E-mail Alert Rss
 
Office Online
News
gfff
More>>
Information
Web: http://www.wutanyuhuatan.com
Editor in Chief: XIONG ShengQing
Published by:
The Geological Publishing House (31 Xueyuan Road,Beijing 100083,China)
Printer:
Beijing Changning Printing Co. Ltd.
Distributor: Beijing Post Office
Abroad Distributor:
China International Book Trading Corporation
Subscription Hander:
Local Post Offices of China
Sponsored by:
China Aero Geophysical Survey and Remote Sensing Center for Natural Resources
Edited by:
Editorial Office of Geophysical and Geochemical Exploration
Add:
29 Xueyuan Road, Beijing 100083,China
Tel: 86-010-62060192/62060193
Fax: 86-010-62060193
Email: whtbjb@sina.com ,
           whtbjb@163.com
Links
More>>
Top Read Articles
Published in last 1 year |  In last 2 years |  In last 3 years |  All
Please wait a minute...
For Selected: Toggle Thumbnails
Progress and prospect of gravity and magnetic techniques for hydrocarbon exploration in China
LIU Yun-Xiang, SI Hua-Lu, QIAO Hai-Yan, LIU Bai-Chuan
Geophysical and Geochemical Exploration    2023, 47 (3): 563-574.   DOI: 10.11720/wtyht.2023.1484
Abstract645)   HTML347)    PDF (3583KB)(729)      

This study summarized the progress and major application performance of gravity and magnetic techniques for onshore hydrocarbon exploration in China in recent years.By combining the research results of the authors,this study elucidated the new progress made in the gravity and magnetic techniques for hydrocarbon exploration from the prospect of acquisition,processing,interpretation,and application and sorted the application performance of these techniques in key fields including deep targets,complex areas,and volcanic rocks.Moreover,this study future analyzed the demand for the gravity and magnetic techniques for hydrocarbon exploration.By combining the new trends of gravity and magnetic exploration techniques at home and abroad,this study proposed the development direction and application prospect of gravity and magnetic techniques for oil and gas in deep strata and igneous rocks in complex areas.The results of this study show that significant progress has been made in gravity and magnetic exploration techniques,which play an important role in supporting the current hydrocarbon exploration.It is expected to develop high-precision and high-density gravity and magnetic exploration techniques and gravity-gravity-electricity-seismic collaborative innovation techniques.

Table and Figures | Reference | Related Articles | Metrics
A review of the research progress and application status of seismic full waveform inversion
CHEN Zi-Long, WANG Hai-Yan, GUO Hua, WANG Guang-Wen, ZHAO Yu-Lian
Geophysical and Geochemical Exploration    2023, 47 (3): 628-637.   DOI: 10.11720/wtyht.2023.1469
Abstract579)   HTML16)    PDF (3181KB)(695)      

As resource exploration deepens and becomes increasingly difficult,improving the imaging precision and the reservoir prediction accuracy under a complex tectonic setting has become a top priority of research.The full waveform inversion (FWI) method developed in recent years can be applied to complex geological structures.This method can reveal structural details in a complex geological setting using the dynamic and kinematic information in the pre-stack seismic wave field.However,this method involves many research elements such as model parameterization,building of inverse error function,data preprocessing,numerical simulation of wavelengths,and wavelet estimation.Thus,its development is bound to be a long-term gradual improvement process.The FWI method has been applied to actual observation data with the development of theory and computer technology.This study introduced the principle and processing flow of the FWI method and summarized its development history and its application status in marine and onshore seismic data,and deep seismic reflection data.Accordingly, this study presented the current application bottlenecks,data processing difficulties, and challenges of deep-crustal inversion imaging for subsequent research and application of the FWI method.

Table and Figures | Reference | Related Articles | Metrics
Research on edge depth inversion of 2D geological body based on gravity and magnetic field
WANG Wan-Yin, LUO Xin-Gang
Geophysical and Geochemical Exploration    2023, 47 (3): 547-562.   DOI: 10.11720/wtyht.2023.1464
Abstract400)   HTML385)    PDF (8058KB)(723)      

The edge depth of geological body plays a crucial role in the semi-quantitative interpretation of gravity and magnetic potential field exploration. At present, the main inversion methods of geological body edge depth mainly include Werner deconvolution method, analytical signal amplitude method, local wave number method, Tilt-depth method, Euler deconvolution method and curvature attribute inversion method. These methods all have problems of solution selection, stability and adaptability. This paper mainly studies the adaptability of different types of data and models. Through basic principle analysis and model test, the results show that Werner deconvolution method and Euler deconvolution method are applicable to the most types of data sources, followed by curvature attribute, and Tilt-depth is the least; Werner deconvolution method, Euler deconvolution method and curvature attribute methods can adapt to many models, the Tilt-depth is least. For gravity data, the analytical signal amplitude of the first vertical derivative as the data source is applicable to all methods. For magnetic data, the analytical signal amplitude as data source is applicable to all methods. At the same time, it is suggested that other scholars should follow the following principles when using these methods to invert the edge depth of the two-dimensional body: It is recommended that Werner deconvolution is preferred, followed by curvature attribute and Euler deconvolution. The gravity data source of Werner deconvolution method and Euler deconvolution method is recommended to use the horizontal derivative of the first vertical derivative, and the magnetic data source is recommended to use the horizontal derivative. The gravity data source of curvature attribute method is recommended to use the analytical signal amplitude of the first vertical derivative, and the magnetic data source is recommended to use the analytical signal amplitude. In addition, based on the above research conclusions, some suggestions on the future research directions of the solution screening, stability and adaptability of the edge depth inversion are given.

Table and Figures | Reference | Related Articles | Metrics
Advances in research on the distributed optical fiber acoustic sensing system in the field of geophysical exploration
ZHOU Shao-Yu, BAO Qian-Zong, SHI Wei
Geophysical and Geochemical Exploration    2024, 48 (2): 411-427.   DOI: 10.11720/wtyht.2024.1304
Abstract370)   HTML5)    PDF (7793KB)(406)      

Distributed acoustic sensing (DAS) technology, one of the most advanced sound field detection technologies, can achieve distributed, long-distance, and high-precision real-time detection of the ambient vibration and sound field information interacting with optical fiber. The optical fiber exploration system of the DAS technology solves the problems of high cost and deployment difficulty of conventional geophones in complex geological environments. In recent years, the DAS technology has experienced rapid development, especially in monitoring application scenarios that require long-term and large-scale deployment. However, its systematic understanding is insufficient due to divergent research results. To further understand the research advances of the DAS technology in geophysical exploration for more effective subsequent research, this study systematically classified and summarized the development history of the DAS technology and its recent research results in geophysical exploration based on the oil and gas, marine, and environmental engineering application scenarios through literature research. This study focused on the development process of the DAS technology in different directions, the research advances in data processing, and relevant literature with specific results. Finally, this study generalized the development trend and urgent problems of the DAS acquisition system, analyzing the DAS development prospect.

Table and Figures | Reference | Related Articles | Metrics
Application of integrated geophysical methods in deep ore prospecting of Laochang polymetallic mining area in Lancang, Yunnan
YOU Yue-Xin, DENG Ju-Zhi, CHEN Hui, YU Hui, GAO Ke-Ning
Geophysical and Geochemical Exploration    2023, 47 (3): 638-647.   DOI: 10.11720/wtyht.2023.1578
Abstract364)   HTML23)    PDF (6931KB)(671)      

Laochang, Lancang, Yunnan is one of the most important polymetallic mining areas in the southern part of Sanjiang Tethys metallogenic belt. After years of mining, the shallow resources are nearly exhausted. In recent years, granite porphyry and porphyry polymetallic mineralization have been newly discovered in the deep part of the mining area, highlighting the prospecting potential of deep polymetallic deposits. In order to trace the occurrence of deep ore-controlling strata and structures in the study area and help to make a breakthrough in deep ore prospecting, high-power induced polarization method and audio magnetotelluric method were implemented to image the deep structure situated. Results obtained from the inversion of the measured induced polarization and electromagnetic data recuperated the distribution of induced polarization anomalies and the characteristics of deep electrical structure within the study area. Combined with the available regional geological settings, the main conclusions are as follows: The low resistance and high polarization anomalies in the northwest of the survey area are deeply related to the surface ferromanganese, silver manganese, and deep polymetallic mineralization, and the high resistance and high polarization anomalies in the middle and east of the survey area are in good agreement with the deep polymetallic mineralization. The upper Carboniferous limestone and dolomite strata are thick in the west and thin in the east, with the west strata dipping to SW and the east strata overlying the Yiliu Formation of the lower Carboniferous. The concealed granite porphyry dips in NE direction, and the coupling part between its deep 2 300~2 800 m horizontal section and deep fault is a favorable area for deep polymetallic mineralization. Notably, joint interpretation yielded from the high-power induced polarization method and the audio magnetotelluric method applied improved the reliability of deep polymetallic ore detection and provided more information of positioning the subsequent drilling layout.

Table and Figures | Reference | Related Articles | Metrics
Distribution of microorganisms in the typical geothermal field environment and its significance for geothermal exploration
ZHENG Xu-Ying, XU Ke-Wei, GU Lei, WANG Guo-Jian, LI Guang-Zhi, GUO Jia-Qi, ZOU Yu, BORJIGIN Tenger
Geophysical and Geochemical Exploration    2023, 47 (5): 1127-1136.   DOI: 10.11720/wtyht.2023.1151
Abstract364)   HTML18)    PDF (4903KB)(452)      

As a kind of clean energy, geothermal energy has attracted the attention of scholars all over the world in recent years. Previous geochemical exploration methods for geothermal resources are limited to the analysis of individual geochemical indices. Moreover, previous studies of microorganisms in geothermal fields mostly focus on hot spring outcrops, lacking ecological studies of geothermal resources in complex terrains. This study investigated the soil geochemistry and microbial diversity of the Bantang Hot Spring geothermal field in Chaohu, Anhui Province. Geochemical indices such as head-space gas, soil gas, acid-hydrolyzed hydrocarbons, and altered carbonate were detected in this study. Combined with the microbial high-throughput sequencing technology, this study analyzed the composition and spatial-temporal distribution of the microbial population above the geothermal fields in uplifted mountains and the relationship between these bioinformatics characteristics and the geochemical indices. The results indicate that the acid-hydrolyzed hydrocarbons on the surface of the geothermal field showed a maximum methane concentration of 43.7 μL/kg in the area between faults F2 and F3, adequately reflecting the fault location of the geothermal field.Bacillaceae, Hydrogenophilaceae, and Thermodesulfovibrionaceae in the geothermal field and the background area showed large relative abundance differences, which were 0.178%, 0.108%, and 0.060%, respectively. This result indicates that they are sensitive to geothermal resources and correspond well to geochemical indices above the known geothermal field. This study preliminarily investigated the diversity of geothermal microorganisms in the geothermal field and analyzed the corresponding relationships between microbial distribution characteristics and geochemical indexes, providing technical support for the microbiological exploration of geothermal resources.

Table and Figures | Reference | Related Articles | Metrics
New progress in the technology and applications of SOTEM
XUE Guo-Qiang
Geophysical and Geochemical Exploration    2024, 48 (5): 1165-1168.   DOI: 10.11720/wtyht.2024.0325
Abstract350)   HTML9)    PDF (380KB)(360)      

The artificial source electromagnetic method is an important technique for deep resource exploration. The key challenge is to improve the depth and precision of detection through innovative technology. The detection mode of electromagnetic methods is evolving from far-field to near-field, and the study of near-source electromagnetic methods has become an international research frontier in recent years. Building on the recent advancements in wide-field electromagnetic methods and multi-channel transient electromagnetic methods, the short-offset transient electromagnetic method (SOTEM) has been further developed and proposed. The distinguishing features of SOTEM are its stronger signals and wider bandwidth, which are advantageous for achieving the detection requirements of greater depth and higher precision. This special issue presents eight articles covering the methods, techniques, software, and applications of SOTEM, providing strong support for the growing need for high-resolution subsurface detection.

Reference | Related Articles | Metrics
Advancements in research on geochemical exploration methods and technologies for mineral resources in overburden areas
SUN Yue, ZHANG Zhen-Yu, FENG Bin, YANG Shao-Ping, WANG Zhi-Feng
Geophysical and Geochemical Exploration    2023, 47 (6): 1387-1399.   DOI: 10.11720/wtyht.2023.0109
Abstract345)   HTML17)    PDF (2899KB)(526)      

Following China's planning for ore prospecting in overburden areas, China's geochemical exploration researchers have conducted extensive research on the fundamental theories, methods, and technologies of geochemical exploration for overburden areas in the past decade. They achieved significant advances mainly in two aspects: (1) the research on the migration mechanism, occurrence state, and anomaly formation mechanism of elements in overburden areas; (2) advances in methods and technologies, including geoelectrochemistry, active state of elements, geogas, separation of micro-fine-sized soil particles, soil thermomagnetic composition, and integrated gas survey, as well as numerous experimental demonstrations. These advances represent continuous progress in the research on the fundamental theories, methods, and technologies of geochemical exploration for overburden areas, providing new geochemical methods and technologies for ore prospecting breakthroughs in overburden areas.

Table and Figures | Reference | Related Articles | Metrics
Application of the geochemical block method to the assessment of copper resources in Ethiopia
XIANG Wen-Shuai, BAI Yang, JIANG Jun-Sheng, LEI Yi-Jun, HUNDIE Melka, SISAY Degu, ZHANG Yuan-Pei, WU Ying, ZHENG Xiong-Wei
Geophysical and Geochemical Exploration    2023, 47 (4): 845-855.   DOI: 10.11720/wtyht.2023.1198
Abstract339)   HTML5)    PDF (6040KB)(377)      

Low-density geochemical mapping is characterized by high order streams to be sampled and a large coverage area and can be used to effectively trace geochemical blocks with high metal contents. Based on the 1:1,000,000 low-density geochemical mapping data of Ethiopia and the processing of the testing data of Cu in the original stream sediments, this study calculated the anomaly threshold of Cu at 37×10-6 through iterative deletion. Then, this study delineated three geochemical blocks and two regional anomalies with 37×10-6, 42×10-6, 47×10-6, 52×10-6, 59×10-6, and 66×10-6 as grading intervals. It calculated the mineralization coefficient of Cu ore bodies in the study area at 0.055% by referencing the known reserves of Cu deposits in geochemical blocks with a high level of copper exploration in the same metallogenic belt. Moreover, this study estimated the Cu resources in the study area at 2,600,000 t based on a rock mass thickness of 1,000 m. By combining the analysis of metallogenic geological conditions, this study determined that the zones where geochemical blocks nos. 2, 3, and 4 are located can be considered key metallogenic prospect areas for further detailed exploration.

Table and Figures | Reference | Related Articles | Metrics
First-arrival wave travel time-based tomography inversion with surface wave information as constraints
ZHANG Li-Zhen, SUN Cheng-Yu, WANG Zhi-Nong, LI Shi-Zhong, JIAO Jun-Feng, YAN Ting-Rong
Geophysical and Geochemical Exploration    2023, 47 (5): 1198-1205.   DOI: 10.11720/wtyht.2023.1536
Abstract302)   HTML2)    PDF (4925KB)(384)      

The performance of ray-based tomography inversion is affected by many factors,such as initial model error and low-velocity interlayer.The conventional tomography method based on first-arrival wave travel time,which constrains or smooths models,destroys the relative relationship between model parameters and rays and affects the inversion stability.By testing the performance of first-arrival wave travel time-based tomography inversion under different initial models,this study proposed a first-arrival wave travel time-based tomography inversion method with surface wave information as constraints.The process of this method is as follows:(1)Given that surface waves feature high energy and frequency dispersion in seismic data,the surface-wave frequency dispersion curves are obtained through the multi-channel analysis of surface waves;(2)Using the damped least squares method,the shallow-surface shear wave (S-wave) velocities are determined through inversion;(3)With the S-wave velocity structure as the constraint,the initial compressional wave (P-wave) model is established,and accordingly,the first-arrival wave travel time-based tomography inversion that considers regularization is achieved.This method improves the accuracy and stability of shallow structure inversion by fully utilizing the surface wave information in seismic data to counteract the inherent defects of tomography inversion.The effectiveness of this method has been verified using actual data.

Table and Figures | Reference | Related Articles | Metrics
Prospecting for concealed skarn iron deposits using the high-precision gravity-magnetic survey method
DONG Jian, LI Xiao-Peng, FU Chao, DANG Zhi-Cai, ZHAO Xiao-Bo, ZENG Qing-Bin, HU Xue-Ping, WANG Jin-Hui
Geophysical and Geochemical Exploration    2024, 48 (1): 31-39.   DOI: 10.11720/wtyht.2024.1047
Abstract301)   HTML11)    PDF (7885KB)(499)      

The Laiwu area in central Shandong Province, situated in the eastern North China Craton, is a significant production area of skarn iron-rich ores. Its ore deposits occur primarily in the contact zone between the mining rock mass and the Middle Ordovician carbonate formation. Based on the latest areal gravity and magnetic survey results, this study thoroughly investigated the characteristics of gravity and magnetic anomalies along the Shijiaquan-Liujiamiao area in the western periphery of the mine rock mass. Then, this study delineated the deep prospecting target combining the characteristics of gravity and magnetic fields of the known iron deposits in the Laiwu area. Large-scale gravity and magnetic profiles were arranged in the favorable mineralization area. With the known boreholes as constraints, the gravity and magnetic anomalies were qualitatively and quantitatively interpreted using the 2.5D gravity-magnetic joint inversion technique. The interpretation results provide a basis for the location and depth of the borehole to be placed, which revealed a 15.8 m-thick iron-rich ore deposit, suggesting remarkable prospecting effects. This study holds critical indicative significance for further exploration of skarn iron ore deposits in this area.

Table and Figures | Reference | Related Articles | Metrics
Gravity survey and audio magnetotellurics-based insights into the deep structures and geothermal resource potential of the Rucheng Basin
ZHAO Bao-Feng, WANG Qi-Nian, GUO Xin, GUAN Da-Wei, CHEN Tong-Gang, FANG Wen
Geophysical and Geochemical Exploration    2023, 47 (5): 1147-1156.   DOI: 10.11720/wtyht.2023.1449
Abstract299)   HTML8)    PDF (8018KB)(482)      

Geothermal resources are significant clean energy and tourism mineral resources. The Rucheng Basin, a carbonate basin in the southeastern mountainous area of Hunan Province, possesses favorable conditions for the formation of convective geothermal energy. However, the basin is enclosed on three sides by the giant Zhuguangshan rock mass, and its basement is subjected to the intrusion and destruction by the rock mass, resulting in severely deformed formations, crisscrossing faults, and significantly different eastern and western structures. The understanding of the basin's water- and heat-conducting pathways and deep reservoir structures remains elusive, thus restricting the investigation of the basin's geothermal potential. Hence, this study probed the basin's deep structures through gravity survey and audio magnetotellurics (AMT), obtaining the following insights: (1) The Rucheng Basin has developed into a bidirectional ramp structure due to east-west differentiation. The synclinorium in the east experienced compression and clockwise rotation due to the emplacement of the Yanshanian rock mass, rocks were fragmented in the core zone, and strike-slip fracture zones were found at the boundary. The faults have vertical cutting depths exceeding 4 km, widths ranging from 300~600 m, and dip angles between 80°~90°. (2) The basin's basement anticlinal axis hosts several NWW-directed concealed rock masses, with diameters from 3~4 km and buried depths from 0.5~1.5 km. Hot springs reside in the fracture zones crossing the boundaries of the concealed rock masses. (3) The basin boasts favorable conditions for the formation of convective geothermal energy. Folds, fault zones, and concealed rock masses match each other to form a unified spatial combination of heat-controlling elements, manifesting heat accumulation characterized by east-west recharge and intermediate discharge. With more thriving deep geothermal reservoirs in the east, the basin has high potential for geothermal resources.

Table and Figures | Reference | Related Articles | Metrics
An experimental investigation of the CO2 and SO2 gas geochemical survey method for mineral exploration in forested areas
WAN Wei, WANG Ming-Qi, CHENG Zhi-Zhong, FAN Hui-Hu, ZUO Li-Bo, LI Jun-Hui
Geophysical and Geochemical Exploration    2023, 47 (5): 1137-1146.   DOI: 10.11720/wtyht.2023.1615
Abstract289)   HTML9)    PDF (4627KB)(326)      

This study aims to explore the feasibility of the carbon dioxide (CO2) and sulfur dioxide (SO2) gas geochemical survey method for mineral exploration in forested areas. Based on the newly designed gas rapid analysis instrument, this study conducted an experimental investigation of the method in the forested Jiapigou gold concentration area, Jilin Province. The results show that significant CO2 and SO2 anomalies were observed above the concealed ore bodies and structures. In the forested area, the CO2 and SO2 gas geochemical survey method reflected the fault structures and effectively indicated the deep concealed gold deposit. This method holds critical significance for the breakthrough of prospecting technology in China's covered areas.

Table and Figures | Reference | Related Articles | Metrics
Application of the opposing-coils transient electromagnetic method in urban geological surveys
HE Sheng, WANG Wan-Ping, DONG Gao-Feng, NAN Xiu-Jia, WEI Feng-Feng, BAI Yong-Yong
Geophysical and Geochemical Exploration    2023, 47 (5): 1379-1386.   DOI: 10.11720/wtyht.2023.1554
Abstract285)   HTML4)    PDF (5856KB)(456)      

With the rapid development of urban infrastructure,the demand for urban geological work is increasing,and urban geological surveys become particularly important.Urban geophysical exploration has different exploration purposes and working environments from conventional geophysical exploration.Accordingly,compared with conventional geophysical exploration methods,the geophysical exploration methods for urban geological surveys face the challenges of many interference factors,limited construction sites and time,and high requirements for exploration accuracy.The opposing-coils transient electromagnetic(OCTEM) method enjoys a strong anti-interference ability,convenient and efficient construction,and high resolution.Therefore,this study employed the OCTEM method to investigate the test profile in the urban geological survey and evaluation of Haidong City.This test profile was subjected to numerous interference sources since it crossed 11 highways and railways and passed through factories,schools,logistics parks,villages,living quarters,and rivers.Consequently,the OCTEM results agree well with the results of single-point resistivity sounding and drilling results.Therefore,the OCTEM method proposed in this study is effective for urban geological surveys.

Table and Figures | Reference | Related Articles | Metrics
Application of integrated geophysical exploration technology in the geothermal exploration of northern Jinan
ZHANG Yi, LIU Peng-Lei, WANG Yu-Min, ZHANG Peng-Peng, ZHANG Chao, ZHANG Ning
Geophysical and Geochemical Exploration    2024, 48 (1): 58-66.   DOI: 10.11720/wtyht.2024.1141
Abstract277)   HTML10)    PDF (8896KB)(543)      

Ji'nan possesses highly abundant geothermal resources, which are hosted by Ordovician-Cambrian karst-fissured geothermal reservoirs and Neogene-Paleogene clastic pore-fissure geothermal reservoirs. The geothermal exploration in this study focuses on the Ordovician-Cambrian karst fissured geothermal reservoirs in Daqiao Town in northern Ji'nan. Through geophysical profile measurements, this study aims to identify the distributions of strata and fault structures and the burial depths of geothermal reservoirs, infer the attitudes and spatial morphologies of fault structures associated with heat control and conduction, delineate the target area for geothermal well construction, and conduct drilling verification in the favorable underground water-rich position. Building on the collected data, this study interpreted and inferred the fault structures in the study area and comparatively analyzed the water-bearing properties by employing direct-current sounding, controlled source audio magnetotellurics, and magnetotelluric survey. A geothermal exploration and production combined well was constructed in a favorable position of the geothermal target area, manifesting a completion depth of 1 532.06 m, a static-water burial depth of 13.03 m, a wellhead water temperature of 50.1 ℃, a water yield of 132.998 m3/h, and a dropdown depth of 18.27 m.

Table and Figures | Reference | Related Articles | Metrics
A review of thirty years of airborne geophysical surveys in the Qiangtang Basin and future prospect
ZHOU Dao-Qing, XIONG Sheng-Qing, WANG Bao-Di, CAO Bao-Bao, GUO Zhi-Hong, HU Yue, ZHENG Yu-Zhou, ZHAO Rui, WEI Yan-Yan, XIAO Meng-Chu, HU Xia-Wei, YAN Qiao-Juan
Geophysical and Geochemical Exploration    2024, 48 (2): 287-295.   DOI: 10.11720/wtyht.2024.1413
Abstract276)   HTML15)    PDF (7354KB)(381)      

Airborne geophysical surveys, characteristic of being green, economical, efficient, and subjected to less influence by surface factors, serve as the one of most effective means of basic surveys and scientific research on the Qinghai-Tibet Plateau. This study reviewed the progress in the airborne geophysical surveys in the Qiangtang Basin of the Qinghai-Tibet Plateau in the past thirty years, systematically summarizing the progress and geological interpretation results of comprehensive airborne geophysical surveys in the basin. Furthermore, this study presented research progress and understanding of major basic geological issues of the basin, such as the basin's boundaries, central uplift zone, basement properties, deep structures, and cover characteristics, as well as the identification of favorable structural areas for oil and gas exploration. Finally, based on an analysis of the developmental trends of airborne geophysical surveys in the Qiangtang Basin, this study proposed opinions and suggestions for key research directions in the future.

Table and Figures | Reference | Related Articles | Metrics
Spatial distribution patterns of concealed plutons in the western Zhen’an area based on gravity anomalies
ZHANG Jin-Ai, YANG Yuan, ZHANG Lin
Geophysical and Geochemical Exploration    2023, 47 (3): 618-627.   DOI: 10.11720/wtyht.2023.1465
Abstract274)   HTML13)    PDF (8220KB)(534)      

The western Zhen'an area enjoys superior ore-forming conditions of tungsten-molybdenum polymetallic deposits. A batch of large and medium-scale tungsten-molybdenum deposits such as Dongyang, Qipangou, Guilingou, Yueheping, and Hetaoping, have been discovered in this area, and they are related to intrusions. To explore tungsten-molybdenum ore bodies, it is necessary to carry out studies on intrusions related to mineralization, especially concealed intrusions. Based on high-precision gravity anomalies, this study extracted the gravity anomaly data of concealed plutons using the minimum curvature potential field separation method. Moreover, it investigated the plane positions of the concealed plutons in the western Zhen'an area by combining the geophysical characteristics of the exposed plutons, identifying five concealed plutons, namely Lanbandeng, Shapingcun, Yuehetai, Dongchuanjie, and Huangjinmei, through investigation. Moreover, this study conducted the 3D gravity anomaly inversion for typical concealed plutons, determining the spatial distribution characteristics of the concealed plutons. The Yuehetai and eastern Lanbandeng concealed plutons have been verified through boreholes, with high-grade wolframite being discovered. The method proposed in this study can provide technical support for the study of concealed plutons in the Zhen'an area and other areas, as well as important data for the study of the tectonic-magmatic-metallogenic evolution of the southern Qinling metallogenic belt.

Table and Figures | Reference | Related Articles | Metrics
Geological and geochemical characteristics and prospecting potential of rare element and rare earth element deposits in Saima alkaline complex
NAN Zhe, WANG Lin-Shi, HOU Xu, ZHAI Zheng-Bo, WANG Yang, LIU Yang
Geophysical and Geochemical Exploration    2023, 47 (3): 670-680.   DOI: 10.11720/wtyht.2023.2185
Abstract274)   HTML11)    PDF (5011KB)(428)      

The Saima alkaline complex is a unique and complex geologic body. It is well known for its diverse rock types and mineral types and high contents of uranium, thorium, and rare and rare earth elements. This study analyzed and summarized the geological exploration results of the Saima alkaline complex area in recent years, discovering that the rocks in the second intrusive stage of the Saima alkaline complex show the wide mineralization of rare and rare earth elements, with a moderate- to low- mineralization temperature. There are mainly two types of deposits in Saima alkaline complex area, namely the residual magmatic metasomatism type and the skarn type. Furthermore, the prospecting potential of the whole alkaline complex was analyzed by combining the 1∶200,000 stream sediment survey data and the 1∶10,000 primary halo survey data. Three predicted metallogenic zones of rare earth and radioactive elements were delineated in the Saima alkaline complex and its surrounding area, namely Saima-Gujia, Aiyang, and Shuangshanzi. This study is of great significance for the prospecting of rare and rare earth polymetals in the Saima alkaline complex area.

Table and Figures | Reference | Related Articles | Metrics
Application of comprehensive geophysical prospecting in exploration of the Duhu copper deposit in Xinxing County
HE Jun-Fei
Geophysical and Geochemical Exploration    2024, 48 (2): 375-381.   DOI: 10.11720/wtyht.2024.1101
Abstract269)   HTML11)    PDF (5778KB)(370)      

Since individual geophysical exploration methods suffer the multiplicity of solutions, comprehensive geophysical prospecting has been extensively applied in deep ore prospecting presently. This study conducted the geological exploration of the Duhu porphyry copper deposit in Xinxing County using multiple geophysical methods such as high-precision magnetic survey and controlled source audio-frequency magnetotellurics (CSAMT). It was inferred that the CSAMT-derived medium-low resistivity anomalies and the low-gentle anomalies derived from the high-precision magnetic survey serve as significant prospecting indicators. Satisfactory results were achieved in follow-up verification of the anomalies. Specifically, copper, molybdenum, silver, and gold mineralized bodies with a cumulative thickness of 178.2 m were identified in a 1 000 m deep borehole, with the highest copper grade of 1.45%. The application of comprehensive geophysical prospecting holds great significance in guiding the exploration of porphyry copper deposits in western Guangdong.

Table and Figures | Reference | Related Articles | Metrics
A method for strong noise suppression based on DC-UNet
ZHOU Hui, SUN Cheng-Yu, LIU Ying-Chang, CAI Rui-Qian
Geophysical and Geochemical Exploration    2023, 47 (5): 1288-1297.   DOI: 10.11720/wtyht.2023.1386
Abstract266)   HTML0)    PDF (6456KB)(313)      

Seismic data acquired from mature industrial areas frequently contain a large amount of local strong noise with high amplitude due to the continuous operation of production equipment.However,such local strong noise can be hardly suppressed using conventional denoising methods.This study integrated dilated convolution(DC) and U-Net into a DC-UNet network for suppressing local strong noise.For the circular DC blocks at the front end of the DC-Unet network,a circularly expanded DC kernel was used to extract the features of strong noise at different scales,with the receptive field being expanded.Meanwhile,an encoder was used at the back end of the network to extract the features of strong noise and restore the details of strong noise.Subsequently,the DC-UNet network was employed to perform a nonlinear mapping from noisy data to noise.On this basis,strong noise was suppressed by subtracting the learned strong noise from the noisy data.As indicated by the experimental results of synthetic and real data obtained from the training using the PyTorch framework in the GPU environment,the DC-UNet network can effectively suppress the local strong noise and improve the signal-to-noise ratio compared with DnCNN,U-Net,and PCA-UNet networks.

Table and Figures | Reference | Related Articles | Metrics
An application study of the comprehensive geophysical prospecting method in the exploration of mineral water: A case study of the Langqiao area, Jing County
ZHANG Zhi, XU Hong-Miao, QIAN Jia-Zhong, XIE Jie, CHEN Hao-Long, ZHU Zi-Xang
Geophysical and Geochemical Exploration    2023, 47 (3): 690-699.   DOI: 10.11720/wtyht.2023.1443
Abstract265)   HTML16)    PDF (7344KB)(540)      

The area around Maduqiao Village, Langqiao Town, Jing County has great potential for the development of high-quality mineral water. However, due to the geological conditions and the inhomogeneity of water-bearing media, the investigation of the distribution range of the mineral water in the area and the quantitative evaluation of the water quantity and quality have always been challenges to the development and utilization of mineral water in the area. With the Langqiao area of Jing County as the target area, an application study on the comprehensive geophysical prospecting method that comprehensive ground geophysical prospecting with hydrogeological logs was conducted, achieving important progress. The major results are as follows: (1) The fault structures in granodiorites were precisely located through comprehensive ground geophysical prospecting, and the horizon of tectonic fissure water was precisely identified based on hydrogeological logs; (2) The metasilicate natural mineral water for drinking with a single well water yield of 50~80 m3/d was identified; (3) The water-rich fault structures in the study area have a medium to shallow burial depths of about 75~140 m and primarily have a NW strike. These results reveal the spatial distribution characteristics of the mineral water-bearing structures in the study area and are of great significance to the subsequent investigation of the mineral water range. Moreover, the systematic research philosophy and technical methods used for the Langqiao area of Jing County in this study can guide the mineral water exploration in similar areas.

Table and Figures | Reference | Related Articles | Metrics
Comparison and summary of different azimuthal anisotropy-based inversion techniques
LIANG Zhi-Qiang, LI Hong
Geophysical and Geochemical Exploration    2024, 48 (2): 443-450.   DOI: 10.11720/wtyht.2024.1251
Abstract264)   HTML3)    PDF (3440KB)(280)      

The progress in seismic acquisition techniques characterized by wide azimuths,wide frequency bands,and high densities has greatly promoted the application of the prestack P-wave fracture inversion technique based on the azimuthal anisotropy theory.Azimuthal anisotropy-based inversion can yield the azimuths and intensities of fractures.However,different inversion techniques yield different parameters for fracture intensity characterization,resulting in inconsistent inversion results.Consequently,the azimuthal anisotropy-based inversion results of fractures are non-unique,leading to confusion about accurate results.Based on the Thomsen anisotropy theory,as well as the interrelationships between fracture models(the Hudson coin model and the Schoenberg linear sliding model),this study established the connections of anisotropic parameters between different fracture inversion techniques(VVAZ,Ruger's approximation,and Fourier series),presenting the real meanings and mathematical expressions of results from different azimuthal anisotropy-based fracture inversion techniques.Additionally,this study summarized the relationships of parameters between different inversion techniques and fracture models,further deepening the research on azimuthal anisotropy-based fracture inversion.This study lays solid theoretical and technical foundations for large-scale fracture detection based on the seismic data obtained using the seismic acquisition techniques featuring wide azimuths,wide frequency bands, and high densities.

Table and Figures | Reference | Related Articles | Metrics
Aerogeophysical anomalies and prospecting direction in the Fengtai ore concentration area
XU Xue-Yi, XIONG Sheng-Qing, YANG Xue, GAO Wei-Hong, FAN Zheng-Guo, JIA Zhi-Ye
Geophysical and Geochemical Exploration    2023, 47 (5): 1157-1168.   DOI: 10.11720/wtyht.2023.0068
Abstract260)   HTML10)    PDF (14675KB)(466)      

The Fengtai ore concentration area is an important producing area of plumbum-zinc and gold ores in the middle of the Qinling orogenic belt. It hosts many large to super-large deposits, such as Qiandongshan-Dongtangzi, Bafangshan-Erlihe, Baguamiao, and Shuangwang deposits. With the exploitation proceeding, the reserves of these deposits have decreased significantly, and the ore prospecting in these deposits has shifted from the surface to the deep part. However, the geophysical fields in the deposits are yet to be ascertained, severely restricting research on the metallogenic regularity of the deposits and the ore prospecting and exploration in the peripheral zones. Based on the latest 1∶50,000 aeromagnetic and airborne radioactivity survey data, as well as gravity data, this study investigated the multi-source geophysical fields on the scales of the region, the ore concentration area, and deposits, aiming to summarize the distribution patterns of geophysical anomalies of different scales and provide evidence for research on metallogenic regularity and prospecting prediction. The results show that the Fengtai and the Xicheng ore concentration areas, with similar magnetic structures, are separated by the zone with strong magnetic anomalies caused by the crystalline basement of the Huicheng Basin. The first vertical derivative of gravity reveals that the Fengtai and Xicheng ore concentration areas have density structures similar to the Huicheng Basin. It can be inferred that the shallow part is a unified basin and that a large prospecting space exists between the two ore concentration areas. Many NW-trending linear magnetic anomaly zones occur in the Fengtai ore concentration area. Their locations are highly consistent with those of fault structures, and they were offset by NE-trending structures due to late transformation. The second vertical derivative of gravity reveals that many intermediate-acid intrusive stocks or veins have developed in the deep part of the Fengtai ore concentration area. Structural boundaries can be effectively identified based on the first vertical derivative, X-directional derivative, and wavelet transform of aeromagnetic data. Furthermore, ore bodies are mostly distributed in the NW direction along the tectonic belt. All these will play an important role in guiding ore prospecting and exploration in the Fengtai ore concentration area.

Table and Figures | Reference | Related Articles | Metrics
Machine learning-based calculation and characteristic analysis of terrestrial heat flow in the Songliao Basin
GONG Ming-Xu, BAI Li-Ge, ZENG Zhao-Fa, WU Feng-Shou
Geophysical and Geochemical Exploration    2023, 47 (3): 766-774.   DOI: 10.11720/wtyht.2023.1241
Abstract259)   HTML14)    PDF (6079KB)(480)      

Terrestrial heat flow has a high reference value for the evaluation of geothermal resources since it can directly indicate the Earth's internal heat on the surface.However,no high-quality and high-resolution terrestrial heat flow measurements have been conducted in the Songliao Basin due to costly and difficult conventional heat flow measurements based on the drilling technology.Machine learning,as a technology for data analysis,can identify patterns in data and utilize these patterns to automatically calculate unknown data.This study calculated the regional terrestrial heat flow using the machine learning method.Based on the measured data of global terrestrial heat flow and the geological structure data,both the Kriging regression algorithm and the machine learning algorithm were used to calculate the terrestrial heat flow in a known heat flow distribution area,as well as the root mean square error and the correlation coefficient.The machine learning algorithm yielded results with a smaller error and a higher correlation.Then,the terrestrial heat flow in the Songliao Basin was calculated using the machine learning method.As revealed by the calculation results,the terrestrial heat flow is the highest (more than 80 mWm-2) in the Songliao basin and gradually decreases outward in a circular pattern centered on the area between Daqing and Songyuan.The results are highly consistent with the measured results of the regional geothermal gradient,providing a reference for further analysis of the distribution patterns of geothermal resources in the Songliao Basin.Finally,the sensitivity of geological characteristics was analyzed using the Sobol method to quantify the effects of various parameters.This study verifies that the machine learning method has a high research and application value in the calculation of terrestrial heat flow.

Table and Figures | Reference | Related Articles | Metrics
Geological characteristics and origin of the Mogou fluorite deposit in Fangcheng County, Henan Province
ZHANG Qing-Song, XIA Ming-Zhe, WANG Chun-Lian, LI Ke-Kun, LIU Zeng-Zheng, JIANG Ji-Yong, JIANG Jian-Lang
Geophysical and Geochemical Exploration    2024, 48 (1): 15-23.   DOI: 10.11720/wtyht.2024.2588
Abstract244)   HTML6)    PDF (6964KB)(276)      

The Mogou fluorite deposit of Fangcheng County, residing in the Neoproterozoic Meiyaogou Formation, is a crucial part of the fluorite metallogenic belt in southern Henan Province. Based on the analysis of the geological characteristics of the Mogou fluorite deposit, this study conducted petrographic and petrogeochemical studies to define the source of ore-forming materials and probe into the genetic mechanism of the fluorite deposit. The results show that the fluorite ore body is veined or lenticular, with mineralization-related alterations composed of silicification, fluorite and sericite alterations. Its ore structures are primarily massive, followed by banded, striped, and brecciated types. The chondrite-normalized rare earth element distribution pattern of the fluorite ore body is similar to that of the Meiyaogou Formation marbles and the Yanshanian porphyritic plagiogranites, suggesting a genetic relationship. The possible genetic mechanism is that the F-enriched ore-bearing hydrothermal liquids intruded along the interbedded fault and reacted with the surrounding rocks to form the fluorite ore /mineralized body. The deposit belongs to the epithermal filling type along the interbedded structure.

Table and Figures | Reference | Related Articles | Metrics
Regional geochemical characteristics and metallogenic prospect area prediction of strategic mineral antimony in the Eerguna block, Heilongjiang Province, China
WAN Tai-Ping, ZHANG Li, LIU Han-Liang
Geophysical and Geochemical Exploration    2023, 47 (5): 1179-1188.   DOI: 10.11720/wtyht.2023.1439
Abstract244)   HTML4)    PDF (4012KB)(334)      

The Eerguna block with metallogenic geological conditions is an important metallogenic area in Heilongjiang Province. Globally, China boasts the richest resource of antimony. However, the high mining intensity in recent years imposes huge challenges to this resource advantage of China. In this context, it is necessary to ascertain the geochemical characteristics of antimony in the Eerguna block. Based on the data of the 1∶250 000 stream sediment survey in the Eerguna block, this study explored the geochemical parameters of antimony in different tectonic units and the regional geochemical anomalies of this block. The results show that the study area has median and average concentrations of antimony of 0.33×10-6 and 0.55×10-6, respectively. The Mohe foreland basin is rich in antimony, with median and average concentrations of antimony higher than those of the study area. Furthermore, zones with high and extremely high antimony concentrations in the study area are distributed primarily in the Mohe foreland basin. Based on the 85% cumulative percentage, this study determined 66 geochemical anomalies of antimony, among which two reach the scale of geochemical provinces. Furthermore, this study identified significant geochemical anomalies of antimony in the discovered gold, antimony, and plumbum deposits or ore occurrences (mineralization points). Based on the spatial distributions of geochemical anomalies and metallogenic geological conditions of antimony, arsenic, and gold, this study delineated three metallogenic prospect areas of antimony: the Beijicun-Sanlianshan metallogenic prospect area, the Wangsushan-Daling metallogenic prospect area, and the Baikalushan-Huzhong metallogenic prospect area. In addition, the geochemical anomalies and metallogenic prospect areas for antimony, arsenic, and gold provide important areas for searching for sulfide deposits such as gold, antimony, and plumbum ones in the study area.

Table and Figures | Reference | Related Articles | Metrics
Chronology and geochemical characteristics of trachytes in the Tiaojishan Formation, Xuanhua Basin, northwestern Hebei Province, and their geological implications
YANG Ji-Yuan, HU Xin-Zhuo, ZHOU Jing, QI Peng-Chao, LI Ze-Yang, MENG Jia-Bao, XU Fan, ZHANG Hui-Bin, QI Hui-Yun
Geophysical and Geochemical Exploration    2024, 48 (1): 1-14.   DOI: 10.11720/wtyht.2024.2503
Abstract242)   HTML15)    PDF (8237KB)(320)      

The Tiaojishan Formation in northwestern Hebei Province is home to volcanic-sedimentary strata. Due to the lack of fossil organisms, insufficient isotopic dating data, and outdated dating methods, the formation epochs of these strata have been controversial. To accurately determine their formation epochs and examine their regional geotectonic setting, this study conducted a detailed field investigation of the lithologic assemblage of the Tiaojishan Formation in the Xuanhua Basin. Petrological, petrogeochemical, and high-precision isotopic dating studies were conducted on the trachytic volcanic rocks in the upper segment of the formation, obtaining the LA-ICP-MS-based zircon U-Pb isotopic ages, which were 161.1±1.2 Ma and 162.5±1.3Ma. As indicated by the petrological and petrogeochemical characteristics, these trachytic volcanic rocks belong to the shoshonite series, exhibiting enriched light rare earth elements, relatively enriched elements including Rb, K, Th, Ce, Zr, and Hf, and relatively depleted Ba, Nb, Sr, P, and Ti. According to the comparison of principal parameters and graphical discrimination, the magma originated primarily from the melting of continental crustal materials and formed in the tectonic setting of compressional continental margin volcanic arcs. The comprehensive research reveals that the Tiaojishan Formation formed primarily during the Middle Jurassic and continued to the Late Jurassic, and the trachytic volcanic rocks in its upper segment formed in the intraplate compressional tectonic setting. The results of this study provide new data for the division and correlation of Mesozoic volcanic-sedimentary strata and the analysis of their formation environment.

Table and Figures | Reference | Related Articles | Metrics
Research on the application of the integrated gravity-magnetic-radioactive geophysical exploration method in the exploration of rare earth deposit in Weishan, western Shandong
LAN Jun, LI Zhao-Ling, ZHANG Peng, LI Zhi-Min, LI De-Jian, XING Nan, SUN Li, YANG Yun-Tao, XU Hong-Yan, WANG Jian, WANG Qiao-Yun
Geophysical and Geochemical Exploration    2023, 47 (6): 1417-1424.   DOI: 10.11720/wtyht.2023.0189
Abstract237)   HTML9)    PDF (4793KB)(412)      

Since the periphery of the Xishan rare earth deposit in Weishan County, western Shandong is mostly covered by the Quaternary strata, single geophysical exploration methods are ineffective in searching for rare earth elements in this area. To establish a geological-geophysical prospecting model for deep rare earth prospecting in this area, a combination of exploration techniques and methods suitable for the deep exploration of rare earth deposits in this area were selected through multiple geophysical exploration technology experiments on the known geological profiles. The distribution range of the underground Mesozoic Xishan alkaline complex was roughly determined through gravity survey and high-precision magnetic survey. The ore body outcrop was delineated through ground-based gamma spectrometry, and the deep ore body characteristics were revealed through drilling. Finally, this study developed an integrated geophysical exploration method including gravity-magnetic joint delineation of rock masses, radioactive positioning for ore body outcrops, and deep drilling. By using this exploration model, one super-large rare earth deposit was discovered in this area, providing a reference for the exploration of rare earth deposits in the surrounding area.

Table and Figures | Reference | Related Articles | Metrics
Simulated detection experiments of underground water supply pipeline leakage based on ground penetrating radar
WANG Yu-Cheng, WANG Hong-Hua, SU Peng-Jin, GONG Jun-Bo, XI Yu-He
Geophysical and Geochemical Exploration    2023, 47 (3): 794-803.   DOI: 10.11720/wtyht.2023.1199
Abstract237)   HTML11)    PDF (7153KB)(481)      

As an important part of urban infrastructure, underground water supply pipelines frequently leak or break due to disrepair,corrosion,and poor construction quality.It is of great significance to identify the leakage locations and affected areas of underground water supply pipelines using a non-destructive testing method for the purpose of early warning and follow-up treatment.This study conducted simulated detection experiments and analysis of underground water supply pipeline leakage using the ground penetrating radar (GPR) method.Firstly,this study established the leakage model of water supply pipelines in sandy soil using the SEEP/W module in the GeoStudio software and calculated the volumetric water content of different leakage locations and leakage times.Then,it established the relative dielectric constant and conductivity model for water supply pipeline leakage using the Topp equation and the empirical equations of electrical conductivity and water content.On this basis,this study conducted the GPR simulated detection of the water supply pipeline leakage model with different leakage locations and different leakage times using the finite difference time domain (FDTD) method and analyzed the simulation results.Finally,this study conducted the GPR-based physical simulated detection tests of water supply pipeline leakage and compared the test results with the numerical simulation results.The study results are as follows.Compared with the hyperbolic diffracted wave of the water supply pipelines without leakage,that of the water supply pipelines with leakage at different locations are stated as follows.For the leakage on the upper side,a longer leakage area and a larger leakage area were associated with an earlier present hyperbolic diffracted wave with weaker energy,while the horizontal position of the hyperbolic diffracted wave's vertex remained unchanged.For the leakage on the lower side,two hyperbolic diffracted waves appeared,which moved up and down individually.Moreover,a longer leakage time corresponded to two weaker and more separated hyperbolic diffracted waves.The horizontal positions of the hyperbolic diffracted waves' vertexes remained unchanged.For the leakage on the left (right) side,a longer leakage time was associated with a weaker hyperbolic diffracted wave,whose vertex deviated farther toward the upper left (right).The simulated detection results of this study can provide a reliable basis for early warning and follow-up treatment of water supply pipeline leakage.

Table and Figures | Reference | Related Articles | Metrics
Predicting the geothermal resources of the Tangyu geothermal field in Meixian County, Shaanxi Province, based on soil radon measurement and the controlled source audio magnetotelluric method
XUE Dong-Xu, LIU Cheng, GUO Fa, WANG Jun, XU Duo-Xun, YANG Sheng-Fei, ZHANG Pei
Geophysical and Geochemical Exploration    2023, 47 (5): 1169-1178.   DOI: 10.11720/wtyht.2023.0010
Abstract236)   HTML10)    PDF (4345KB)(488)      

Despite abundant geothermal reserves of the Tangyu geothermal field in Meixian County, Shaanxi Province, long-term exploitation has decreased the water temperatures and yields of its existing geothermal wells year by year. Hence, there is an urgent need to explore new potential geothermal resources in the geothermal field. Since the known geothermal wells in the geothermal field are significantly controlled by faults, investigating the deep fault propagation holds critical significance for exploring the geothermal field’s potential geothermal resources. Due to the method limitations and the topographic influence, identifying thermal control faults through conventional geological route investigation or large-scale engineering is not applicable to the geothermal field. Therefore, a new technical method combining the penetrating soil radon measurement and the controlled source audio magnetotelluric (CSAMT) method was employed in this study to find concealed faults and delineate potential geothermal areas. Based on the measured surface soil radon concentration anomaly data and the subsurface electrical structure model derived from the CSAMT data inversion, this study inferred six new concealed faults on the basis of corroborating the known faults, predicted two potential geothermal areas, and built a conceptual model for the Tangyu geothermal field. As revealed by the results, the soil radon concentrations at concealed faults are much higher than the regional background value, and the concealed faults are located in the low-resistivity fracture zones as indicated by the apparent resistivity results based on CSAMT data inversion. Besides, the two potential geothermal areas spread from 450~750 m and 850~1 150 m on the profile, respectively, at depths of approximately 250~300 m. This study concludes that the geothermal field resides in a low-resistivity region with soil radon anomalies three times the regional background value. The results of this study provide a reference for the subsequent sustainable production and utilization of potential geothermal resources in the region.

Table and Figures | Reference | Related Articles | Metrics
Influence of DEM grid spacing and correction radius on terrain correction in gravity exploration
ZHANG Fei-Fei, WANG Wan-Yin, LI Qian, WANG Lin, MA Jing
Geophysical and Geochemical Exploration    2023, 47 (3): 597-607.   DOI: 10.11720/wtyht.2023.1472
Abstract235)   HTML175)    PDF (7804KB)(520)      

To remove the effect of terrain mass on observed gravity values, it is necessary to conduct terrain correction in gravity exploration. Terrains have the greatest impact on gravity values because they are the closest to observation points. However, the complex topographic relief makes it difficult to precisely determine the variation of topographic relief. Therefore, terrain correction is the most critical factor in the improvement of the precision of gravity exploration. The grid size of terrain data and the terrain correction radius are the key factors affecting the calculation precision of terrain correction. This study collected the DEM data with resolutions of 5 m, 10 m, 25 m, 50 m, and 100 m for plains, hills, and mountains. Based on these data, this study calculated conventional and generalized terrain correction values under different grid spacings and correction ranges and analyzed the influence of different grid spacings and correction radii on terrain correction in gravity exploration. The results are as follows: the gravity effect of the terrain mass above the geoid on the observation points was mainly concentrated in the range of 0~5 000 m and accounted for about 90% of the influence value of the total terrain mass. Attention should be paid to the correction of the middle and far areas during the terrain correction of hills and mountains, and it is necessary to appropriately increase the correction range of the middle areas; Different types of terrains had different requirements for grid spacings, and greater variations in topographic relief imposed higher requirements for the resolution DEM data. Based on the results of the comparative analysis, this study proposed some suggestions on the selection of DEM grid spacings and correction radii for different types of terrains. This study provides an important reference for the theoretical study and specification refinement of gravity terrain correction and has a great prospect for applications.

Table and Figures | Reference | Related Articles | Metrics
Geophysical characteristics and deep prospecting prediction of the Dachaigou gold deposit in the eastern Kunlun area
YU Zhong-Hong, YAN Ling-Qin, ZHANG Zhan-Xiong, LI Peng, LI Feng-Ting, FU Jia
Geophysical and Geochemical Exploration    2024, 48 (1): 40-47.   DOI: 10.11720/wtyht.2024.1126
Abstract235)   HTML7)    PDF (7232KB)(466)      

The eastern Kunlun metallogenic belt, as a significant metal metallogenic belt in China, hosts extensive orogenic gold deposits and large-scale Kunlunhe, Gouli, and Wulonggou gold concentration areas. The Dachaigou gold deposit is a large-scale gold deposit newly discovered in the Wulonggou gold field in recent years. Despite its high metallogenic potential, the western extension of its ore belt has not been defined. Hence, this study conducted induced polarization (IP) sounding and wide-field electromagnetic sounding in the deposit. The results show that the known ore belt is situated in the regional gravity anomaly gradient zone, the transition zone of positive and negative weak magnetic anomalies, the edge of IP anomalies, or the electrical gradient zone. The development zone of the regional tectonic belt resides in the large-scale IP anomaly section. The regional tectonic belt is characterized by a wide range of low-resistivity anomaly zones. The IV and III alteration zones of the known ore belt are located in the opening position of the low-resistivity anomaly zone and the shallow electrical anomaly gradient zone, respectively. Based on the above understanding and the electromagnetic anomaly change patterns of several parallel profiles in the western extension segment, it was inferred that the regional ore-controlling structure extends steadily in the W-NWW direction, forming a favorable prospecting space in the western extension segment of the deposit. The results of deep geophysical exploration in the Dachaigou deposit indicate that geophysical methods manifest significant advantages in deep geological prospecting research, providing successful experience for deep prospecting in the eastern Kunlun gold deposit area.

Table and Figures | Reference | Related Articles | Metrics
Critical factors in microtremor-based exploration at a depth of thousands of meters
QI Juan-Juan
Geophysical and Geochemical Exploration    2024, 48 (3): 777-785.   DOI: 10.11720/wtyht.2024.1358
Abstract234)   HTML4)    PDF (6323KB)(363)      

To explore the critical factors influencing the results of microtremor-based exploration at a depth of thousands of meters,this study conducted experiments using triangular arrays based on spatial autocorrelation(SPAC) and extended SPAC(ESPAC).Focusing on factors such as array size,acquisition unit frequency,and acquisition duration,this study explored the frequency band ranges corresponding to different array sizes,the arrangement of arrays in kilometer-depth exploration for obtaining both deep and shallow data,and the improvement in deep resolution.Based on the analysis and discussion results,this study established a parameter-setting system to improve the accuracy of exploration at a depth of thousands of meters.

Table and Figures | Reference | Related Articles | Metrics
Research on the detection of underground pedestrian passage by high precision gravity exploration
YANG Min, XU Xin-Qiang, CHEN Ming, Ji Xiao-Lin, WANG Wan-Yin, ZHAO Dong-Ming, ZHOU Wei, ZHANG Yi-Mi
Geophysical and Geochemical Exploration    2024, 48 (3): 876-883.   DOI: 10.11720/wtyht.2024.0047
Abstract233)   HTML11)    PDF (3819KB)(310)      

Underground cavities with shallow burial and small scale are difficult to detect. With the development of gravity sensing technology, the accurate and rapid acquisition of micro-gravity variations brings new opportunities for detecting underground cavities, and it has wide research and practical value for the detection of small-scale underground cavities. This paper systematically analyzes and studies underground cavities from three aspects: gravity basic theory, gravity detection technology, and gravity data processing and inversion. Under given body size and gravity data accuracy, the maximum burial depth of gravity detection is calculated using the bisection method. High-density acquisition and high-precision gravity detection methods are applied to the actual detection of an underground pedestrian tunnel in a certain area of a passenger station. A set of high-precision gravity grid data is obtained. The theoretical research and measurement results indicate that existing gravity instruments have the ability to detect underground cavities. By using the minimum curvature potential field separation method, 2.5D interactive inversion and the target area recognition three-dimensional physical property fast inversion method, the approximate SN distribution and burial depth of the underground pedestrian tunnel are obtained, which is approximately 2.5~5 m, consistent with the actual situation. This study has developed a complete gravity exploration process for detecting underground cavities, and it has certain reference value.

Table and Figures | Reference | Related Articles | Metrics
Application of high-density electrical resistivity tomography and audio magnetotellurics for groundwater exploration in the karst area in southwestern China
XIA Shi-Bin, LIAO Guo-Zhong, DENG Guo-Shi, YANG Jian, LI Fu
Geophysical and Geochemical Exploration    2024, 48 (3): 651-659.   DOI: 10.11720/wtyht.2024.1237
Abstract232)   HTML7)    PDF (5894KB)(374)      

Huize County of Yunnan Province is situated in the karst area in southwestern China, where karst groundwater is its primary water source. To conquer local difficulties in drinking water, this study constructed a conceptual model of groundwater occurrence by fully investigating the hydrogeological conditions of the Huize area. Moreover, this study evaluated the applicability and optimal combination of geophysical methods based on the measurement results of petrophysical properties. According to the actual local needs, this study deployed a comprehensive profile combining high-density electrical resistivity tomography (HDERT) and audio magnetotellurics (AMT) in Tuogu Village, Huize County. The groundwater enrichment site was delineated relying on resistivity anomalies, effectively guiding the layout of boreholes. The boreholes achieved the maximum single-borehole water yield of 20.76 m3/d, thus effectively alleviating the local drinking water problem. The HDERT-AMT combined exploration method proves to be optimal for prospecting for groundwater in carbonate rock areas. HDERT can accurately characterize weathered layer thicknesses, bedrock boundaries, fissure evolutionary degrees, and water-bearing properties of strata, constraining groundwater recharge channels, thus counteracting AMT's defects for identification of near-surface stratigraphic structures. AMT can accurately reflect the spatial structures of fracture zones and the macrostructures of strata, limiting the boundary conditions (aquicludes) of water-bearing structures, thus making up for the defects of insufficient detection depths of HDERT in high-resistivity stratigraphic regions. HDERT and AMT, which are complementary to each other in terms of accuracy and depth, can be applied to identify and constrain the spatial occurrence conditions of groundwater migration, storage, and enrichment.

Table and Figures | Reference | Related Articles | Metrics
Calculation and analysis of zero drift rates of gravimeters in two-way reciprocal observations based on different specifications
CHANG Xiao-Peng, CHEN Liang, ZHANG Xiang, ZHANG Ling-Xiao, ZHU Zhang-Liu, QIAO Yan-Yi
Geophysical and Geochemical Exploration    2023, 47 (5): 1307-1315.   DOI: 10.11720/wtyht.2023.1526
Abstract232)   HTML0)    PDF (928KB)(314)      

Gravity survey is an important part of geodetic mapping and geophysical exploration. Different gravity specifications adopt different methods to calculate the zero drift rates in two-way reciprocal observations (i,j,j',i'). The repeated measurements of point j are subjected to static drift in the geological survey specification. By contrast, the zero drift rate is calculated through regression analysis in the petroleum specification. Different processing methods for the repeated measurement interval of point j yield significantly different zero drift rates based on the two specifications. Through theoretical formula analysis and comparison of measured data, this study analyzed the influence of g'j- g j and t'j-tj in the repeated measurements of point j on the calculation of the zero drift rate. By comparing with the regression analysis, this study illustrated the importance of static drift in reducing the uncertainties caused by instrument performance and measurement environment. Moreover, this study proposed the applicable conditions of the two specifications.

Table and Figures | Reference | Related Articles | Metrics
Artificial neural network-based transient electromagnetic imaging
YOU Xi-Ran, ZHANG Ji-Feng, SHI Yu
Geophysical and Geochemical Exploration    2023, 47 (5): 1206-1214.   DOI: 10.11720/wtyht.2023.1547
Abstract232)   HTML3)    PDF (4517KB)(359)      

The transient electromagnetic method (TEM) commonly uses the all-time apparent resistivity parameter for interpretation, which involves complex formulas and time-consuming iterative processes. Based on the characteristics of TEM data, this study employed the artificial neural network (ANN) for TEM pseudo-resistivity imaging. First, this study designed a multi-hidden-layer BP neural network and calculated a response amplitude through TEM analysis. The response amplitude, as the mapping parameter of pseudo resistivity, was used for network training. Then new data outside the training set were used to test the trained network. A homogeneous half-space and one-dimensional layered model was built to verify the correctness and adaptability of the neural network. The imaging of the three-dimensional geoelectric model was performed. As revealed by the results, the pseudo resistivity calculated based on the neural network can reflect the target anomalies of the geoelectric model, with highly accurate network imaging results. Finally, the measured data were processed using the neural network algorithm, further indicating that the neural network-based imaging can serve as a basis for data interpretation. This study verified the feasibility of the ANN in TEM imaging, thus providing a new approach for TEM imaging.

Table and Figures | Reference | Related Articles | Metrics
Geochemical characteristics and prospecting potential of Jianchi Town, Shaanxi Province, China based on 1∶25,000 stream sediment survey
ZHANG Jia-Sheng, ZHOU Wei, LI Wei-Liang, QI Xiao-Peng, YANG Jie, WANG Lu
Geophysical and Geochemical Exploration    2023, 47 (3): 659-669.   DOI: 10.11720/wtyht.2023.1122
Abstract229)   HTML218)    PDF (6805KB)(456)      

Jianchi Town of Shaanxi Province is located in the Nanjiang foreland-superimposed basin on the northern margin of the Yangtze Plate. To determine the prospecting potential, this study conducted a 1∶25,000 stream sediment survey in the study area. Based on the testing results of 12 elements and compounds closely related to mineralization, namely K2O, Na2O, CaO, MgO, Cl, S, B, Rb, Cs, Li, Br, and I, this study analyzed the geochemical characteristics of these elements and compounds and determined that Li is the major metallogenic element, Li-B-Rb-Cs-K2O is the indicator element association for the prospecting of lithium deposits, and the spatial morphology of Li agrees with that of various geological bodies. By combining the metallogenic geological setting, this study delineated 18 integrated anomalies. Through the follow-up examination of the anomalies, multiple lithium ore bodies (mineralized points) were discovered, indicating that the study area has favorable metallogenic geological and geochemical conditions and great prospecting potential.

Table and Figures | Reference | Related Articles | Metrics
Application of the integrated geophysical exploration technology in the exploration of deep carbonate geothermal reservoirs: A case study of the Xiong'an New Area
ZHANG Zhao, YIN Quan-Zeng, ZHANG Long-Fei, ZHANG Da-Ming, ZHANG Shi-Hui, HUANG Guo-Shu, ZHAO Shi-Feng, YANG Biao, TAI Li-Xun, ZHANG Deng-Liang, WANG Jin-Chao, DUAN Gang
Geophysical and Geochemical Exploration    2023, 47 (4): 926-935.   DOI: 10.11720/wtyht.2023.1354
Abstract226)   HTML3)    PDF (7787KB)(410)      

Xiong'an New Area has great potential for geothermal resources. Carbonate rocks are favorable reservoirs for deep geothermal resources in this area. The integrated geophysical exploration technology is an effective way to ascertain the deep structures and the characteristic stratigraphic structure of carbonate geothermal reservoirs. Aiming at the exploration target of deep carbonate geothermal reservoirs, this study put forward a surface-line-point hierarchical and progressive geophysical exploration model. Using the high-precision gravity and aeromagnetic data, this model first investigated the distribution range of carbonate rocks, the thickness of carbonate strata, the distribution of deep-seated faults, and the fluctuation of bedrocks. Then, it analyzed the low-resistivity anomalies of geothermal reservoir strata using the magnetotelluric method. Finally, this model finely characterized the geothermal reservoir strata using two-dimensional seismic profiles and analyzed the velocity structure and regional structural characteristics of anomaly zones in the geothermal field. Based on the exploration precision and reliability of gravity, aeromagnetic, magnetotelluric, and seismic geophysical methods in the geothermal resource exploration of different stages, as well as other factors such as construction cost and efficiency, this study analyzed the economic applicability of geophysical methods in the exploration of deep karst geothermal reservoirs and suggested that the carbonate geothermal resources should be explored using the geophysical exploration technology combination of gravity, magnetic, and magnetotelluric methods.

Table and Figures | Reference | Related Articles | Metrics
Migration and enrichment patterns of vanadium in the soil and plant system of farmland
ZHAO Yu-Yan, JIANG Tao, YANG Bing-Han, ZHANG Ze-Yu, LI Zheng-He, LI Bing, TANG Xiao-Dan
Geophysical and Geochemical Exploration    2023, 47 (3): 835-844.   DOI: 10.11720/wtyht.2023.1206
Abstract225)   HTML12)    PDF (1991KB)(548)      

Vanadium (V) is an essential trace element required by organisms for maintaining their normal life activities. It is also a harmful element listed as a priority environmental pollutant by the United Nations Environment Programme (UNEP). The study of the migration and enrichment patterns of V in the soil and plant system is of great practical significance for further understanding the ecological geochemical behavior of V and ensuring the safety of agricultural products and human health. This study systematically sampled the soil and plants in some ordinary farmland in Linyi City, Shandong Province and analyzed and tested the contents of V and its associated elements in the soil and plant samples. Moreover, this study conducted the source analysis and pollution assessment of V and investigated the migration and transformation patterns of V in the soil-plant system using statistical methods such as descriptive statistics, correlation analysis, and cluster analysis, as well as the single factor pollution index method, the potential ecological risk index method, and the biological enrichment coefficient method. The results are as follows: V is relatively concentrated in the study area, and its content increases with an increase in the Fe and Ti contents and decreases with an increase in the SiO2, Na2O, Sr, and CaO contents; The V in the study area mainly originates from the weathering of parent rocks, and the parts with a high V content is related to magnetite; As shown by the results of the single factor index method and the potential ecological risk index method, V is relatively clean in the soils of the study area, but attention should be paid to the pollution of the associated Cd; V is enriched primarily in the roots of plants, and plants' absorption capacity of V is generally negatively correlated with the contents of Cu, Pb, Zn, Ni, Co, Cd, and especially Cr in soils and is positively correlated with the As content in soils. This study enriches the ecological geochemical theory of V and provides a scientific basis for regional agricultural production, environmental quality assessment, and ecological pollution control.

Table and Figures | Reference | Related Articles | Metrics
Delineation of areas with high geological background values of heavy metals in soils in Yunnan Province, China based on geological big data technology
XIAO Gao-Qiang, ZHAO Juan, CHEN Zi-Wan, SONG Xu-Feng, ZHU Neng-Gang
Geophysical and Geochemical Exploration    2024, 48 (1): 216-227.   DOI: 10.11720/wtyht.2024.1129
Abstract224)   HTML3)    PDF (4168KB)(299)      

This study aims to systematically investigate the distribution and over-limit elements of areas with high geological background values of heavy metals in soils in Yunnan Province. GIS spatial analysis was conducted based on the heavy metal content data from a province-wide 1∶200,000 stream sediment survey and the regional geological map. The analysis results were validated using the data of heavy metals in soils in Kunming, Yuxi, Zhaotong, and other regions. A total of 61 geological units were identified, with heavy metal content in soils exceeding the screening values of agricultural land, accounting for 21.09% of the total land area of Yunnan. The cultivated land in high geological background areas covers an area of approximately 2.844 1 million hectares, accounting for 7.22% of the total land area of Yunnan. The lithologies that cause over-limit heavy metals in soils primarily comprise carbonate rocks, mafic-ultramafic volcanic rocks, intermediate mafic intrusive rocks, coal-bearing clastic rocks, and clastic rocks with mafic components. The over-limit heavy metal elements in high geological background areas are dominated by Cu, Cr, Ni, and Cd. In contrast, As manifests an over-limit risk mainly in carbonate rock formations, Pb and Zn only exhibit an over-limit risk in individual strata, and Hg almost shows no over-limit risk.

Table and Figures | Reference | Related Articles | Metrics
Research on structural characteristics and mineral prediction of the Luoning area based on the characteristics of gravitational and magnetic fields
ZHANG Lei, WANG Wan-Yin, WANG Xiao-Bo, LI Wen, ZHANG Xue-Li, SONG Hao, YANG Min, AN Li-ming
Geophysical and Geochemical Exploration    2023, 47 (3): 608-617.   DOI: 10.11720/wtyht.2023.1462
Abstract220)   HTML179)    PDF (10842KB)(582)      

The Luoning area is located at the junction of the Xiaoshan Uplift and the Luoning Basin and falls into the Quaternary shallow overburden area. Large-scale silver-lead-zinc deposits such as Laoliwan and Zhonghe have been discovered in this area, and their formation is closely related to the acidic plutons controlled by fault structures. This study investigated the distribution of fault structures and acidic plutons based on the processing of 1:50000 gravity and magnetic data using the minimum curvature potential field separation technique, the normalized vertical derivative of the total horizontal derivative (NVDR-THDR) technique, the correlation analysis method, and the three-dimensional physical property inversion. The study results are as follows: (1) The Luoning area is affected by the NW-, NE-, and EW-trending structures; (2) Centering on the Laoliwan area, multiple sets of faults present a ring-shaped distribution with a radius of 6.5 km; (3) Multiple concealed plutons were discovered, and the boundaries of Laoliwan and Zhonghe plutons were re-determined; (4) The distribution of granites is controlled by ring-shaped structures and have a burial depth of about 3 km; (4) The ring-shaped structures are well correlated with magnetic anomaly gradient zones, where ores were found in many boreholes. Therefore, it is of great significance to carry out prospecting studies in these zones.

Table and Figures | Reference | Related Articles | Metrics
Application of wide field electromagnetic method in the fracturing monitoring of well Anye-2
HU Zhi-Fang, LUO Wei-Feng, WANG Sheng-Jian, KANG Hai-Xia, ZHOU Hui, ZHANG Yun-Xiao, ZHAN Shao-Quan
Geophysical and Geochemical Exploration    2023, 47 (3): 718-725.   DOI: 10.11720/wtyht.2023.1089
Abstract218)   HTML746)    PDF (3531KB)(459)      

To evaluate the fracturing performance of two horizontal wells of well Anye-2,this study explored the layout of the fracturing monitoring network and data acquisition and processing using the fracturing monitoring technique combined with the wide field electromagnetic method.Through the qualitative and semi-quantitative difference analysis of the pre-,in-,and post-fracturing monitoring data,this study preliminarily determined the propagation direction of induced fractures and semi-quantitatively calculated the parameters such as fracture length and height.For each fracturing interval,the parameters such as fracture height and length were quantitatively determined through fine-scale inversion with depth as constraints and difference calculation.The fracturing monitoring results show that the fractures at two horizontal wells had lengths of 100~125 m and heights of 20~25 m.The fracturing production was guided by evaluating the fracturing performance of each fracturing interval.The fracturing results of the previous interval were used to guide the fracturing of the subsequent interval.Finally,the fracturing performance of all fracturing intervals was evaluated.The application results show that the wide field electromagnetic method can effectively predict the spread direction and range(e.g.,fracture length) of fracturing fluids,achieving encouraging performance.

Table and Figures | Reference | Related Articles | Metrics
Feasibility of the transient electromagnetic method in the exploration of double-layer waterlogged goafs with different layer spacings in coal mines
ZHANG Fan, FENG Guo-Rui, QI Ting-Ye, YU Chuan-Tao, ZHANG Xin-Jun, WANG Chao-Yu, DU Sun-Wen, ZHAO De-Kang
Geophysical and Geochemical Exploration    2023, 47 (5): 1215-1225.   DOI: 10.11720/wtyht.2023.1525
Abstract214)   HTML7)    PDF (5416KB)(421)      

It is difficult to explore the overlapping double-layer waterlogged goafs using the transient electromagnetic method. The reason is that upper waterlogged goafs will hinder the propagation of the electromagnetic field, thus prolonging the observation of the lower waterlogged goafs and reducing the signal-to-noise ratio. Besides, the burial depths and layer spacings of double-layer waterlogged goafs affect the signal-to-noise ratio and the observation time of transient electromagnetic signals. By building a double-layer waterlogged goaf model based on the Majiayan coal mine in Shanxi, this study analyzed the electromagnetic field propagation under layer spacings of 25 m, 50 m, 75 m, and 100 m,and calculated the observation time of waterlogged goafs with different layer spacings. Furthermore, it quantitatively characterized the differences between induced voltages in the double-layer waterlogged goafs with different layer spacings using root mean square errors. Additionally, this study proposed the identification criteria for explorable lower waterlogged goafs based on the record errors and noise levels during the observation. The results of physical simulation experiments are as follows: The differences between the induced voltages of double-layered waterlogged goafs with different layer spacings occur mainly in the late stage; the differences between induced voltages gradually decrease as the layer spacing and the burial depth of upper waterlogged goafs increases; the difference between induced voltages is close to the noise level when the layer spacing is greater than 75 m. The actual detection of the double layer waterlogged goaf with a spacing of 75 meters was conducted in Majiayan Coal Mine, and the results showed that the lower waterlogged goaf was not effectively identified.Therefore, It is difficult to effectively explore the lower waterlogged goafs when the layer spacing is greater than 75 m.

Table and Figures | Reference | Related Articles | Metrics
Distribution patterns of the electromagnetic fields of orthogonal horizontal magnetic dipoles as sources in CSRMT
CHEN Xing-Peng, WANG Liang, LONG Xia, XI Zhen-Zhu, QI Qing-Xin, XUE Jun-Ping, DAI Yun-Feng, HU Zi-Jun
Geophysical and Geochemical Exploration    2024, 48 (3): 721-735.   DOI: 10.11720/wtyht.2024.1395
Abstract211)   HTML2)    PDF (7800KB)(244)      

Controlled source radio-magnetotellurics (CSRMT) measurements typically use artificial field sources transmitting at frequencies ranging from 1 to 1 000 kHz. Among the many transmitting sources of the artificial source electromagnetic method, the orthogonal horizontal electric dipole source and the orthogonal horizontal magnetic dipole source are preferred field sources for tensor resistivity measurements. Hence, using the analytical formulas for electromagnetic fields based on the horizontal electric dipole source and the horizontal magnetic dipole source, this study calculated the electromagnetic fields based on the orthogonal horizontal electric dipole source and the orthogonal horizontal magnetic dipole source in the homogeneous half-space model. The results show that: (1) The displacement current needs to be considered at transmitting frequencies above 100 kHz; (2) The effects of displacement current on the tensor apparent resistivity and the impedance phase can be ignored in the far zone; (3) With a constant model resistivity and varying distances between transmitter and receiver, model calculations indicate a larger measurement range in the far zone of the high-frequency electromagnetic field; (4) With a constant distance between transmitter and receiver and varying model resistivities, model calculations suggest that the far-zone range of the electromagnetic field is significantly influenced by resistivity, and that the high-resistivity model requires higher frequencies for achieving far-zone observation conditions.Compared with the electric dipole source, the magnetic dipole source exhibits smaller deviations on the tensor apparent resistivity and impedance phase with the actual value, which is more suitable for geological analysis.

Table and Figures | Reference | Related Articles | Metrics
Design and implementation of key technologies for real-time three-dimensional ground-penetrating radar
YIN Da, XIN Guo-Liang, SUN Xue-Chao, ZHANG You-Yuan, ZHANG Qi-Dao
Geophysical and Geochemical Exploration    2024, 48 (1): 194-200.   DOI: 10.11720/wtyht.2024.1030
Abstract205)   HTML1)    PDF (3013KB)(381)      

To improve the detection level of municipal roads for rapid and effective municipal road collapse warning and rapid search for municipal pipe network distribution, the 22nd Research Institute of China Electronics Technology Group Corporation designed and developed real-time three-dimensional ground-penetrating radar (3D GPR). With the real-time 3D GPR, which is based on the architecture of field programmable gate array and digital signal processor (FPGA&DSP), the institute achieved the design and implementation of several key technologies for the multi-channel high-speed acquisition system, enriching the road detection techniques and methods. The real-time 3D GPR enables high-speed acquisition of ten-channel radar data using the horizontally polarized antennae equipped with five transmitters and six receivers. The channels can be switched using high-speed switches, which operate in an interactive interpolation manner. The 3D GPR allows for up to 32 channels and detection speeds of above 60 km/h (channel interval: 2 cm). This is attributed to the switching of the antenna array using switches. The optimum antenna polarization design was verified by the comparison of experimental data from cavity- and metal-plate-based experimental sites. As a result, the optimal antenna scheme was determined. The measured results show that, compared to general LTD-2600 radar, the real-time 3D GPR boasts a higher acquisition speed and higher performance in terms of amplitude and phase, conducive to the improvement of road disaster detection technologies. Therefore, there is high market demand for the real-time 3D GPR.

Table and Figures | Reference | Related Articles | Metrics
GIS-based assessment of the radioactivity levels and risks of soil environment
QUE Ze-Sheng, LI Guan-Chao, HU Ying, JIAN Rui-Min, LIU Bing
Geophysical and Geochemical Exploration    2023, 47 (5): 1336-1347.   DOI: 10.11720/wtyht.2023.1582
Abstract205)   HTML1)    PDF (9237KB)(269)      

Investigating the concentrations of natural radionuclides in soils is basic for soil pollution prevention and control. First, this study determined the background values and anomaly thresholds of radionuclides 238U, 226Ra, 232Th, and 40K in soils in Guangdong Province using the geographic information system (GIS) and three methods, namely conventional statistics, exploratory data analysis (EDA), and median absolute deviation (MAD). Then, this study assessed the radioactivity levels of the soil environment using four indices: the γ radiation dose rate, the equivalent radium specific activity, the external exposure index, and the annual effective dose rate. Finally, this study assessed the health risks of the soil radioactivity using the geoaccumulation index method, the single factor index method, and the Nemerow composite index method. The results indicate that: (1) Radionuclides 238U, 226Ra, 232Th, and 40K in soils of Guangdong Province have average concentrations of 79.4, 102.95, 74.59, and 541.25 (Bq·kg-1·dry), respectively; (2) The four radionuclides have background values of 34.27、46.75、32.87 and 271.79 (Bq·kg-1·dry), and the anomaly values of 111.35、141.805、105.12、946.26 (Bq·kg-1·dry); (3) The radioactivity level indices for soil environment, namely D, Raeq, Hex, and AEDR, show averages of 121.44 ± 67.08 nGy/h, 263.48 ± 147.72 Bq/kg, 0.08~2.3, and 148.93 ± 82.26 μSv/a, respectively; (4) The radionuclide geoaccumulation index suggests clean soils, the single factor index indicates slight pollution, and the Nemerow composite index of 0.22~5.52 (average: 1.74 ± 0.97) indicates mild pollution. These three indices, which suggest roughly consistent results for the health risk assessment of radionuclides in soils, can serve as a supplement to the health risk assessment method for soil radioactivity.

Table and Figures | Reference | Related Articles | Metrics
A study of tectonic framework of the Qinnan sag in Bohai Basin and its adjacent areas based on satellite gravity anomalies
YANG Rong-Xiang, WANG Wan-Yin, CAI Meng-Ke, WANG Ding-Ding, LUO Xin-Gang
Geophysical and Geochemical Exploration    2023, 47 (3): 584-596.   DOI: 10.11720/wtyht.2023.1463
Abstract204)   HTML175)    PDF (15824KB)(457)      

The Bohai Basin has the most offshore oil and gas fields discovered in China. As a potential hydrocarbon-rich sag in the Bohai Basin, the Qinnan Sag is of high value in exploration. Therefore, the study of the tectonic framework of the sag and its adjacent areas is of great significance and application value. Based on satellite gravity anomalies, this study determined the Bouguer gravity anomalies by correcting the influences of land topography and seawater and obtained the planar distribution and apparent depths of faults, the thickness of Cenozoic strata, and the boundaries of tectonic units using methods such as the normalized vertical derivative of the total horizontal derivative (NVDR-THDR), the Euler deconvolution, the minimum curvature potential field separation, and the fast for the gravity field based in a dual interface model. Based on the geological and geophysical data, this study analyzed the distribution and geophysical characteristics of major faults and tectonic units in the study area. The results of this study are as follows: The faults in the Qinnan Sag and its adjacent areas mainly have NE, NEE, and NW strikes and an apparent depth of primarily 1~10 km, which is up to 15~25 km at some positions of the sag-controlling faults and the intersections of the faults; The Cenozoic strata have a thickness of 0~11 km. The Cenozoic tectonic units are distributed in alternating NE and NEE directions, and their boundaries are mostly controlled by faults; Through further investigation, this study classified the sub-sag on the west side of the Qinnan sag as the Laoting sag and adjusted the boundaries of other tectonic units. The results of this study on the distribution of the faults and tectonic units can provide geophysical data for hydrocarbon exploration in the Qinnan Sag.

Table and Figures | Reference | Related Articles | Metrics
Analysis and application of the responses of the frequency selection method of telluric electricity field
YANG Tian-Chun, HU Feng-Ming, YU Xi, FU Guo-Hong, LI Jun, YANG Zhui
Geophysical and Geochemical Exploration    2023, 47 (4): 1010-1017.   DOI: 10.11720/wtyht.2023.1424
Abstract202)   HTML1)    PDF (1964KB)(362)      

As an inevitable physical phenomenon in the application of frequency-domain electromagnetics, the static shift effect is generally suppressed or eliminated by correction. This study proposed a new approach of directly utilizing the static shift effect of natural electromagnetic methods to explore shallow electrical anomalies. The frequency selection method of telluric electricity field (FSM) is to study the variations in electrical properties of subsurface media by measuring several horizontal electric field components with different frequencies generated on the surface by the natural alternating electromagnetic field. In this study, the forward modeling of FSM data was conducted using the two-dimensional finite element method. The modeling results are shown as follows: (1) In the case of low-resistivity anomalies near the surface, the curves of horizontal electric field components along the survey line on the surface showed the same morphologies as the FSM-derived curves, with significant low-potential anomalies above the low-resistivity anomalies; (2) As the calculated frequencies increased, both the profile curves and the pseudosection map of electric field components exhibited a static shift effect, indicating that the FSM-derived anomalies were mainly caused by the static shift effect. Both the FSM application results and the drilling verification results showed that with the presence of groundwater, the FSM-derived profile curves and pseudosection map exhibited a significant static shift effect, which was consistent with the CSAMT exploration results. As indicated by theoretical and practical research, it is feasible to directly use the components of the telluric electricity field for the exploration of shallow electrical anomalies. Moreover, shallow geological exploration can be conducted by utilizing the static shift effect of the frequency domain electromagnetics.

Table and Figures | Reference | Related Articles | Metrics
Research and application of the log-based comprehensive identification method for low-contrast oil layers:A case study of the Lufeng oilfield in the Pearl River Mouth Basin
LIU Wei-Nan, GUAN Yao, LIU Dao-Li, SHI Lei, SONG Wei
Geophysical and Geochemical Exploration    2024, 48 (3): 573-583.   DOI: 10.11720/wtyht.2024.1164
Abstract201)   HTML15)    PDF (7267KB)(237)      

The accurate identification of fluid properties is critical for reservoir evaluation.However,for the Paleogene low-porosity and low-permeability reservoirs in the Lufeng area,Pearl River Mouth Basin,the low contrast between oil and water layers in conventional logs due to the presence of high-resistivity water layers complicates the identification of oil and water layers.This study first ascertained the reservoir characteristics and genetic analysis of low-contrast oil layers.Then,it developed the Flair gas logging response equation and the Flair logging response correction method,aiming to overcome the challenge that gas logging response values of low-porosity and low-permeability reservoirs are significantly influenced by factors such as drilling rate and porosity.Given the differences in the properties and components of various fluids,this study constructed new oil-bearing and water-content indices using Flair gas logging curves.Moreover,this study characterized the geochemical chromatogram using a gamma probability distribution function and extracted the shape and scale factors to describe the chromatogram characteristics.Based on sensitivity parameters,this study plotted the characteristic parameter-based fluid property identification chart.The practical application shows that the log-based comprehensive fluid property identification method can yield satisfactory effects,achieving a compliance rate of 91.3%.Therefore,this method can be popularized.

Table and Figures | Reference | Related Articles | Metrics
京ICP备05055290号-3
Copyright © 2021 Geophysical and Geochemical Exploration, All Rights Reserved.
Tel: (8610)62301569   Email: whtbjb@sina.com , whtbjb@163.com