|
|
Comparison and summary of different azimuthal anisotropy-based inversion techniques |
LIANG Zhi-Qiang(), LI Hong |
Geophysical Research Institute Co.,Ltd.,SINOPEC,Nanjing 211103,China |
|
|
Abstract The progress in seismic acquisition techniques characterized by wide azimuths,wide frequency bands,and high densities has greatly promoted the application of the prestack P-wave fracture inversion technique based on the azimuthal anisotropy theory.Azimuthal anisotropy-based inversion can yield the azimuths and intensities of fractures.However,different inversion techniques yield different parameters for fracture intensity characterization,resulting in inconsistent inversion results.Consequently,the azimuthal anisotropy-based inversion results of fractures are non-unique,leading to confusion about accurate results.Based on the Thomsen anisotropy theory,as well as the interrelationships between fracture models(the Hudson coin model and the Schoenberg linear sliding model),this study established the connections of anisotropic parameters between different fracture inversion techniques(VVAZ,Ruger's approximation,and Fourier series),presenting the real meanings and mathematical expressions of results from different azimuthal anisotropy-based fracture inversion techniques.Additionally,this study summarized the relationships of parameters between different inversion techniques and fracture models,further deepening the research on azimuthal anisotropy-based fracture inversion.This study lays solid theoretical and technical foundations for large-scale fracture detection based on the seismic data obtained using the seismic acquisition techniques featuring wide azimuths,wide frequency bands, and high densities.
|
Received: 19 June 2023
Published: 16 April 2024
|
|
|
|
|
|
HTI media model
|
|
Hudson’s penny-shaped crack model
|
|
Linear-slip model
|
|
Comparison of frequency spectrum results between VVAZ and AVAZ inversion results
|
|
The technical process of AVAZ fracture prediction
|
|
Comparison of Ruger style(a) and Fourier coefficients algorithm(b)
|
12]) ">
|
Comparison of Ruger style and Fourier coefficients for shale gas applications(revised from Downton[12])
|
技术类型 属性参数 | 时差类 | 振幅类 | VVAZ | Ruger近似 | 傅立叶级数 | 数据 | 旅行时 | 振幅 | 振幅 | 属性类型 | 层间 | 界面 | 界面 | 各向异性方位 (裂缝方位) | 明确的 | 90°误差 | 明确的 | 各向异性结果 (裂缝强度) | | Bani | Bani、ΔT、ΔN | 参数关系 | Thomsen | -δ | Δε、ΔT、ΔN | Δε、ΔT、ΔN | 线性滑动 模型 | ΔT、ΔN 的加权和 | ΔT、ΔN 的加权差分 | ΔT、ΔN | 薄币模型 | ε和Ω | Δε和ΔΩ | Δε和ΔΩ | 分辨率 | 较低 | 较高 | 高 |
|
Summary of comparison of azimuthally anisotropic fracture inversion techniques
|
[1] |
曲寿利, 季玉新, 王鑫, 等. 全方位P波属性裂缝检测方法[J]. 石油地球物理勘探, 2001, 36(4):390-397.
|
[1] |
Qu S L, Ji Y X, Wang X, et al. Seismic method for using full-azimuth P wave attribution to detect fracture[J]. Oil Geophysical Prospecting, 2001, 36(4):390-397.
|
[2] |
梁志强. 面向AVAZ反演的解释性处理技术在裂缝预测中的应用[J]. 地球物理学进展, 2022, 37(5):1977-1984.
|
[2] |
Liang Z Q. Application of interpretive processing techniques for AVAZ inversion in fracture prediction[J]. Progress in Geophysics, 2022, 37(5):1977-1984.
|
[3] |
Bale R, Wright C. Compensation for shear-wave anisotropy effects above a heavy oil reservoir[C]// Calgary: 2009 CSPG CSEG CWLS GeoConvention,2009.
|
[4] |
Kendall R, Wikel K. Multicomponent time-lapse monitoring of bitumen recovery and geomechanical implications[C]//San Antonio:SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists, 2011.
|
[5] |
梁志强, 王世星, 郝奇. 基于TTI介质的P波剩余时差裂缝检测技术正演模拟研究[J]. 石油物探, 2013, 52(4):347-353.
|
[5] |
Liang Z Q, Wang S X, Hao Q. Forward simulation of P-wave residual time difference crack detection technology based on TTI medium[J]. Geophysical Prospecting for Petroleum, 2013, 52(4):347-353.
|
[6] |
Davison C, Ratcliffe A, Grion S, et al. Azimuthal velocity uncertainty:Estimation and application[C]//San Antonio:SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists, 2011.
|
[7] |
Tsvankin I. Reflection moveout and parameter estimation for horizontal transverse isotropy[J]. Geophysics, 1997, 62(2):614-629.
|
[8] |
Pech A, Tsvankin I, Grechka V. Quartic moveout coefficient:3D description and application to tilted TI media[J]. Geophysics, 2003, 68(5):1600-1610.
|
[9] |
Rüger A. Reflection coefficients and azimuthal AVO analysis in anisotropic media[D]. Center for Wave Phenomena,Colorado School of Mines,1996.
|
[10] |
Rüger A, Tsvankin I. Using AVO for fracture detection:Analytic basis and practical solutions[J]. The Leading Edge, 1997, 16(10):1429-1434.
|
[11] |
Rüger A. Reflection coefficients and azimuthal AVO analysis in anisotropic media[M].Society of Exploration Geophysicists, 2002.
|
[12] |
Downton J, Russell H. Azimuthal Fourier coefficients:A simple method to estimate fracture parameters[C]//San Antonio:SEG Technical Program Expanded Abstracts 2011. Society of Exploration Geophysicists, 2011.
|
[13] |
陈怀震, 印兴耀, 张金强, 等. 基于方位各向异性弹性阻抗的裂缝岩石物理参数反演方法研究[J]. 地球物理学报, 2014, 57(10):3431-3441.
|
[13] |
Chen H Z, Yin X Y, Zhang J Q, et al. Seismic inversion for fracture rock physics parameters using azimuthally anisotropic elastic impedance[J]. Chinese Journal of Geophysics, 2014, 57(10):3431-3441.
|
[14] |
陈怀震. 基于岩石物理的裂缝型储层叠前地震反演方法研究[D]. 青岛: 中国石油大学, 2015.
|
[14] |
Chen H Z. Study on methodology of pre-stack seismic inversion for fractured reservoirs based on rock physics[D]. Qingdao: China University of Petroleum(East China), 2015.
|
[15] |
Delbecq F, Downton J, LetiziaA M. A math-free look at azimuthal surface seismic techniques[J]. CSEG Recorder, 2013, 38(1):20-31.
|
[16] |
Thomsen L. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10):1954-1966.
|
[17] |
Hudson J A. Wave speeds and attenuation of elastic waves in material containing cracks[J]. Geophysical Journal of the Royal Astronomical Society, 1981, 64(1):133-150.
|
[18] |
Schoenberg M. Elastic wave behavior across linear slip interfaces[J]. The Journal of the Acoustical Society of America, 1980, 68(5):1516-1521.
|
[19] |
Hsu C J, Schoenberg M. Elastic waves through a simulated fractured medium[J]. Geophysics, 1993, 58(7):964-977.
|
[20] |
Schoenberg M, Douma J. Elastic wave propagation in media with parallel fractures and aligned cracks1[J]. Geophysical Prospecting, 1988, 36(6):571-590.
|
[21] |
Teng L. Seismic and rock-physics characterization of fractured reservoirs[D]. USA: Stanford University,1998.
|
[22] |
Bakulin A, Grechka V, Tsvankin I. Estimation of fracture parameters from reflection seismic data—Part I:HTI model due to a single fracture set[J]. Geophysics, 2000, 65(6):1788-1802.
|
[23] |
梁志强. 面向AVAZ反演的解释性处理技术在裂缝预测中的应用[J]. 地球物理学进展, 2022, 37(5):1977-1984.
|
[23] |
Liang Z Q. Application of interpretive processing techniques for AVAZ inversion in fracture prediction[J]. Progress in Geophysics, 2022, 37(5):1977-1984.
|
[24] |
舒梦珵. 改进的AVAZ方法在裂缝型储层预测中的应用研究[J]. CT 理论与应用研究, 2017, 26(1):45-52.
|
[24] |
Shu M C. The application of improved AVAZ method in predicting the fractured reservoir[J]. CT Theory and Applications, 2017, 26(1):45-52.
|
[25] |
Ikelle L T. 19 amplitude variations with azimuths(AVAZ) inversion based on linearized inversion of common azimuthal sections[M]//Seismic Anisotropy. Society of Exploration Geophysicists, 1996:601-644.
|
[26] |
Sayers C M, Dean S. Azimuth-dependent AVO in reservoirs containing non-orthogonal fracture sets[J]. Geophysical Prospecting, 2001, 49(1):100-106.
|
[27] |
肖鹏飞, 王世星, 曲寿利, 等. 倾角对裂缝密度反演的影响分析[J]. 石油物探, 2009, 48(6):544-551.
|
[27] |
Xiao P F, Wang S X, Qu S L, et al. Analysis on the impact of dip on fracture density inversion[J]. Geophysical Prospecting for Petroleum, 2009, 48(6):544-551.
|
[28] |
张雪莹, 孙鹏远, 马学军, 等. 正交各向异性介质反射系数精确解[J]. 石油地球物理勘探, 2020, 55(5):1060-1072.
|
[28] |
Zhang X Y, Sun P Y, Ma X J, et al. Exact solution of reflection coefficient of orthotropic media[J]. Oil Geophysical Prospecting, 2020, 55(5):1060-1072.
|
[1] |
CAO Qiang, LIN Chang-Hong, TAN Han-Dong, GONG Ying-Li. Occam inversion of CSAMT data in layered media with azimuthal anisotropy[J]. Geophysical and Geochemical Exploration, 2016, 40(3): 594-602. |
[2] |
DANG Qing-Ning, CUI Yong-Fu, CHEN Meng, ZHAO Rui-Rui, LIU Wei-Ming, LI Yong-Jun. Fracture detection with prestack seismic data in OVT domain:A case study of the Ordovician carbonate reservoir in ZG area of Tazhong district in Tarim Basin[J]. Geophysical and Geochemical Exploration, 2016, 40(2): 398-404. |
|
|
|
|