E-mail Alert Rss
 
Office Online
News
gfff
More>>
Information
Web: http://www.wutanyuhuatan.com
Editor in Chief: XIONG ShengQing
Published by:
The Geological Publishing House (31 Xueyuan Road,Beijing 100083,China)
Printer:
Beijing Changning Printing Co. Ltd.
Distributor: Beijing Post Office
Abroad Distributor:
China International Book Trading Corporation
Subscription Hander:
Local Post Offices of China
Sponsored by:
China Aero Geophysical Survey and Remote Sensing Center for Natural Resources
Edited by:
Editorial Office of Geophysical and Geochemical Exploration
Add:
29 Xueyuan Road, Beijing 100083,China
Tel: 86-010-62060192/62060193
Fax: 86-010-62060193
Email: whtbjb@sina.com ,
           whtbjb@163.com
Links
More>>
Published in last 1 year | In last 2 years| In last 3 years| All| Most Downloaded in Recent Month | Most Downloaded in Recent Year|

Most Downloaded in Recent Year
Please wait a minute...
For Selected: Toggle Thumbnails
Review on the study of grounded-source transient electromagnetic method
ZHANG Ying-Ying
Geophysical and Geochemical Exploration    2021, 45 (4): 809-823.   DOI: 10.11720/wtyht.2021.1513
Abstract1302)   HTML653)    PDF (729KB)(3996)      

Grounded-source transient electromagnetic method (TEM) has many advantages such as deep exploration, flexible arrangement in rough terrain and high working efficiency. Recently it has got much attention and a series of new methods are available, ranging from surface to airborne and borehole method. In this paper, the authors review the research history of long-offset TEM (LOTEM), short-offset TEM (SOTEM), multi-channel TEM(MTEM), grounded-source semi-airborne TEM and grounded-source surface to borehole TEM, and summarize their research status in forward modeling, system design, inversion, imaging and field working. The results show that, as a well-developed grounded-source TEM, LOTEM has accumulated many research achievements. Although some progress has been made, the researches on other grounded-source TEMs are still in a primary stage and still need further improvement. Valuable research results in LOTEM, for example, noise suppression technology, high dimensional inversion and point interpretation, can be introduced to these newly developed electromagnetic methods, which can help provide solutions for high working efficiency and high resolution deep exploration.

Reference | Related Articles | Metrics
Comparison of deep learning algorithms for geochemical anomaly identification
LI Mu-Si, CHEN Li-Rong, XIE Fei, GU Lan-Ding, WU Xiao-Dong, MA Fen, YIN Zhao-Feng
Geophysical and Geochemical Exploration    2023, 47 (1): 179-189.   DOI: 10.11720/wtyht.2023.2667
Abstract259)   HTML4)    PDF (6584KB)(1332)      

There is a lack of selection bases in the geochemical anomaly identification and the reconstruction of the geochemical background conforming to the metallogenic distribution using deep learning algorithms with different network structures. Given this, based on the 1∶200 000 stream sediment data of the copper-zinc-silver metallogenic area in southwestern Fujian Province, this study extracted the combined structural characteristics, spatial distribution characteristics, and mixed characteristics of multiple elements in the samples using three unsupervised deep learning models, i.e., AE, MCAE, and FCAE. Then, these characteristics were used to reconstruct the geochemical background and simulate the metallogenic distribution. The results show that the anomaly areas delineated by the FCAE model were the most consistent with the known copper ore occurrences, followed by the MCAE and AE models. The FCAE, MCAE, and AE models had an area under the curve (AUC) score of 0.80, 0.78, and 0.61, respectively. Moreover, the FCAE and AE models were not sensitive to the change in the convolution window size. These results indicate that when deep learning algorithms are constructed for geochemical anomaly identification, the algorithms based on the extraction of spatial distribution characteristics or mixed characteristics perform well, and those based on the extraction of combined structural characteristics or mixed characteristics have a strong anti-interference ability for the noise caused by the change or inconsistency of the spatial observation scale. This study provides some effective selection bases for constructing geochemical anomaly identification models based on deep learning algorithms.

Table and Figures | Reference | Related Articles | Metrics
The advantages of AS350B3 helicopter in aerogeophysical survey in the high mountain area
Jian LI, Liang GUO, Gang-Yi XIAO, Zhi-Qiang LIU, Ming XU, Jiu-Qiang JIN, Zhi-Bo WANG, Mao-Sheng DENG, Bing LI
Geophysical and Geochemical Exploration    2018, 42 (1): 192-198.   DOI: 10.11720/wtyht.2018.1.24
Abstract704)   HTML1)    PDF (4376KB)(1312)      

The airborne geophysical exploration flying vessel which performs operation in middle and high mountain areas needs plateau adaptability.Through a comparative study of the characteristics of AS350B3 helicopter in such aspects as its taking off condition,maximum flying altitude,maximum endurance and plateau flexibility,the authors put forward the type-choosing principle and flying method of the airborne geophysical exploration flying vessel for low altitude and large scale survey.The practical surveying flying in a certain surveying area of Gansu Province has proved the feasibility of the principle and method put forward by the authors.Analysis shows that AS350B3 helicopter can meet the requirement of airborne geophysical exploration in such areas.

Table and Figures | Reference | Related Articles | Metrics
THE PROGRESS AND PROSPECT OF THE ELECTRICAL RESISTIVITY IMAGING SURVEY
YAN Jia-yong, MENG Gui-xiang, LV Qing-tian, ZHANG Kun, CHEN Xiang-bin
Geophysical and Geochemical Exploration    2012, 36 (4): 576-584.   DOI: 10.11720/wtyht.2012.4.13
Abstract5172)      PDF (1427KB)(2838)      
This paper has summed up the progress of the ERI method over the past decade of years as well as its future development trend in the following aspects: ① A comparison of the performances of the main ERI instruments used at present shows that the ERI instruments tend to develop in the multi-channel, multi-parameter, multi-functional, high-power direction; ② ERI measurement environment has changed from surface measurement to water surface, underwater and cross-hole measurements, with the last three kinds of measurements analyzed in this paper; ③ On the basis of analyzing ERI data processing method and inverse development status, this paper describes three-dimensional and four-dimensional inversion theory of ERI with practical examples; ④ ERT applications are summed up, and several new applications are introduced. It is concluded that, with the improvement of the probing depth and observation precision as well as the diversification of the observation models, the application field of ERI will become broader and broader, and this technique will surely have wide development prospect.
Reference | Related Articles | Metrics
A TENTATIVE DISCUSSION ON THE RESOLUTION OF THE GROUND-PENETRATING RADAR
YUAN Ming-de
Geophysical and Geochemical Exploration    2003, 27 (1): 28-32.  
Abstract2578)      PDF (512KB)(2511)      

In the light of the pulse width of the radar wave, this paper deals with the difference and the relationship between the vertical resolution and the transverse resolution of the ground-penetrating radar, indicates the influence of the noise upon the resolution and, with practical examples, points out that the digital handling of the signal can greatly improve the resolution of the radar.

Reference | Related Articles | Metrics
Geophysical and Geochemical Exploration    1980, 4 (1): 61-63.  
Abstract1201)      PDF (269KB)(1554)      
Reference | Related Articles | Metrics
Resistivity characteristics of natural gas hydrate-bearing sediments and the application progress of the Archie equation
WANG Ying-Mei, JIAO Wen-Ze, LIU Sheng-Hao, WANG Qian, SONG Han-Yu
Geophysical and Geochemical Exploration    2023, 47 (3): 782-793.   DOI: 10.11720/wtyht.2023.1147
Abstract168)   HTML13)    PDF (2996KB)(672)      

Studying the occurrence of natural gas hydrates (NGHs) is of profound significance for NGH exploration. The evaluation of the NGH saturation mainly relies on the Archie equation using the electrical parameters of rocks. The key to accurately calculating the NGH saturation is to select corresponding values of rock electrical parameters for different geological environments, especially the porosity index (m) and the saturation index (n). However, it is still a challenge to select the optimal m and n values for NGH evaluation in resistivity logging. To ascertain the relevant resistivity regularity of NGHs and the determination method of rock electrical parameter values in the Archie equation, this study systematically reviewed relevant references and summarized the resistivity influencing factors of NGHs. Moreover, this study analyzed the influencing factors for the accurate evaluation of the NGH saturation based on the Archie equation. Accordingly, this study generalized the resistivity characteristics of NGH-bearing sediments and proposed the application research direction of the Archie equation.

Table and Figures | Reference | Related Articles | Metrics
New progress in the technology and applications of SOTEM
XUE Guo-Qiang
Geophysical and Geochemical Exploration    2024, 48 (5): 1165-1168.   DOI: 10.11720/wtyht.2024.0325
Abstract450)   HTML10)    PDF (380KB)(460)      

The artificial source electromagnetic method is an important technique for deep resource exploration. The key challenge is to improve the depth and precision of detection through innovative technology. The detection mode of electromagnetic methods is evolving from far-field to near-field, and the study of near-source electromagnetic methods has become an international research frontier in recent years. Building on the recent advancements in wide-field electromagnetic methods and multi-channel transient electromagnetic methods, the short-offset transient electromagnetic method (SOTEM) has been further developed and proposed. The distinguishing features of SOTEM are its stronger signals and wider bandwidth, which are advantageous for achieving the detection requirements of greater depth and higher precision. This special issue presents eight articles covering the methods, techniques, software, and applications of SOTEM, providing strong support for the growing need for high-resolution subsurface detection.

Reference | Related Articles | Metrics
GROUND-SEARCHING RADAR AND ITS APPLICATION AND DEVELOPMENT
Xiao Bing, Zhou Xiang, Tang Jingtian
Geophysical and Geochemical Exploration    1996, 20 (5): 378-383.  
Abstract2059)      PDF (368KB)(1777)      

This paper has summed up the development and new application of ground-searching radar in recent years. Based on detailed analysis of the principle and system structure of ground-searching radar, the authors put forward the train of thought for improving system structure of ground-searching radar and, aimed at solving the great noise existing in ground-searching radar work and the inadaptability in transplantation of seismic data-processing technique, raise a new scheme for underground interface high-resolution imaging of ground-searching radar.

Reference | Related Articles | Metrics
RECENT ADVANCES IN THE RESEARCH AND DEVELOPMENT OF QUANTUM MAGNETOMETERS
ZHANG Chang-da
Geophysical and Geochemical Exploration    2005, 29 (4): 283-287.  
Abstract1808)      PDF (376KB)(2798)      

In this paper, recent advances in the research and development of quantum magnetometers have been described together with some suggestions on further research work.

Reference | Related Articles | Metrics
THE PRESENT SITUATION AND RESEARCH ADVANCES OF EXPLORATION GEOCHEMISTRY FOR PORPHYRY COPPER DEPOSITS
HU Shu-qi, MA Sheng-ming, LIU Chong-min
Geophysical and Geochemical Exploration    2011, 35 (4): 431-437.  
Abstract3823)      PDF (643KB)(2690)      

Porphyry copper deposit is the most important copper deposit type in China. With the deepening of mineral exploitation, exploration geochemistry in mineral exploration has become increasingly important. Based on related literature, this paper sums up the exploration geochemical research results of porphyry copper deposits, which include such aspects as geochemical characteristics, exploration methods, anomaly evaluation and prospecting indicators. Exemplified by the Fujiawu copper deposit, this paper reports the latest advances in the study of porphyry copper deposits.

Reference | Related Articles | Metrics
A study of transformation of the coordinate system from geophysical and geochemical results coordinate to CGCS2000 coordinate in ArcGIS
Hui DU, Tao GENG, Sheng-Rong LIU, Yun BAI
Geophysical and Geochemical Exploration    2018, 42 (5): 1076-1080.   DOI: 10.11720/wtyht.2018.1534
Abstract481)   HTML1)    PDF (528KB)(1634)      

Due to historical reasons, the present coordinate systems of the geological, geophysical and geochemical exploration results are basically WGS84, BJ54 or XA80 systems; nevertheless, according to the NASG requirements on the overall use of CGCS2000 coordinates, in the future the coordinates for all kinds of results should be CGCS2000 coordinates, which causes inconvenient situation in using the results and in comprehensive research work. As a professional geographic information system software, ArcGIS has a wide range of applications in various walks. In this paper, the authors briefly introduced the ArcGIS built-in coordinate system, studied and deduced the calculation formula of the MOLODENSKY coordinate conversion method in ArcGIS, put forward the method to get the conversion and precision evaluation of transformation parameters between different ellipsoids, and cited practical examples for verification. On such a basis, the specific ideas and points for attention were analyzed for each coordinate system in the conversion of ArcGIS software to CGCS2000.

Table and Figures | Reference | Related Articles | Metrics
Application of high-density electrical resistivity tomography and audio magnetotellurics for groundwater exploration in the karst area in southwestern China
XIA Shi-Bin, LIAO Guo-Zhong, DENG Guo-Shi, YANG Jian, LI Fu
Geophysical and Geochemical Exploration    2024, 48 (3): 651-659.   DOI: 10.11720/wtyht.2024.1237
Abstract261)   HTML7)    PDF (5894KB)(425)      

Huize County of Yunnan Province is situated in the karst area in southwestern China, where karst groundwater is its primary water source. To conquer local difficulties in drinking water, this study constructed a conceptual model of groundwater occurrence by fully investigating the hydrogeological conditions of the Huize area. Moreover, this study evaluated the applicability and optimal combination of geophysical methods based on the measurement results of petrophysical properties. According to the actual local needs, this study deployed a comprehensive profile combining high-density electrical resistivity tomography (HDERT) and audio magnetotellurics (AMT) in Tuogu Village, Huize County. The groundwater enrichment site was delineated relying on resistivity anomalies, effectively guiding the layout of boreholes. The boreholes achieved the maximum single-borehole water yield of 20.76 m3/d, thus effectively alleviating the local drinking water problem. The HDERT-AMT combined exploration method proves to be optimal for prospecting for groundwater in carbonate rock areas. HDERT can accurately characterize weathered layer thicknesses, bedrock boundaries, fissure evolutionary degrees, and water-bearing properties of strata, constraining groundwater recharge channels, thus counteracting AMT's defects for identification of near-surface stratigraphic structures. AMT can accurately reflect the spatial structures of fracture zones and the macrostructures of strata, limiting the boundary conditions (aquicludes) of water-bearing structures, thus making up for the defects of insufficient detection depths of HDERT in high-resistivity stratigraphic regions. HDERT and AMT, which are complementary to each other in terms of accuracy and depth, can be applied to identify and constrain the spatial occurrence conditions of groundwater migration, storage, and enrichment.

Table and Figures | Reference | Related Articles | Metrics
THE DISTRIBUTION AND LEVEL OF RADON GAS IN SOIL IN A HIGH RADIATION BACKGROUND CITY OF CHINA
WANG Nan-ping, XIAO Lei, LI Can-ping
Geophysical and Geochemical Exploration    2012, 36 (4): 646-650.   DOI: 10.11720/wtyht.2012.4.27
Abstract3901)      PDF (726KB)(2169)      
A soil gas radon survey was performed on a large scale to determine the distribution of radon in soil of Zhuhai City in Guangdong Province by means of a portable radon monitor of a semiconductor alpha spectroscopy. The survey sampled 469 sites covering an area of more than 100 km2. The average of soil radon concentration in the soil depth of 0.6 m is 55.94 ± 58.54 kBq/m3 in Zhuhai urban area, whereas the concentration is 7.14±8.75, 37.64±25.92, and 151.25±196.23 kBq/m3 in the Quaternary sediments, the mixtures of sediments and weathered grain of granite, and the weathered granite in Doumen District, respectively. The high radon potential areas are located within biotitic granites and new industrial districts, as indicated by the strong correlation between the radioactivity level and geological lithology. The mean value of soil gas radon concentration in Zhuhai urban area (ZUA) is about ten times as high as that in Guangzhou, Quanzhou and Jinjing City. The results show that Zhuhai area has higher radon potential, and hence protective measures against radon should be taken into account.
Reference | Related Articles | Metrics
THE PROGRESS IN THE APPLICATION OF SATELLITE GRAVITY SURVEY
XU Hai-jun, ZHANG Yong-zhi, DUAN Hu-rong, XUE Jian-hua
Geophysical and Geochemical Exploration    2012, 36 (1): 54-58,64.   DOI: 10.11720/wtyht.2012.1.11
Abstract3770)      PDF (1333KB)(1861)      

This paper deals with three gravity satellites, namely CHAMP, GRACE and GOCE. Satellite gravity data are widely used in such fields as the recovery of the earth's gravity field, the land water storage, the study of the geoid change, the elastic thickness, the crustal thickness, the gravity variance before and after earthquake and the crustal movement. Lots of successful and valuable research results were obtained. It is considered that the satellite gravity survey technology is by for superior to traditional gravity survey and will surely have larger application space.

Reference | Related Articles | Metrics
Critical factors in microtremor-based exploration at a depth of thousands of meters
QI Juan-Juan
Geophysical and Geochemical Exploration    2024, 48 (3): 777-785.   DOI: 10.11720/wtyht.2024.1358
Abstract263)   HTML4)    PDF (6323KB)(414)      

To explore the critical factors influencing the results of microtremor-based exploration at a depth of thousands of meters,this study conducted experiments using triangular arrays based on spatial autocorrelation(SPAC) and extended SPAC(ESPAC).Focusing on factors such as array size,acquisition unit frequency,and acquisition duration,this study explored the frequency band ranges corresponding to different array sizes,the arrangement of arrays in kilometer-depth exploration for obtaining both deep and shallow data,and the improvement in deep resolution.Based on the analysis and discussion results,this study established a parameter-setting system to improve the accuracy of exploration at a depth of thousands of meters.

Table and Figures | Reference | Related Articles | Metrics
CHEMICAL COMPOSITIONS OF CONTINENTAL CRUST AND ROCKS IN EASTERN CHINA
Yan Mingcai, Chi Qinghua, Gu Tiexin, Wang Chunshu
Geophysical and Geochemical Exploration    1997, 21 (6): 451-459.  
Abstract3129)      PDF (2969KB)(2778)      

Element abundances of the continental crust and rocks cited in the past and recent literature have been based on compilations of data from various studies. This leads to uncertainties in sample representativeness and data quality. The present study is based on systematic collection of 28 253 individual rock samples over an area of 3.3 million km2 in eastern China, east of eastern longitude of 105°.The sampling involves more than 800 igneous intrusive bodies and metamorphic complexes as well as more than 500 type stratigraphic sections. From the individual rock samples, 2 718 composite samples were made and analyzed for 77 elements by 15 specific methods, dominantly XRF and INAA. Analytical quality was controlled by international and national preliminary geochemical reference materials of GSR, GAu and GPt series. Synthetic results from geological, geochemical and geophysical studies were used to construct crustal constitution model, from which element abundances of the continental crust in the North China platform, the upper crust and exposed crust in eastern China, chemical composition of igneous rock in China and of sedimentary rock and metamorphic rock in eastern China were derived.

Reference | Related Articles | Metrics
A GENERALIZED DESCRIPTION OF THE DEVELOPMENT OF ELECTRIC EXPLORATION METHODS
Li Jinming
Geophysical and Geochemical Exploration    1996, 20 (4): 250-258,249.  
Abstract3926)      PDF (659KB)(2029)      

The present paper makes a brief description of the progress of several main electric methods which havebeen developed quite rspidly since 1980's.They include induced polarization method,frequency spectrum IPmethod,trandient electromagnetic method, controlled-source audio-frequency magnetotelluric method and GPR.

Reference | Related Articles | Metrics
Multi-source frequency-domain seismic exploration technique and its application
SUN Hong-Lin, LIU Tie-Hua, LIU Tie, ZHANG Zhan-Rong, CHEN Zhi-Xing
Geophysical and Geochemical Exploration    2024, 48 (3): 618-628.   DOI: 10.11720/wtyht.2024.1317
Abstract227)   HTML3)    PDF (5836KB)(361)      

Due to various strong electromagnetic mechanical interference and traffic barriers, many geophysical exploration techniques are ineffective in urban geophysical exploration.Based on transient surface waves,microtremor arrays,and microtremor spectral ratios,this study synthetically extracted two kinds of characteristic curves for joint inversion from the multi-source frequency-domain seismic data obtained by multi-point three-component low-frequency sensors.Consequently,this study achieved multi-source frequency-domain seismic exploration that integrated three techniques and developed the two-source synthetic dispersive spectrum extraction technique,the two-source characteristic curve joint inversion technique,and the equivalent homogeneous medium forward modeling technique based on inhomogeneous media.Engineering practice results demonstrate the improvements in the exploration accuracy and efficiency.

Table and Figures | Reference | Related Articles | Metrics
A review of the research progress and application status of seismic full waveform inversion
CHEN Zi-Long, WANG Hai-Yan, GUO Hua, WANG Guang-Wen, ZHAO Yu-Lian
Geophysical and Geochemical Exploration    2023, 47 (3): 628-637.   DOI: 10.11720/wtyht.2023.1469
Abstract650)   HTML16)    PDF (3181KB)(749)      

As resource exploration deepens and becomes increasingly difficult,improving the imaging precision and the reservoir prediction accuracy under a complex tectonic setting has become a top priority of research.The full waveform inversion (FWI) method developed in recent years can be applied to complex geological structures.This method can reveal structural details in a complex geological setting using the dynamic and kinematic information in the pre-stack seismic wave field.However,this method involves many research elements such as model parameterization,building of inverse error function,data preprocessing,numerical simulation of wavelengths,and wavelet estimation.Thus,its development is bound to be a long-term gradual improvement process.The FWI method has been applied to actual observation data with the development of theory and computer technology.This study introduced the principle and processing flow of the FWI method and summarized its development history and its application status in marine and onshore seismic data,and deep seismic reflection data.Accordingly, this study presented the current application bottlenecks,data processing difficulties, and challenges of deep-crustal inversion imaging for subsequent research and application of the FWI method.

Table and Figures | Reference | Related Articles | Metrics
Geophysical and Geochemical Exploration    1983, 7 (2): 126-128.  
Abstract1184)      PDF (275KB)(1150)      
Related Articles | Metrics
Advances in research on the distributed optical fiber acoustic sensing system in the field of geophysical exploration
ZHOU Shao-Yu, BAO Qian-Zong, SHI Wei
Geophysical and Geochemical Exploration    2024, 48 (2): 411-427.   DOI: 10.11720/wtyht.2024.1304
Abstract403)   HTML6)    PDF (7793KB)(461)      

Distributed acoustic sensing (DAS) technology, one of the most advanced sound field detection technologies, can achieve distributed, long-distance, and high-precision real-time detection of the ambient vibration and sound field information interacting with optical fiber. The optical fiber exploration system of the DAS technology solves the problems of high cost and deployment difficulty of conventional geophones in complex geological environments. In recent years, the DAS technology has experienced rapid development, especially in monitoring application scenarios that require long-term and large-scale deployment. However, its systematic understanding is insufficient due to divergent research results. To further understand the research advances of the DAS technology in geophysical exploration for more effective subsequent research, this study systematically classified and summarized the development history of the DAS technology and its recent research results in geophysical exploration based on the oil and gas, marine, and environmental engineering application scenarios through literature research. This study focused on the development process of the DAS technology in different directions, the research advances in data processing, and relevant literature with specific results. Finally, this study generalized the development trend and urgent problems of the DAS acquisition system, analyzing the DAS development prospect.

Table and Figures | Reference | Related Articles | Metrics
Research on the detection of underground pedestrian passage by high precision gravity exploration
YANG Min, XU Xin-Qiang, CHEN Ming, Ji Xiao-Lin, WANG Wan-Yin, ZHAO Dong-Ming, ZHOU Wei, ZHANG Yi-Mi
Geophysical and Geochemical Exploration    2024, 48 (3): 876-883.   DOI: 10.11720/wtyht.2024.0047
Abstract263)   HTML11)    PDF (3819KB)(348)      

Underground cavities with shallow burial and small scale are difficult to detect. With the development of gravity sensing technology, the accurate and rapid acquisition of micro-gravity variations brings new opportunities for detecting underground cavities, and it has wide research and practical value for the detection of small-scale underground cavities. This paper systematically analyzes and studies underground cavities from three aspects: gravity basic theory, gravity detection technology, and gravity data processing and inversion. Under given body size and gravity data accuracy, the maximum burial depth of gravity detection is calculated using the bisection method. High-density acquisition and high-precision gravity detection methods are applied to the actual detection of an underground pedestrian tunnel in a certain area of a passenger station. A set of high-precision gravity grid data is obtained. The theoretical research and measurement results indicate that existing gravity instruments have the ability to detect underground cavities. By using the minimum curvature potential field separation method, 2.5D interactive inversion and the target area recognition three-dimensional physical property fast inversion method, the approximate SN distribution and burial depth of the underground pedestrian tunnel are obtained, which is approximately 2.5~5 m, consistent with the actual situation. This study has developed a complete gravity exploration process for detecting underground cavities, and it has certain reference value.

Table and Figures | Reference | Related Articles | Metrics
Forward modeling on the seasonal frozen soil region detection by ground penetrating radar
Er-Qiao SONG, Si-Xin LIU, Rong-Qin HE, Jia-Qi CAI, Kun LUO
Geophysical and Geochemical Exploration    2018, 42 (5): 962-969.   DOI: 10.11720/wtyht.2018.1458
Abstract634)   HTML3)    PDF (4554KB)(1008)      

With the change of season, the physical parameters in the process of freezing and thawing in active layer of seasonal frozen soil region change significantly. Taking the seasonal frozen soil in Northeast China as an example, the authors used the Gaussian distribution rough surfaces to simulate the rough freezing and melting layers, established the random media model which can accurately described heterogeneity of the active layers, and carried out forward modeling. The results show that the depth of freezing and melting layers changes with the seasons, together with the change of permittivity and conductivity. The scattered waves in radar profile are very developed because of the heterogeneous active layer and the undulating freezing and melting layers. With the change of time, the greater the fluctuation of the melting layer, the stronger the scattered wave energy in the radar profile, the harder the reflection of the melting and the freezing layers. At the same time, it is proved that the application of GPR to monitor the seasonal variation, frozen depth and melting depth of seasonal frozen soil is a practical method.

Table and Figures | Reference | Related Articles | Metrics
Application of comprehensive geophysical prospecting in the exploration of geothermal resources in the Linjiadi area, Aohan Banner, Inner Mongolia
HAN Shu-He, PEI Qiu-Ming, XU Jian, SONG Zhi-Yong, MO Hai-Bin
Geophysical and Geochemical Exploration    2024, 48 (4): 962-970.   DOI: 10.11720/wtyht.2024.1315
Abstract214)   HTML5)    PDF (4495KB)(311)      

In the context of the goals of both peak carbon dioxide emissions and carbon neutrality, scientific and efficient exploration and exploitation of geothermal resources are criticalfor the geothermal industry. To address the commonly concernedtechnical challenges in the exploration of moderately deep geothermal resources, this study investigated the effectiveness of comprehensive geophysical prospecting in the exploration of geothermal resources inthe Linjiadi area, Aohan Banner, Inner Mongolia. Based on the analysis ofthe geological and hydrogeological conditions, this studypreliminarilyascertainedthe geothermal field characteristicsand the hydrochemicalcharacteristics of groundwater in the Linjiadi area. By comprehensively employingcontrolled source audio-frequency magnetotellurics (CSAMT), CSAMT; microtremor survey; radioactive radon survey; this study roughly determined the distribution of strata, magmatic rocks, and fault structures in the study area, inferring the factors controllinggeothermal anomaly areas and hot-water migration.Accordingly, exploration boreholes were arranged, allowing for drilling verificationwith a total length of 960 m. The results show that the comprehensiveapplication of CSAMT and microtremor survey, combined with radioactive radon survey for auxiliary verification, is effective in exploringmoderately deep geothermal resources. This study will provide a methodological reference for geothermal resource exploration in other areas.

Table and Figures | Reference | Related Articles | Metrics
Deep-hole verification of wide-field electromagnetic method-derived results in the Zhengtun area of the Liaodong region
LIANG Wei-Tian, LI Di-Quan, SUN Xin-Sheng, WANG Dong-Bo, FENG Jia-Xin, LI Hao, FAN Jin-Hu
Geophysical and Geochemical Exploration    2024, 48 (3): 675-683.   DOI: 10.11720/wtyht.2024.1428
Abstract118)   HTML1)    PDF (5860KB)(327)      

The development of gold deposits in the Liaodong region is considered to be controlled by the superimposed detachment fault zone of the metamorphic core complex system. The traditional view holds that the thickness of the cap rocks of the Yongning Formation in the Yongning Basin can exceed thousands of meters, thus hindering the migration of ore-bearing fluids and the formation of large-scale metal deposits. The exploration of deposits in the Liaodong region has remained within a depth of 1 km due to limited exploration efforts and insufficient research. This study obtained the resistivity distribution characteristics within a depth of 3 km in the Zhengtun area using the wide-field electromagnetic method (WFEM), ascertaining that the thickness of the cap rocks in the Liaodong region is around 1 km, in sharp contrast to the extremely thick cap rocks in the Yongning Formation. As verified by the 2 km deep drilling, an unconformable contact between the Yongning Formation and the underlying Archean basement was observed at a hole depth of 1 345 m, without significant structural detachment near the boundary. This study demonstrates that the thickness of the cap rocks in the Yongning Basin is merely around 1 km. Considering multistage active fault structures and densely distributed hypabyssal rock vein swarms in the area, it is preliminarily determined that the geological setting for mineralization in the Yongning Basin is akin to that of the Jiaodong gold ore concentration area. The ore-bearing metamorphic fluids or magmatic-hydrothermal fluids might have migrated to the upper part of the boundary for mineralization during the destruction of the North China craton. Overall, the Liaodong region has the potential to achieve breakthroughs in polymetallic prospecting, and the WFEM pinpoints the deep mineralization prediction.

Table and Figures | Reference | Related Articles | Metrics
THE APPLICATION OF A KPCA-AVM MODEL TO RESERVOIR IDENTIFICATION
PANG He-qing, KUANG Jian-chao, WANG Zhong, LIU Hai-song, CAI Zuo-hua, HUANG Yao-zong
Geophysical and Geochemical Exploration    2012, 36 (6): 1001-1005,1013.   DOI: 10.11720/wtyht.2012.6.22
Abstract1733)      PDF (985KB)(890)      
It is more difficult to predict the low porosity and low permeability tight reservoir than to predict the regular reservoir.The authors therefore tentatively applied kernel principal component analysis and support vector machine,called KPCA-SVM model,to solve this problem.Through the polynomial kernel function of the KPCA,the model can obtain the nonlinear feature extraction.Then the Gaussian kernel function in the SVM is chosen to perform optimization again.Finally,reservoir identification is implemented in the SVM.As the model incorporates the advantages of kernel function,principal component analysis and support vector classification,it can better solve the problem of nonlinear small sample,eliminate the noise of the data and reduce the dimension without missing valid information.In addition,it can achieve the prediction function quickly and accurately.The model was employed to predict the reservoir in x856 well block,which belongs to Xu2 member gas reservoir of the Xinchang gas field.The prediction results show the superiority of this model,which can be used as an optional method in tight reservoir prediction.
Reference | Related Articles | Metrics
THE EXTRACTION METHOD AND PROGRAM DESIGN FOR DISPERSION CURVE IN F-K DOMAIN
LI Jie, CHEN Xuan-hua, ZHANG Jiao-dong, ZHOU Qi, LIU Gang, LIU Zhi-qiang, XU Yan, LI Bing, YANG Jing
Geophysical and Geochemical Exploration    2011, 35 (5): 684-688.  
Abstract3811)      PDF (534KB)(2641)      

Based on two-dimensional Fourier transform and half-wave theory, this paper has studied the seismic Rayleigh wave dispersion curve extraction in f-k domain and made this theory fit in with a program by means of Delphi7.0. It is concluded that the f-k method overcomes the shortcomings of the one-dimensional digital processing technology and makes full use of multi-channel Rayleigh wave data record.

Reference | Related Articles | Metrics
Deep structural characteristics of the Yagan fault zone in northeastern Ejina Banner, Inner Mongolia: Evidence from magnetotelluric sounding
WANG Wen-Jie, CHEN Lei, LEI Cong-Cong, SHI Xiao-Feng, YANG Biao, WANG Wen-Bao, SUN Da-Peng, XU Hao-Qing
Geophysical and Geochemical Exploration    2024, 48 (3): 640-650.   DOI: 10.11720/wtyht.2024.1478
Abstract152)   HTML5)    PDF (14674KB)(324)      

There exists a continued debate concerning the spatial distribution and deep structural characteristics of the Yagan fault zone in northeastern Ejina Banner, Inner Mongolia. Adhering to the known-to-unknown research approach, this study completed five magnetotelluric sounding (MT) profiles. First, it delved into the relationship between the electrical structure characteristics of a MT profile (MT01) on the west side of the study area and the geological structure information of the Yagan fault zone within the profile. In terms of electrical characteristics, the Yagan fault zone was determined as a resistivity gradient zone characterized by northward dip, high dip angles, and deep depths. Based on these characteristics, and combined with the inversion interpretation results of four MT profiles (MT02~MT05) on the east side, this study identified the deep positions and structural characteristics of the Yagan fault zone within all the MT profiles. Moreover, it determined the major electrical directions of all the MT profiles using the impedance tensor decomposition technique, and the spatial trend of the Yagan fault zone based on the two-dimensional inversion interpretation results. As revealed by the results, the Yagan fault zone within the study area exhibits an overall nearly EW strike at the shallow surface and a strike of NE45° in the deep part, with an average width of approximately 6.8 km. It is a reverse fault with a gradual arc deflection to the north from west to east, manifesting a generally northward dip direction, dip angles ranging from 60° to 67°, and a fault depth of about 20 km. The obtained deep electrical structure model effectively reveals the deep structural characteristics of the study area. providing certain reference significance for the study of regional tectonic evolution

Table and Figures | Reference | Related Articles | Metrics
Iterative inversion method for ultradeep fault-controlled fracture-vug reservoirs:A case study of the Fuman oilfield,Tarim Basin
ZHANG Ming, LI Xiang-Wen, JIN Meng, ZHENG Wei, ZHANG Lei, MA Wen-Gao
Geophysical and Geochemical Exploration    2023, 47 (1): 22-30.   DOI: 10.11720/wtyht.2023.1049
Abstract382)   HTML23)    PDF (6873KB)(581)      

The ultradeep Ordovician limestone fracture-vug reservoirs in the Fuman oilfield on the south bank of the Tahe River in the Tarim Basin is the core target area for the production capacity construction of the oilfield.These reservoirs in the study area contain massive dissolution vugs formed by the formation fracturing due to the strike-slip faulting and thus are highly heterogeneous.The low-frequency models based on conventional wave impedance inversion are built using data on horizons,faults,and logs,and thus they cannot characterize the fault-controlled heterogeneity of the reservoirs.For this reason,this study proposed an iterative inversion method constrained by fault fractured zone facies to predict reservoirs.The technical process of this method is as follows.First,the original seismic data were interpreted to obtain the attribute volumes that can reflect the characteristics of the fault fractured zones of the reservoirs.Then,the attribute volumes were proportionally fused with the initial low-frequency model and the spatial profile data of high-quality reservoirs obtained from the conventional inversion based on wave impedance.As a result,a new heterogeneous low-frequency model was formed.Using this model,multiple rounds of iterative inversions were conducted.The inversion results can truly describe the characteristics of the fault fractured zones in the heterogeneous reservoirs.The prediction results of 10 wells had coincidence rates of up to 92.86%.As indicated by the application,the method proposed in this study can improve the reservoir prediction performance and the prediction precision of fault-controlled reservoirs,thus effectively supporting the work in the study area.

Table and Figures | Reference | Related Articles | Metrics
AMT-based geological-geophysical prospecting model for the gold ore zone in the Daduhe area, Shimian County, Sichuan Province
YAO Wen, GUO Jun, SUN Chong-Bo, ZHOU Hong-Bing, ZHANG Hong-Chao
Geophysical and Geochemical Exploration    2024, 48 (5): 1247-1257.   DOI: 10.11720/wtyht.2024.1545
Abstract101)   HTML2)    PDF (8840KB)(299)      

The gold ore zone in the Daduhe area of Shimian County, Sichuan Province, is located in the rare metal-precious metal-nonferrous polymetal metallogenic belt in the southern segment of the Songpan-Ganzi orogenic belt. It exhibits complex structures and steep terrains, severely restricting prospecting and exploration. Based on the geological settings, conditions, and geophysical characteristics for regional mineralization, this study investigated the typical Luoluoping gold deposit in Shimian by conducting deep geophysical exploration centered on audio-frequency magnetotellurics (AMT). Three low-resistivity anomalies (M1, M2, and M3) were identified, corresponding to the mineralized alteration zone I, the gold mineralization zone III, and the gold-copper ore body, respectively, demonstrating the effectiveness and applicability of geophysical methods for deep prospecting. Combined with geological understanding and engineering verification, this study summarized geological and geophysical prospecting markers for the typical gold deposit, establishing the geological-geophysical prospecting model for the gold ore zone in the study area. Therefore, this study provides technical support for deep prospecting in the study area.

Table and Figures | Reference | Related Articles | Metrics
Progress and prospect of gravity and magnetic techniques for hydrocarbon exploration in China
LIU Yun-Xiang, SI Hua-Lu, QIAO Hai-Yan, LIU Bai-Chuan
Geophysical and Geochemical Exploration    2023, 47 (3): 563-574.   DOI: 10.11720/wtyht.2023.1484
Abstract664)   HTML347)    PDF (3583KB)(767)      

This study summarized the progress and major application performance of gravity and magnetic techniques for onshore hydrocarbon exploration in China in recent years.By combining the research results of the authors,this study elucidated the new progress made in the gravity and magnetic techniques for hydrocarbon exploration from the prospect of acquisition,processing,interpretation,and application and sorted the application performance of these techniques in key fields including deep targets,complex areas,and volcanic rocks.Moreover,this study future analyzed the demand for the gravity and magnetic techniques for hydrocarbon exploration.By combining the new trends of gravity and magnetic exploration techniques at home and abroad,this study proposed the development direction and application prospect of gravity and magnetic techniques for oil and gas in deep strata and igneous rocks in complex areas.The results of this study show that significant progress has been made in gravity and magnetic exploration techniques,which play an important role in supporting the current hydrocarbon exploration.It is expected to develop high-precision and high-density gravity and magnetic exploration techniques and gravity-gravity-electricity-seismic collaborative innovation techniques.

Table and Figures | Reference | Related Articles | Metrics
Application of the opposing coils transient electromagnetic method in a shallow groundwater-rich area: A case study of Xiacun Town, Xinyu City
ZHU Xiao-Wei, DING Chen, XUE Kai-Xi, CHEN Jun, HAN Kai-Min, LUO Qiang, YI Guang-Sheng
Geophysical and Geochemical Exploration    2024, 48 (5): 1424-1436.   DOI: 10.11720/wtyht.2024.1574
Abstract164)   HTML4)    PDF (7265KB)(297)      

Unfavorable geobodies such as Karsts, weak soil, and water-rich areas are extensively distributed in China. Under heavy rainfall, they are prone to geologic hazards like collapse. A severe geological collapse occurred in Xiacun Town, Yushui District, Xinyu City, near the Shanghai-Kunming high-speed railway. The space around the collapsed foundation pit was limited, with many interference sources like underground pipelines. With early signals subjected to the mutual inductance effects of receiver and transmitter coils, the conventional transient electromagnetic method exhibited low detection accuracy and anti-interference ability, encountering significant shallow blind zones. To locate unfavorable geobodies in the study area and provide suggestions for the prevention and control of geologic hazards, this study innovatively applied the opposing-coils transient electromagnetic method (OCTEM), supplemented by borehole-based verification. The results show that: (1) The OCTEM exhibited high accuracy, as demonstrated by the high consistency between the geophysical exploration results and the drilling results of the study area; (2) The low-resistivity zone spread across the study area, and the low-resistivity anomalies revealed by geophysical exploration were caused by groundwater according to borehole-based verification; (3) The strata from top to bottom were composed of soft plastic silty clay, hard plastic silty clay, soft plastic silty clay, and moderately weathered limestones; (4) The subsurface micro-confined water in the collapse area surged upward, gradually eroding the soft plastic silty clay layer around the area. The static water level in the collapsed foundation pit manifested an elevation of 55.60 m, located approximately 1.4 m below the surface; (5) A groundwater channel existed under the collapse area, with soil caves formed in the limestone layer under the prolonged erosion effect of water flow; (6) Long-term groundwater extraction may expand the underground seepage zone; (7) The administrative department in charge must promptly contain groundwater in the collapse area to prevent it from further eroding the surrounding unconsolidated soil layer.

Table and Figures | Reference | Related Articles | Metrics
SOME BASIC PROBLEMS IN THE APPLICATION OF GROUND-PENETRATION RADAR
Lei Linyuan
Geophysical and Geochemical Exploration    1998, 22 (6): 408-414.  
Abstract2371)      PDF (1144KB)(1962)      

Four basic problems in the application of Ground penetrtion-radar are discussed in this paper:(1) the wave-impedance of electromagnetic wave transmission in strata; (2) the reflectivity and transmissivity of electromagnetic field at the subsurface of strata; (3) reflective phase and propagating velocity of electromagnetic wave in strta; (4) detection depth of the Ground-penetration radar.

Reference | Related Articles | Metrics
Metalleogenic geochemistry:Science problems and research ideas
XI Xiao-Huan
Geophysical and Geochemical Exploration    2024, 48 (4): 891-917.   DOI: 10.11720/wtyht.2024.0282
Abstract164)   HTML6)    PDF (791KB)(295)      

In geoscientific field, the essential object of all the research problems is the physical world which is derived from the crust-mantle interaction and has deeply influenced globally the environment and resources. The metallogenic geochemical theory believes that the metallogenic materials are the internal factors for the metallogenic system to influence the metallogenic process, and taking metallogenic materials as the main body to study the problems of metallogenic materials and metallogenic processes is the basic meaning of the metallogenic geochemical theory, and the core subject of the studies of metallogenic rules and theories. During the mineralization process of metallogenic system, metallogenic materials formed into metallogenic series of corresponding scale. This paper outlines several scientific topics of the metallogenic geochemical studies, among which, the topic of global metallogenic system mainly studies the metallogenic processes and relations of the series of metallogenic regions, provinces and belts formed by metallogenic materials in the context of global metallogenic process; the topic of regional metallogenic system mainly studies the metallogenic processes and relations of ore field series in the context of regional metallogenic process; the topic of ore field metallogenic system mainly studies the metallogenic processes and relations of mineral deposit series in the context of ore field metallogenic process; the topic of mineral deposit metallogenic system mainly studies the metallogenic processes and relations of ore-body series in the context of mineral deposit metallogenic process. The basic research ideas concerning above mentioned studies are discussed in this paper, including the metallogenic materials' geneses and sources, migration and evolution, differentiation and concentration, as well as the zoning relations of each level's metallogenic system and series of the world during the metallogenic processes. The purpose is to summary the metallogenic rules, explore the metallogenic mechanism and guide the mineral resources exploration. Supported by modern technologies and methods of IT(information technology), modeling and AI(artificial intelligence), the metallogenic geochemical theory uses the earth system scientific ideas to study the problems of metallogenic system and metallogenic series, construct the theoretical framework for metallogenic geochemical research, and provide a theoretical basis for the mineral resources exploration, evaluation and development technics and methods.

Table and Figures | Reference | Related Articles | Metrics
Differences in the characteristics of geomagnetic diurnal variation in different periods and their influence on correction of geomagnetic diurnal variation
LI Xing-Kang, FU Yong-Tao, ZHOU Zhang-Guo, YANG An
Geophysical and Geochemical Exploration    2023, 47 (1): 135-145.   DOI: 10.11720/wtyht.2023.1138
Abstract231)   HTML5)    PDF (7178KB)(688)      

The phase difference (i.e., time difference) and amplitude difference between the geomagnetic data of the offshore work area and the geomagnetic diurnal variation data of the remote stations are still challenges to the precision of the marine magnetic survey network. Based on the stations on both sides of the East China Sea and three stations in Europe at higher latitudes, this study analyzed and made statistics on the numerical differences in morphological characteristics, phase differences, and amplitude differences of the diurnal variation curves during the daytime, nighttime, and the periods of intense magnetic disturbance. The results are as follows. During the daytime, the phase difference between the stations is constantly changing, resulting in a large amplitude difference around noon. During the nighttime, the data of the stations have consistent phases, and the amplitude difference is mostly less than 4 nT. During strong magnetic disturbance activities such as magnetic storms, the phases of the stations are consistent, and the amplitude difference is even smaller than that during quiet days. According to the survey data of the ocean, the absolute value of the difference at intersections between the survey lines during magnetic storms and quiet days is less than 3.2 nT. The variation characteristics of the phase difference and amplitude difference of the geomagnetic diurnal data between stations facilitate the diurnal variation correction of the marine geomagnetic data.

Table and Figures | Reference | Related Articles | Metrics
Factors influencing the application of ESPAC-based microtremor survey in shallow surface environments
YANG Lang-Yong-Hang, LI Hong-Xing
Geophysical and Geochemical Exploration    2024, 48 (5): 1322-1330.   DOI: 10.11720/wtyht.2024.1479
Abstract151)   HTML5)    PDF (5302KB)(295)      

The extended spatial autocorrelation (ESPAC)-based microtremor exploration(natural-source surface wave exploration) technology has been extensively used in shallow formation exploration owing to its simplicity,efficiency,and accuracy.However,the imaging effect of dispersion energy extracted based on the ESPAC method is unsatisfactory in practical applications.In particular,different observation array arrangements influence the extraction of dispersion curves from collected data.By investigating the imaging principle of the ESPAC method,this study conducted the simulation experiment of natural-source microtremor recording through ambient noise simulation.It compared the differences in dispersion energy under various dominant frequency distributions of wavelets.Moreover,it quantitatively analyzed the influence of different station arrangements and acquisition durations on the imaging quality of dispersion energy.The comparative study reveals the imaging patterns of the ESPAC method in shallow surface exploration.The ESPAC method can maximize the imaging quality of dispersion energy in the fundamental mode while considering both efficiency and exploration costs.The results of this study were applied to engineering application cases to further verify the simulation results.

Table and Figures | Reference | Related Articles | Metrics
A review of seismic tomography methods
Chang LIU, Zhen-Chun LI, Ying-Ming QU, Yi-Peng XU, Wei-Jie ZHAO
Geophysical and Geochemical Exploration    2020, 44 (2): 227-234.   DOI: 10.11720/wtyht.2020.1243
Abstract1536)   HTML950)    PDF (550KB)(1744)      

As a method for effectively reducing the velocity model of the subsurface media,seismic tomography provides a reliable initial velocity model for full waveform inversion.The finite frequency characteristics of seismic wave propagation are realized from primitive ray toe to phase shift travel time tomography and instantaneous travel time tomography.From the acoustic wave equation to the elastic wave equation and from the isotropic medium to the VTI,TTI media,the simulation of the real underground medium is realized.The morbidity of mitigating tomographic inversion has also been a research hotspot.The commonly used methods have regularization,and the sensitive nucleus of Gaussian beam tomography has replaced the traditional ray-sensitive nucleus.Furthermore,in order to avoid the dependence of the accuracy of the imaging results on the true depth of the reflection bits on the common imaging gather,the angular domain double differential reflection tomography can converge stably and efficiently to the accurate migration velocity model.At present,tomography is gradually transitional to anisotropic media,data used are transitional from VSP to WVSP,and a single waveform is developed into multiple waveforms combined inversion.However,problems related to resolution and computational efficiency still require attention.

Reference | Related Articles | Metrics
Analysis of critical parameters in the field acquisition of short-offset transient electromagnetic data
CHEN Wei-Ying, XUE Guo-Qiang, LI Hai
Geophysical and Geochemical Exploration    2024, 48 (5): 1169-1175.   DOI: 10.11720/wtyht.2024.1197
Abstract248)   HTML6)    PDF (2409KB)(291)      

The grounded-source short-offset transient electromagnetic (SOTEM) method involves many parameters in field data acquisition. The selection of these parameters is closely associated with the signal quality and detection sensitivity of measured data. Based on the relevant provisions in the organization standard, Technical specification for grounded-source short-offset transient electromagnetic method (T/CGS 002—2021), issued by the Chinese Geophysical Society, numerical emulations, and practical cases, this study analyzed and expounded the selection criteria of critical parameters like transmitting source length, transmitting fundamental frequency, offset, device type, and observation component. The insights obtained in this study are significant for guiding the field construction of the SOTEM device and leveraging its detection performance.

Table and Figures | Reference | Related Articles | Metrics
1 SI(κ)=(1 A/m)/(1 A/m)=1。
YUAN Fang
Geophysical and Geochemical Exploration    2008, 32 (4): 448-450.  
Abstract2295)      PDF (265KB)(1592)      

The conversion of the quantities, units and formulae in electromagnetism between the Gauss System and the International Unit System is rather complicated, and there may occur some errors in the units of some derived quantities. For this, the author has made some explanations in this paper.

Related Articles | Metrics
京ICP备05055290号-3
Copyright © 2021 Geophysical and Geochemical Exploration, All Rights Reserved.
Tel: (8610)62301569   Email: whtbjb@sina.com , whtbjb@163.com