[J]. Chinese Journal of Geophysics, 2018, 61(3):1118-1135.
|
[22] |
马跃华, 周宗良, 李振永, 等. 薄层分类及其地震响应分析——以大港油田两个应用研究为例[J]. 石油物探, 2018, 57(6):902-913.
|
[22] |
Ma Y H, Zhou Z L, Li Z Y, et al. Classification and seismic response analysis of thin bed:Two cases study from Dagang oilfield,China[J]. Geophysical Prospecting for Petroleum, 2018, 57(6):902-913.
|
[23] |
李佳欣, 杨春, 王赟. 薄互层等效各向异性的研究现状与存在问题[J]. 石油物探, 2021, 60(2):224-237.
|
[23] |
Li J X, Yang C, Wang Y. A state of the art on the equivalent anisotropy of thin interbeds[J]. Geophysical Prospecting for Petroleum, 2021, 60(2):224-237.
|
[24] |
倪长宽, 苏明军, 袁成, 等. 基于地震沉积学的薄互层储集层分布预测方法[J]. 石油勘探与开发, 2022, 49(4):741-751.
|
[24] |
Ni C K, Su M J, Yuan C, et al. Thin-interbedded reservoirs prediction based on seismic sedimentology[J]. Petroleum Exploration and Development, 2022, 49(4):741-751.
|
[25] |
杨震, 刘俊州, 时磊, 等. 基于快速反射率法的AVA反演技术在致密砂岩薄储层勘探中的应用[J]. 石油物探, 2023, 62(1):130-141.
|
[25] |
Yang Z, Liu J Z, Shi L, et al. Application of AVA inversion technique based on rapid reflectivity method in thin tight gas reservoir exploration[J]. Geophysical Prospecting for Petroleum, 2023, 62(1):130-141.
|
[26] |
孙成禹, 万学娟, 倪长宽. 弱连接界面地层地震反射波场的正演方法[J]. 石油物探, 2007, 46(5):425-432,13.
|
[26] |
Sun C Y, Wan X J, Ni C K. Forward modeling of reflected wavefield from strata with weakly bonded interfaces[J]. Geophysical Prospecting for Petroleum, 2007, 46(5):425-432,13.
|
|
|
|