|
|
Application of wide field electromagnetic method in the fracturing monitoring of well Anye-2 |
HU Zhi-Fang1( ), LUO Wei-Feng1, WANG Sheng-Jian1, KANG Hai-Xia1, ZHOU Hui1, ZHANG Yun-Xiao1, ZHAN Shao-Quan2( ) |
1. Oil and Gas Resources Survey,China Geological Survey,Beijing 100083,China 2. No. 814 Geological Team of East China Non-ferrous Metals Geological Exploration Bureau of Jiangsu Province,Zhenjiang 212005,China |
|
|
Abstract To evaluate the fracturing performance of two horizontal wells of well Anye-2,this study explored the layout of the fracturing monitoring network and data acquisition and processing using the fracturing monitoring technique combined with the wide field electromagnetic method.Through the qualitative and semi-quantitative difference analysis of the pre-,in-,and post-fracturing monitoring data,this study preliminarily determined the propagation direction of induced fractures and semi-quantitatively calculated the parameters such as fracture length and height.For each fracturing interval,the parameters such as fracture height and length were quantitatively determined through fine-scale inversion with depth as constraints and difference calculation.The fracturing monitoring results show that the fractures at two horizontal wells had lengths of 100~125 m and heights of 20~25 m.The fracturing production was guided by evaluating the fracturing performance of each fracturing interval.The fracturing results of the previous interval were used to guide the fracturing of the subsequent interval.Finally,the fracturing performance of all fracturing intervals was evaluated.The application results show that the wide field electromagnetic method can effectively predict the spread direction and range(e.g.,fracture length) of fracturing fluids,achieving encouraging performance.
|
Received: 21 March 2022
Published: 05 July 2023
|
|
|
|
|
|
Actual material of wide field electromagnetic fracturing monitoring
|
|
Data processing flow chart of wide field electromagnetic fracturing monitoring
|
|
Comparison of curves before and after fracturing in a fracturing section
|
|
Frequency apparent resistivity difference section of a fracturing section
|
|
Resistivity inversion section of a fracturing section before fracturing
|
|
Resistivity inversion section of a fracturing section after fracturing
|
|
Resistivity inversion difference of a fracturing section
|
|
Comprehensive results of fracturing monitoring of well Anye-2
|
[1] |
肖艳丽, 李明星. 压裂监测技术应用现状研究[J]. 石化技术, 2019, 26(7):74-76.
|
[1] |
Xiao Y L, Li M X. Research on application status of fracturing monitoring technology[J]. Petrochemical Industry Technology, 2019, 26(7):74-76.
|
[2] |
詹少全, 丁梅花, 李爱勇, 等. 贵州碳酸盐岩山区广域电磁法勘探应用[J]. 物探与化探, 2020, 44(1):88-92.
|
[2] |
Zhan S Q, Ding M H, Li A Y, et al. The application of wide field electromagnetic sounding method to exploration in carbonatite mountain areas of Guizhou Province[J]. Geophysical and Geochemical Exploration, 2020, 44(1):88-92.
|
[3] |
詹少全, 李爱勇, 王导丽, 等. 极寒环境中广域电磁法勘探技术研究[J]. 物探与化探, 2020, 44(5):1019-1024.
|
[3] |
Zhan S Q, Li A Y, Wang D L, et al. A study of wide field electromagnetic method under extremely cold conditions[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1019-1024.
|
[4] |
赵福海, 王导丽, 张明鹏, 等. 松辽盆地北部石炭—二叠系底埋深综合物探预测技术[J]. 矿产与地质, 2018, 32(1):116-121.
|
[4] |
Zhao F H, Wang D L, Zhang M P, et al. The comprehensive geophysical prediction technique of the bottom buried depth of Carboniferous-Permian in the northern Songliao Basin[J]. Mineral Resources and Geology, 2018, 32(1):116-121.
|
[5] |
何继善. 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010.
|
[5] |
He J S. Wide field electromagnetic sounding methods and pseudo-random signal coding electrical method[M]. Beijing: Higher Education Press, 2010.
|
[6] |
何继善. 广域电磁测深法研究[J]. 中南大学学报:自然科学版, 2010, 41(3):1065-1072.
|
[6] |
He J S. Wide field electromagnetic sounding methods[J]. Journal of Central South University:Science and Technology, 2010, 41(3):1065-1072.
|
[7] |
王志刚, 张林, 许健华, 等. 时频电磁技术在水力压裂监测中的应用[C]// 北京: CPS/SEG北京2018国际地球物理会议, 2018:1286-1290.
|
[7] |
Wang Z G, Zhang L, Xu J H, et al. The use of time-frequency domain electromagnetic(TFEM) technique to monitor hydraulic fracturing[C]// Beijing: CPS/SEG Beijing 2018 International Geophysical Conference, 2018:1286-1290.
|
[8] |
刘子雄, 常菁铉, 李新发, 等. 基于裂缝监测的致密储层压裂裂缝走向预测[J]. 天然气地球科学, 2020, 31(6):846-854.
|
[8] |
Liu Z X, Chang J X, Li X F, et al. Fracturing direction prediction based on fracturing monitoring of tight gas reservoir[J]. Natural Gas Geoscience, 2020, 31(6):846-854.
|
[9] |
周东平, 李栋, 刘元雪, 等. 煤矿井下水力压裂有效范围监测技术研究[J]. 煤炭技术, 2018, 37(10):167-169.
|
[9] |
Zhou D P, Li D, Liu Y X, et al. Study on effective range of hydraulic fracturing in underground coal mine[J]. Coal Technology, 2018, 37(10):167-169.
|
[10] |
郭鹏, 呼赞同, 贾金赟, 等. 微破裂向量扫描在丰探15井压裂微震实时监测中的应用[J]. 地球物理学进展, 2020, 35(4):1370-1378.
|
[10] |
Gou P, Hu Z T, Jia J Y, et al. Application to the hydraulic fracture of well FT15 by real-time monitoring using vector processing for microseismic[J]. Progress in Geophysics, 2020, 35(4):1370-1378.
|
[11] |
何展翔, 胡祖志, 王志刚, 等. 时频电磁(TFEM)技术:数据联合约束反演[J]. 石油地球物理勘探, 2020, 55(4):898-905.
|
[11] |
He Z X, Hu Z Z, Wang Z G, et al. Time frequency electro magnetic(TFEM) method:Data joint constrained inversion[J]. Oil Geophysical Prospecting, 2020, 55(4):898-905.
|
[12] |
何展翔, 杨国世, 陈思琪, 等. 时频电磁(TFEM)技术:数据采集参数设计[J]. 石油地球物理勘探, 2019, 54(4):908-914.
|
[12] |
He Z X, Yang G S, Chen S Q, et al. Time frequency electro magnetic(TFEM) method:Data acquisition design[J]. Oil Geophysical Prospecting, 2019, 54(4):908-914.
|
[13] |
何展翔, 陈忠昌, 任文静, 等. 时频电磁(TFEM)勘探技术:数据采集系统[J]. 石油地球物理勘探, 2020, 55(5):1131-1138.
|
[13] |
He Z X, Chen Z C, Ren W J, et al. Time frequency electro magnetic(TFEM) method:Data acquisition system[J]. Oil Geophysical Prospecting, 2020, 55(5):1131-1138.
|
[14] |
李金朋, 范红波, 刘利, 等. 多参数约束磁性体三维形态反演[J]. 石油地球物理勘探, 2021, 56(2):407-418.
|
[14] |
Li J P, Fan H B, Liu L, et al. Three dimensional shape inversion of multi parameter constrained magnetic body[J]. Oil Geophysical Prospecting, 2021, 56(2):407-418.
|
|
|
|