|
|
Application of the unmanned aerial vehicle-airborne gamma-ray spectrometry system to follow-up geochemical surveys in high-relief areas |
ZHONG Hui-Rong(), YANG Cheng-Zhi(), YANG Qing-Hua, XIN Chao, YANG Lei, WANG Wei |
Jiangxi Institute of Nuclear Industry Geology, Nanchang 330038, China |
|
|
Abstract In response to the need for large-scale exploration of radioactive minerals in high-relief areas, this study developed an airborne gamma-ray spectrometer based on small-sized NaI (Tl) crystals, which was integrated with the F-120 unmanned aerial vehicle (UAV) to form an airborne gamma-ray spectrometry (AGRS) system. The UAV-AGRS system was applied to the follow-up geochemical survey of uranium deposits in a certain area of South China. The survey results show roughly consistent locations and morphologies for high-anomaly zones with the ground gamma-ray spectrometry results. Moreover, the results of this study exhibit more detailed anomaly morphologies, and more significant responses of uranium content-related uranium channel data to known uranium occurrences in the study area, suggesting superior data. Therefore, the UAV-AGRS system shows promising potential as an effective alternative to ground gamma-ray spectrometry for the follow-up geochemical survey of uranium deposits in high-relief areas.
|
Received: 27 December 2023
Published: 21 October 2024
|
|
|
|
|
|
Drone aviation γ schematic diagram of energy spectrometer
|
|
Schematic diagram of aviation γ spectrometry system and cosmic ray background measurement of UAV
|
|
Field photo of instrument background measurement
|
距水面高度/m | NaI_K-40/cps | NaI_Bi-214/cps | NaI_Tl-208/cps | NaI_全谱/cps | 25 | 8.93 | 5.03 | 2.69 | 339.69 | 距水面高度/m | CeBr3_K-40/cps | CeBr3_Bi-214/cps | CeBr3_Tl-208/cps | CeBr3_全谱/cps | 25 | 5.25 | 0.20 | 1.48 | 63.91 |
|
UAV aviation γ spectrometry system and cosmic ray background value
|
|
Workflow diagram of UAV aerial γ spectrum measurement
|
|
Drone aviation γ energy spectrum measurement data processing flowchart
|
剥离系数 | α | β | γ | a | b | g | 0.560 | 0.484 | 0.851 | 0 | 0 | 0 |
|
Stripping coefficient
|
高度衰减修正系数 | μTC/ (10-3·m-1) | μK/ (10-3·m-1) | μU/ (10-3·m-1) | μTh/ (10-3·m-1) | 7.67 | 8.30 | 9.81 | 3.80 |
|
Height attenuation correction coefficient
|
仪器灵敏度系数 | K(计数率/%) | U(计数率/10-6) | Th(计数率/10-6) | 28.391 | 0.927 | 0.275 |
|
Instrument sensitivity coefficient
|
|
Drone aviation γ energy spectrum measurement results
|
测量方式 | U含量/ 10-6 | Th含量/ 10-6 | K含量/% | TC含量/ 10-6 | 无人机航 放测量 | 8.2 | 38.6 | 3.8 | 35.6 | 地面测量 | 8.4 | 35.7 | 3.6 | 38.5 | 相对偏差/% | 2.44 | -7.51 | -5.26 | 8.15 |
|
Average results statistics of UAV aerial γ spectrum measurement and ground gamma spectrum measurement
|
|
Drone aviation γ energy spectrum measurement and ground γ comparison curve of energy spectrometer measurement results
|
[1] |
李怀渊, 江民忠, 陈国胜, 等. 我国航空放射性测量进展及发展方向[J]. 物探与化探, 2018, 42(4):645-652.
|
[1] |
Li H Y, Jiang M Z, Chen G S, et al. The brilliant achievements and technological innovation of airborne radioactivity survey in China[J]. Geophysical and Geochemical Exploration, 2018, 42(4):645-652.
|
[2] |
杨庆华, 郭生良, 钟经华, 等. 无人机航空伽马测量地质调查应用研究[J]. 世界有色金属, 2020(4):198-200.
|
[2] |
Yang Q H, Guo S L, Zhong J H, et al. Geological survey and application of UAV aerial gamma survey[J]. World Nonferrous Metals, 2020(4):198-200.
|
[3] |
肖斌, 范军林, 杨庆华. 无人机航空放射性资源勘查环境监测系统及应用[J]. 测绘通报, 2021(2):140-143.
|
[3] |
Xiao B, Fan J L, Yang Q H. Environmental monitoring system and its application for UAV aviation radioactive resources exploration[J]. Bulletin of Surveying and Mapping, 2021(2):140-143.
|
[4] |
倪卫冲, 顾仁康. 核应急航空监测方法[J]. 铀矿地质, 2003, 19(6):366-373.
|
[4] |
Ni W C, Gu R K. Airborne monitoring method of nuclear emergency response[J]. Uranium Geology, 2003, 19(6):366-373.
|
[5] |
杨庆华, 钟辉荣, 杨磊, 等. 无人机航空γ能谱测量系统设计[J]. 核电子学与探测技术, 2022, 42(2):334-339.
|
[5] |
Yang Q H, Zhong H R, Yang L, et al. Design of an airborne gamma-ray spectrum measurement system based on UAV platform[J]. Nuclear Electronics & Detection Technology, 2022, 42(2):334-339.
|
[6] |
张文杰, 杨生, 郭刚, 等. 轻型无人机航磁调查系统及在矿产勘查中的应用前景[J]. 矿产勘查, 2021, 12(4):989-999.
|
[6] |
Zhang W J, Yang S, Guo G, et al. The application prospect of light UAV aeromagnetic survey in mineral exploration[J]. Mineral Exploration, 2021, 12(4) :989-999.
|
[7] |
于显利, 刘顺安, 刘佳琳. 无人机在地球物理探测中的应用[J]. 中国矿业, 2012, 21(7):107-109.
|
[7] |
Yu X L, Liu S A, Liu J L. Application of unmanned aerial vehicle for geophysical surveying[J]. China Mining Magazine, 2012, 21(7) :107-109.
|
[8] |
李江坤, 李艺舟, 刘士凯. 基于CH-3 无人机的航空物探( 磁/放)测量系统研制及应用[J]. 核科学与工程, 2020, 38(S1) :323-326.
|
[8] |
Li J K, Li Y Z, Liu S K. Development and application of airborne geophysical exploration (magnetic/radiological) measurement system based on CH-3 UAV[J]. Nuclear Science and Engineering, 2020, 38(S1):323-326.
|
[9] |
张恩, 段明, 卢辉雄, 等. 航空伽马能谱数据在突泉地区铀成矿预测中的应用[J]. 矿产勘查, 2019, 10(7):1624-1631.
|
[9] |
Zhang E, Duan M, Lu H X, et al. Application of airborne gammaenergy spectral data to uranium metallogenic prognosis in Tuquan Area[J]. Mineral Exploration, 2019, 10(7):1624-1631.
|
[10] |
刘艳阳, 刘庆成, 张志勇. 航空伽马能谱测量地形改正方法初探[J]. 铀矿地质, 2008, 24(6):369-374,353.
|
[10] |
Liu Y Y, Liu Q C, Zhang Z Y. Study on terrain correction methods of airborne gamma-ray spectrometry survey data[J]. Uranium Geology, 2008, 24(6):369-374,353.
|
[11] |
王南萍, 裴少英, 黄英, 等. 环境γ能谱测量方法研究及应用[J]. 辐射防护, 2005, 25(6):347-356.
|
[11] |
Wang N P, Pei S Y, Huang Y, et al. Research on and application of methods for gamma-ray spectrometry in environmental monitoring[J]. Radiation Protection, 2005, 25(6):347-356.
|
[12] |
马晓宇, 孟德. 无人机核辐射航测技术在日本广域辐射监测中的应用研究[J]. 核电子学与探测技术, 2014, 34(3):409-413.
|
[12] |
Ma X Y, Meng D. The study based on the application of UAV radiation monitoring technology for wide area in Japan[J]. Nuclear Electronics & Detection Technology, 2014, 34(3):409-413.
|
[13] |
于百川. 我国航空放射性测量的进展[J]. 铀矿地质, 1990, 6(2):99-103,119.
|
[13] |
Yu B C. The development of airborne radiometric survey in China[J]. Uranium Geology, 1990, 6(2):99-103,119.
|
[14] |
IAEA. Guidelines for radioelement mapping using gamma ray spectrometry data[J]. international atomic energy agency technical documents iaeatecdocspp, 2003.
|
[15] |
周坚鑫, 周锡华, 王南萍, 等. 航空伽马能谱测量在突发核事件中的应用[J]. 物探与化探, 2006, 30(6):480-481,487.
|
[15] |
Zhou J X, Zhou X H, Wang N P, et al. The application of airborne radioactive survey to the investigation of nuclear accidents[J]. Geophysical and Geochemical Exploration, 2006, 30(6):480-481,487.
|
[16] |
崔志强. 高精度航空物探在重要成矿带资源调查中的应用[J]. 物探与化探, 2018, 42(1) :38-49.
|
[16] |
Cui Z Q. The application of the high precision airborne geophysical survey to the investigation of important metallogenic belts[J]. Geophysical and Geochemical Exploration, 2018, 42(1) :38-49.
|
[17] |
卢辉雄, 张恩, 冯博, 等. 内蒙古巴升河地区航空伽马能谱异常特征及其铀成矿潜力分析[J]. 物探与化探, 2020, 44(1) :59-65.
|
[17] |
Lu H X, Zhang E, Feng B, et al. An analysis of anomaly characteristics of aerial gamma spectrum and uranium metallogenic potential in Bashenghe area,Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2020, 44(1) :59-65.
|
[18] |
管少斌, 高国林, 唐晓川, 等. 超低空无人机航空γ能谱测量在铀矿异常检查中的应用——以内蒙古阿巴嘎旗为例[J]. 铀矿地质, 2022, 38(4):789-797.
|
[18] |
Guan S B, Gao G L, Tang X C, et al. Application of ultra-low altitude UAV-borne γ Spectrometry in anomaly inspection of uranium deposits:A case study in Abaga banner,Inner Mongolia,China[J]. Uranium Geology, 2022, 38(4):789-797.
|
[19] |
Jarmo J A. Analysis methods for airborne radioactivity[D]. Espoo: Helsinki University of Technology, 2008.
|
[20] |
万建华, 熊盛青, 范正国. 航空伽马能谱测量方法技术现状与展望[J]. 物探与化探, 2012, 36(3):386-391.
|
[20] |
Wan J H, Xiong S Q, Fan Z G. The status and prospects of airborne gamma-ray spectrometry technology and its application[J]. Geophysical and Geochemical Exploration, 2012, 36(3):386-391.
|
[21] |
Li B, Zhu Y, Wang Z Y, et al. Use of multi-rotor unmanned aerial vehicles for radioactive source search[J]. Remote Sensing, 2018, 10(5):728.
|
[22] |
张翔, 韩鹏辉, 牛家骥, 等. 内蒙古二连浩特地区1:5 万航空物探调查工作总结报告[R]. 石家庄: 核工业航测遥感中心, 2020.
|
[22] |
Zhang X, Han P, Niu J J, et al. Summary report of 1:50,000 aero geophysical survey in Erenhot,Inner Mongolia[R]. Shijiazhuang: Aerial Survey and Remote Sensing Center of Nuclear Industry, 2020.
|
[23] |
陈国胜, 江民忠, 倪卫冲, 等. EJ/T 1032—2018航空γ 能谱测量规范[S]. 北京: 国家国防科技工业局, 2018.
|
[23] |
Chen G S, Jiang M Z, Ni W C, et al. EJ/T 1032—2018 Airborne gamma-ray spectrometry survey[S]. Beijing: National Defense Science,Technology and Industry Administration, 2018 (in Chinese).
|
[24] |
Seligman H. Airborne gamma ray spectrometer surveying,technical reports series No.323[J]. International Journal of Radiation Applications and Instrumentation Part A:Applied Radiation and Isotopes, 1992, 43(3):469.
|
[1] |
CUI Zhi-Qiang, XU Zhi-Li, MENG Qing-Min. The features of the main airborne geophysical flying-platforms in China and the development trend[J]. Geophysical and Geochemical Exploration, 2014, 38(6): 1107-1113. |
[2] |
LI Jun-Feng, LI Wen-Jie, QIN Xu-Wen, XU Zhi-Li, LIU Jun-Jie, MENG Qing-Min, LI Fei, LIU Ying-Ying. Trial survey of a novel UAV-borne magnetic system in the Duobaoshan ore district[J]. Geophysical and Geochemical Exploration, 2014, 38(4): 846-850. |
|
|
|
|