|
|
AMT-based geological-geophysical prospecting model for the gold ore zone in the Daduhe area, Shimian County, Sichuan Province |
YAO Wen(), GUO Jun(), SUN Chong-Bo, ZHOU Hong-Bing, ZHANG Hong-Chao |
Sichuan Institute of Metal Geological Survey, Chengdu 611730, China |
|
|
Abstract The gold ore zone in the Daduhe area of Shimian County, Sichuan Province, is located in the rare metal-precious metal-nonferrous polymetal metallogenic belt in the southern segment of the Songpan-Ganzi orogenic belt. It exhibits complex structures and steep terrains, severely restricting prospecting and exploration. Based on the geological settings, conditions, and geophysical characteristics for regional mineralization, this study investigated the typical Luoluoping gold deposit in Shimian by conducting deep geophysical exploration centered on audio-frequency magnetotellurics (AMT). Three low-resistivity anomalies (M1, M2, and M3) were identified, corresponding to the mineralized alteration zone I, the gold mineralization zone III, and the gold-copper ore body, respectively, demonstrating the effectiveness and applicability of geophysical methods for deep prospecting. Combined with geological understanding and engineering verification, this study summarized geological and geophysical prospecting markers for the typical gold deposit, establishing the geological-geophysical prospecting model for the gold ore zone in the study area. Therefore, this study provides technical support for deep prospecting in the study area.
|
Received: 19 December 2023
Published: 21 October 2024
|
|
|
|
|
|
Geotectonic location of the study area
|
|
Geological schematic map of Dadu River in Shimian area 1—granite;2—basite;3—diabase;4—Quaternary;5—deposits;6—principal shear zone;7—nappe belt;8—thrust belt;9—strike-slip fault;10—mylonite zone
|
|
Structure rigid diagram of Luoluoping typical orefield
|
|
Regional physical property results plan
|
岩性 | 标本数 量/块 | 电阻率/ (Ω·m) | 电阻 特性 | 最小值 | 最大值 | 算术平均值 | 白云质灰岩 | 31 | 3062.5 | 340071.9 | 39320.81 | 高阻 | 微晶灰岩 | 32 | 3612.16 | 382537 | 59746.91 | 高阻 | 变质岩屑砂岩 | 30 | 2382.35 | 6745.45 | 4665.61 | 中阻 | 绢云母板岩 | 31 | 2021.15 | 8334.22 | 5778.55 | 中阻 | 辉绿岩 | 32 | 769.28 | 7485.58 | 3403.02 | 中阻 | 金多金属矿矿石 | 30 | 85.93 | 2369.44 | 1351.4 | 低阻 | 炭质板岩 | 31 | 0.39 | 1021.5 | 53.56 | 低阻 |
|
Statistical table of electrical parameters
|
|
Topographic map of typical mining area and geophysical exploratory line
|
|
Resistivity-depth inversion profiles
|
|
Comprehensive stereogram of AMT low resistance anomalous body
|
|
Geology-low resistivity anomaly M1 stereogram
|
|
Geology-low resistivity anomaly M2 stereogram
|
|
Geology-low resistivity anomaly M3 stereogram
|
标志类型 | 找矿标志 | 地质 | 构造破碎带 | 矿区内近SN走向构造破碎带的 主控矿构造 | 侵入岩 | 近SN向展布的辉绿岩脉,外接触带是 成矿的有利地带 | 围岩蚀变 | 孔雀石化、蓝铜矿化、强褐铁矿化、硅化、 矽卡岩化等 | 地球物理 | 电阻率异常 | 音频大地电磁测深反映的 低电阻率异常 |
|
Typical mining area prospecting signs
|
|
Geological and geophysical prospecting model of Dadu River area in Shimian
|
[1] |
侯增谦, 杨竹森, 徐文艺, 等. 青藏高原碰撞造山带:I.主碰撞造山成矿作用[J]. 矿床地质, 2006, 25(4):337-358.
|
[1] |
Hou Z Q, Yang Z S, Xu W Y, et al. Metallogenesis in Tibetan collisional orogenic belt:Ⅰ.Mineralization in main collisional orogenic setting[J]. Mineral Deposits, 2006, 25(4):337-358.
|
[2] |
侯增谦, 曲晓明, 杨竹森, 等. 青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J]. 矿床地质, 2006, 25(6):629-651.
|
[2] |
Hou Z Q, Qu X M, Yang Z S, et al. Metallogenesis in Tibetan collisional orogenic belt:Ⅲ.Mineralization in post-collisional extension setting[J]. Mineral Deposits, 2006, 25(6):629-651.
|
[3] |
毛景文, 李晓峰, 李厚民, 等. 中国造山带内生金属矿床类型、特点和成矿过程探讨[J]. 地质学报, 2005, 79(3):342-372.
|
[3] |
Mao J W, Li X F, Li H M, et al. Types and characteristics of endogenetic metallic deposits in orogenic belts in China and their metallogenic processes[J]. Acta Geologica Sinica, 2005, 79(3):342-372.
|
[4] |
侯增谦, 莫宣学, 杨志明, 等. 青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型[J]. 中国地质, 2006, 33(2):340-351.
|
[4] |
Hou Z Q, Mo X X, Yang Z M, et al. Metallogeneses in the collisional orogen of the Qinghai-Tibet Plateau:Tectonic setting,tempo-spatial distribution and ore deposit types[J]. Geology in China, 2006, 33(2):340-351.
|
[5] |
侯增谦, 宋玉财, 李政, 等. 青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型:成矿基本特征与构造控矿模型[J]. 矿床地质, 2008, 27(2):123-144.
|
[5] |
Hou Z Q, Song Y C, Li Z, et al. Thrust-controlled,sediments-hosted Pb-Zn-Ag-Cu deposits in eastern and northern margins of Tibetan orogenic belt:Geological features and tectonic model[J]. Mineral Deposits, 2008, 27(2):123-144.
|
[6] |
冯军, 蒋文, 张征. 新疆维权银铜多金属矿地质—地球物理找矿模式及成矿模型[J]. 物探与化探, 2022, 46(4):868-876.
|
[6] |
Feng J, Jiang W, Zhang Z. Geophysical prospecting mode and metallogenic model of the Weiquan silver-copper polymetallic deposit in Xinjiang[J]. Geophysical and Geochemical Exploration, 2022, 46(4):868-876.
|
[7] |
陈大磊, 王润生, 贺春艳, 等. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1):70-77.
|
[7] |
Chen D L, Wang R S, He C Y, et al. Application of integrated geophysical exploration in deep spatial structures:A case study of Jiaodong gold ore concentration area[J]. Geophysical and Geochemical Exploration, 2022, 46(1):70-77.
|
[8] |
游越新, 邓居智, 陈辉, 等. 综合物探方法在云南澜沧老厂多金属矿区深部找矿中的应用[J]. 物探与化探, 2023, 47(3):638-647.
|
[8] |
You Y X, Deng J Z, Chen H, et al. Application of integrated geophysical methods in deep ore prospecting of Laochang polymetallic mining area in Lancang,Yunnan[J]. Geophysical and Geochemical Exploration, 2023, 47(3):638-647.
|
[9] |
虎新军, 陈晓晶, 仵阳, 等. 综合地球物理技术在银川盆地东缘地热研究中的应用[J]. 物探与化探, 2022, 46(4):845-853.
|
[9] |
Hu X J, Chen X J, Wu Y, et al. Application of comprehensive geophysical exploration in geothermal resources on the eastern margin of Yinchuan Basin[J]. Geophysical and Geochemical Exploration, 2022, 46(4):845-853.
|
[10] |
张宝林, 苏艳平, 张国梁, 等. 胶东典型含矿构造岩相带的地质—地球物理信息预测方法与找矿实践[J]. 地学前缘, 2017, 24(2):85-94.
|
[10] |
Zhang B L, Su Y P, Zhang G L, et al. Predicting method of typical ore-bearing tectonic lithofacies zones by integrated geological-geophysical information and its prospecting practice in eastern Shandong,China[J]. Earth Science Frontiers, 2017, 24(2):85-94.
|
[11] |
李英康, 高建伟, 韩健, 等. 扬子块体两侧造山带地壳推覆的地球物理证据及其地质意义[J]. 中国科学:地球科学, 2019, 49(4):687-705.
|
[11] |
Li Y K, Gao J W, Han J, et al. Geophysical evidence for thrusting of crustal materials from orogenic belts over both sides of the Yangtze Block and its geological significance[J]. Scientia Sinica:Terrae, 2019, 49(4):687-705.
|
[12] |
喻翔, 汪硕, 胡英才, 等. 二连盆地北部玄武岩覆盖区电性结构与铀成矿环境研究[J]. 物探与化探, 2022, 46(5):1157-1166.
|
[12] |
Yu X, Wang S, Hu Y C, et al. Study on electrical structure and uranium metallogenic environment of basalt-covered area in the northern Erlian Basin[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1157-1166.
|
[13] |
王卫, 陈建国. 湖北荆当盆地何家湾地区三维地质地球物理模型研究[J]. 地质学刊, 2017, 41(3):432-440.
|
[13] |
Wang W, Chen J G. 3D geophysical modelling in Hejiawan area of the Jingmen-Dangyang Basin,Hubei Province[J]. Journal of Geology, 2017, 41(3):432-440.
|
[14] |
何帅, 杨炳南, 阮帅, 等. 三维AMT正反演技术对贵州马坪含金刚石岩体探测的精细解释[J]. 物探与化探, 2022, 46(3):618-627.
|
[14] |
He S, Yang B N, Ruan S, et al. Fine Interpretation of the exploration results of diamond-bearing rock masses in Maping area,Guizhou using the 3D AMT forward modeling and inversion technologies[J]. Geophysical and Geochemical Exploration, 2022, 46(3):618-627.
|
[15] |
许志琴, 王宗秀, 侯立玮. 松潘—甘孜造山带构造研究新进展[J]. 中国地质, 1991, 18(12):14-16.
|
[15] |
Xu Z Q, Wang Z X, Hou L W. New progress in structural research of Songpan-Ganzi orogenic belt[J]. Geology in China, 1991, 18(12):14-16.
|
[16] |
李华健, 王庆飞, 杨林, 等. 青藏高原碰撞造山背景造山型金矿床:构造背景、地质及地球化学特征[J]. 岩石学报, 2017, 33(7):2189-2201.
|
[16] |
Li H J, Wang Q F, Yang L, et al. Orogenic gold deposits formed in Tibetan collisional orogen setting:Geotectonic setting,geological and geochemical features[J]. Acta Petrologica Sinica, 2017, 33(7):2189-2201.
|
[17] |
邓军, 王庆飞, 李龚健. 复合造山和复合成矿系统:三江特提斯例析[J]. 岩石学报, 2016, 32(8):2225-2247.
|
[17] |
Deng J, Wang Q F, Li G J. Superimposed orogeny and composite metallogenic system:Case study from the Sanjiang Tethyan belt,SW China[J]. Acta Petrologica Sinica, 2016, 32(8):2225-2247.
|
[18] |
骆耀南, 俞如龙. 西南三江地区造山演化过程及成矿时空分布[J]. 地球学报, 2002, 23(5):417-422.
|
[18] |
Luo Y N, Yu R L. Orogenic evolution and metallogenic time-space distribution in Jinshajiang-Lancangjiang-Nujiang Region,Southwest China[J]. Acta Geosicientia Sinica, 2002, 23(5):417-422.
|
[19] |
滕彦国. 田湾金银铜矿带流体成矿的地球化学界面[D]. 成都: 成都理工学院,1999.
|
[19] |
Teng Y G. Geochemical interface of fluid mineralization in tianwan Au-Ag-Cu Belt[D]. Chengdu: Chengdu University of Technology,1999.
|
[20] |
左林. 四川大渡河金矿地质构造特征及深部找矿方向研究[J]. 世界有色金属, 2020(13):74-75.
|
[20] |
Zuo L. Study on geological structure characteristics and deep prospecting direction of Daduhe gold mine in Sichuan Province[J]. World Nonferrous Metals, 2020(13):74-75.
|
[21] |
朱玉娣, 代堰锫, 王丽丽, 等. 松潘—甘孜造山带南缘二叠系变质玄武岩的成因与构造意义[J]. 地学前缘, 2017, 24(6):98-109.
|
[21] |
Zhu Y D, Dai Y P, Wang L L, et al. Petrogenesis and tectonic significance of the Permian metabasalts in the southern margin of the Songpan-Garze orogenic belt[J]. Earth Science Frontiers, 2017, 24(6):98-109.
|
[22] |
秦大军. 韧性剪切作用与深源流体演化和金矿化的耦合关系[J]. 地质地球化学, 1997, 25(3):58-63.
|
[22] |
Qin D J. The coupled relationships between shear zone and deep-derived fluid and mineralization[J]. Geology-Geochemistry, 1997, 25(3):58-63.
|
[23] |
应汉龙, 骆耀南. 四川石棉西部地区金矿床形成时代[J]. 地质论评, 2007, 53(2):273-280.
|
[23] |
Ying H L, Luo Y N. The formation age of gold ore deposits in western Shimian,Sichuan[J]. Geological Review, 2007, 53(2):273-280.
|
[24] |
刘斌, 王权锋. 四川石棉县薛家崖金矿成矿地质特征及找矿前景分析[J]. 有色金属工程, 2015, 5(1):76-80.
|
[24] |
Liu B, Wang Q F. Gold metallogenic geological characteristics and prospect analysis for xuejiaya gold deposit in Shimian of Sichuan[J]. Nonferrous Metals Engineering, 2015, 5(1):76-80.
|
[25] |
马天祺, 张燕, 陈翠华, 等. 四川丹巴独狼沟金矿中金与碲铋矿物的赋存状态及金的富集机制[J]. 岩石矿物学杂志, 2023, 42(4):541-554.
|
[25] |
Ma T Q, Zhang Y, Chen C H, et al. The occurrence state of gold and tellurium? bismuth minerals and enrichment mechanism of gold in Dulanggou gold deposit of Danba,Sichuan Province[J]. Acta Petrologica et Mineralogica, 2023, 42(4):541-554.
|
[26] |
凡韬. 四川省丹巴县美河金矿构造期次及找矿方向探讨[J]. 四川有色金属, 2020(1):18-21,42.
|
[26] |
Fan T. Discussion on tectonic stage and prospecting direction of meihe gold deposit,Danba County,Sichuan Province[J]. Sichuan Nonferrous Metals, 2020(1):18-21,42.
|
[27] |
高玲举, 张健, 董淼. 川西高原重磁异常特征与构造背景分析[J]. 地球物理学报, 2015, 58(8):2996-3008.
|
[27] |
Gao L J, Zhang J, Dong M. The study of gravity-magnetic anomaly and tectonic background in Sichuan west region[J]. Chinese Journal of Geophysics, 2015, 58(8):2996-3008.
|
[28] |
闫亚芬, 滕吉文, 阮小敏, 等. 龙门山和相邻地域航磁场特征与汶川大地震[J]. 地球物理学报, 2016, 59(1):197-214.
|
[28] |
Yan Y F, Teng J W, Ruan X M, et al. Aeromagnetic field characteristics and the Wenchuan earthquakes in the Longmenshan mountains and adjacent areas[J]. Chinese Journal of Geophysics, 2016, 59(1):197-214.
|
[29] |
赵航. 川西高原及四川盆地壳幔电性结构研究[D]. 北京: 中国地质大学(北京), 2019.
|
[29] |
Zhao H. Study on electrical structure of crust and mantle in western Sichuan Plateau and Sichuan Basin[D]. Beijing: China University of Geosciences(Beijing), 2019.
|
[30] |
李连海. 川西鲜水河断裂带道孚—康定段深部电性结构研究[D]. 昆明: 昆明理工大学, 2021.
|
[30] |
Li L H. Study on deep electrical structure of Daofu-Kangding section of Xianshuihe fault zone in western Sichuan[D]. Kunming: Kunming University of Science and Technology, 2021.
|
[31] |
王桥, 杨剑, 夏时斌, 等. 四川盆地新区新层系页岩气的音频大地电磁探测——以川西南乐山地区须家河组为例[J]. 地质学报, 2022, 96(2):699-711.
|
[31] |
Wang Q, Yang J, Xia S B, et al. Audio magnetotelluric detection of shale gas in the new horizon of the new area of Sichuan basin:A case study of the Xujiahe Formation in the Leshan area,southwest Sichuan[J]. Acta Geologica Sinica, 2022, 96(2):699-711.
|
[32] |
吴旭亮, 李茂. 基于AMT的龙首山成矿带西岔地段马路沟断裂带深部发育特征[J]. 物探与化探, 2022, 46(5):1180-1186.
|
[32] |
Wu X L, Li M. Deep occurrence characteristics of the Malugou fault zone in the Xicha section of the Longshoushan metallogenic belt determined based on AMT[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1180-1186.
|
[33] |
徐璐平, 朱卫平, 朱宏伟, 等. 南秦岭安康汉中地区岩石物性特征及应用[J]. 物探与化探, 2022, 46(5):1167-1179.
|
[33] |
Xu L P, Zhu W P, Zhu H W, et al. Physical property characteristics of rocks in Hanzhong and Ankang areas at the southern foot of Qinling Mountains and their application[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1167-1179.
|
[34] |
吴林楠, 陈寿波, 刘洋, 等. 东天山香山铜镍矿“三位一体” 地质—地球物理模型及深部预测[J]. 新疆地质, 2021, 39(4):534-540.
|
[34] |
Wu L N, Chen S B, Liu Y, et al. “Trinity” geological-geophysical model and deep prediction of Xiangshan copper nickel deposit in Eastern Tianshan[J]. Xinjiang Geology, 2021, 39(4):534-540.
|
[35] |
王玉方, 罗霄. 新疆哈密市雅北铁矿地球物理特征及成因分析[J]. 世界有色金属, 2021(10):161-162.
|
[35] |
Wang Y F, Luo X. Geophysical characteristics and genetic analysis of Yabei iron deposit in Hami,Xinjiang[J]. World Nonferrous Metals, 2021(10):161-162.
|
[36] |
李凯春, 杨言辰, 陈天文, 等. 吉林小红石砬子铅锌银矿区综合物探三维建模及矿体定位预测[J]. 世界地质, 2022, 41(4):737-750.
|
[36] |
Li K C, Yang Y C, Chen T W, et al. 3D modeling of integrated geophysical prospecting and orebody location prediction in Xiaohongshilazi Pb-Zn-Ag mining area,Jilin Province[J]. World Geology, 2022, 41(4):737-750.
|
[37] |
余长恒, 郑健, 张旭林, 等. 川南地区页岩气井平台钻前工程物探集成技术[J]. 物探与化探, 2023, 47(1):99-109.
|
[37] |
Yu C H, Zheng J, Zhang X L, et al. Application of the integrated engineering geophysical exploration technology in the predrilling stage of shale gas well platforms in southern Sichuan Province[J]. Geophysical and Geochemical Exploration, 2023, 47(1):99-109.
|
[38] |
孟玉明. 内蒙古自治区太仆寺旗金豆子山铅锌矿地质地球物理找矿研究[D]. 长沙: 中南大学, 2009.
|
[38] |
Meng Y M. Geological and geophysical prospecting of jindouzishan lead-zinc mine in taibus banner,Inner Mongolia autonomous region[D]. Changsha: Central South University, 2009.
|
[1] |
ZHANG Wen-Bin, ZHOU Xian-Jun, HOU Cui-Xia, WANG Ning-Zu, SUN Ping-Yuan, ZHAO Zhen-Guan, HE Bi. Geochemical characteristics of soils and prospecting potential of the northern Laojunmiao gold deposit in the Beishan area, Gansu Province[J]. Geophysical and Geochemical Exploration, 2024, 48(4): 945-953. |
[2] |
YU Zhong-Hong, YAN Ling-Qin, ZHANG Zhan-Xiong, LI Peng, LI Feng-Ting, FU Jia. Geophysical characteristics and deep prospecting prediction of the Dachaigou gold deposit in the eastern Kunlun area[J]. Geophysical and Geochemical Exploration, 2024, 48(1): 40-47. |
|
|
|
|