|
|
GIS-based assessment of the radioactivity levels and risks of soil environment |
QUE Ze-Sheng( ), LI Guan-Chao, HU Ying, JIAN Rui-Min, LIU Bing |
Radiation Environmental Monitoring Center of Guangdong Province Nuclear Industry Geological Bureau, Guangzhou 510800, China |
|
|
Abstract Investigating the concentrations of natural radionuclides in soils is basic for soil pollution prevention and control. First, this study determined the background values and anomaly thresholds of radionuclides 238U, 226Ra, 232Th, and 40K in soils in Guangdong Province using the geographic information system (GIS) and three methods, namely conventional statistics, exploratory data analysis (EDA), and median absolute deviation (MAD). Then, this study assessed the radioactivity levels of the soil environment using four indices: the γ radiation dose rate, the equivalent radium specific activity, the external exposure index, and the annual effective dose rate. Finally, this study assessed the health risks of the soil radioactivity using the geoaccumulation index method, the single factor index method, and the Nemerow composite index method. The results indicate that: (1) Radionuclides 238U, 226Ra, 232Th, and 40K in soils of Guangdong Province have average concentrations of 79.4, 102.95, 74.59, and 541.25 (Bq·kg-1·dry), respectively; (2) The four radionuclides have background values of 34.27、46.75、32.87 and 271.79 (Bq·kg-1·dry), and the anomaly values of 111.35、141.805、105.12、946.26 (Bq·kg-1·dry); (3) The radioactivity level indices for soil environment, namely D, Raeq, Hex, and AEDR, show averages of 121.44 ± 67.08 nGy/h, 263.48 ± 147.72 Bq/kg, 0.08~2.3, and 148.93 ± 82.26 μSv/a, respectively; (4) The radionuclide geoaccumulation index suggests clean soils, the single factor index indicates slight pollution, and the Nemerow composite index of 0.22~5.52 (average: 1.74 ± 0.97) indicates mild pollution. These three indices, which suggest roughly consistent results for the health risk assessment of radionuclides in soils, can serve as a supplement to the health risk assessment method for soil radioactivity.
|
Received: 22 November 2022
Published: 27 October 2023
|
|
|
|
|
|
Distribution of sampling sites
|
核素 | 均值/(Bq·kg-1·干) | 标准差/(Bq·kg-1·干) | 变异系数 | 峰值 | 偏度 | 最小值/(Bq·kg-1·干) | 最大值/(Bq·kg-1·干) | 238U | 79.40 | 48.89 | 0.62 | 3.04 | 1.64 | 12 | 318 | 226Ra | 102.95 | 65.06 | 0.63 | 1.68 | 1.36 | 10 | 376 | 232Th | 74.59 | 46.51 | 0.62 | 2.86 | 1.57 | 8 | 298 | 40K | 541.25 | 347.90 | 0.64 | 0.24 | 0.67 | 4 | 1747 |
|
Statistics of specific activity of radionuclides in soil of study area
|
核素 | 238U | 226Ra | 232Th | 40K | 238U | 1.000 | | | | 226Ra | 0.765** | 1.000 | | | 232Th | 0.961** | 0.771** | 1.000 | | 40K | 0.574** | 0.571** | 0.439** | 1.000 |
|
Correlation coefficient between radionuclides in soil of study area
|
|
Statistics of background value and abnormal limit of radioactivity in soil
|
|
Soil environmental radioactivity level distribution map
|
|
Soil risk assessment distribution map based on geo-accumulation index method
|
|
Soil risk assessment distribution map based on Nemero comprehensive index method
|
|
Radionuclide distribution in soil of granite
|
|
Radionuclide distribution in soil within different geological structure buffer zones
|
|
Spatial relationship between radioactive anomaly area of soil environment and geological factors
|
|
Radionuclide distribution in soils of different landforms
|
[14] |
李战国, 朱勇兵, 李军, 等. 226Ra污染场地调查与健康风险评估[J]. 安全与环境学报, 2020, 20(6):2408-2415.
|
[14] |
Li Z G, Zhu Y B, L J, et al. 226Ra contaminated site investigation and health risk assessment[J]. Journal of Safety and Environment, 2020, 20(6):2408-2415.
|
[15] |
刘媛媛, 张春艳, 魏强林, 等. 铀尾矿库区稻田土中放射性核素的空间分布和放射性水平评价[J]. 生态毒理学报, 2018, 13(5):305-312.
|
[15] |
Liu Y Y, Zhang C Y, Wei Q L, et al. Spatial distribution and radionuclide level evaluation in paddy soil in uranium tailings reservoir area[J]. Chinese Journal of Ecotoxicology, 2018, 13(5):305-312.
|
[16] |
杨剑洲, 龚晶晶, 唐世新, 等. 广东省部分地区土壤放射性核素的测定和剂量评估[J]. 物探与化探, 2020, 44(2):419-425.
|
[16] |
Yang J Z, Gong J J, Tang S X, et al. Determination and dose assessment of soil radionuclides in some areas of Guangdong Province[J]. Geophysical and Geochemical Exploration, 2020, 44(2):419-425.
|
[17] |
王帅, 王红旗, 周庆涛, 等. 基于稳健统计的土壤环境背景值研究及应用[J]. 环境科学研究. 2009, 22(8):944-949.
|
[17] |
Wang S, Wang H Q, Zhou Q T, et al. Research and application of soil environmental background value based on robust statistics[J]. Environmental Research. 2009, 22(8):944-949.
|
[18] |
周曙光, 周可法, 王金林. 稳健数据分析方法在地球化学异常阈值计算中的应用研究[C]// 第十二届全国数学地质与地学信息学术研讨会, 2013:129-134.
|
[18] |
Zhou S G, Zhou K F, Wang J L. Application of robust data analysis method in geochemical anomaly threshod calculation[C]// Proceedings of the 12th National Symposium on Mathematical Geology and Geoscience Information, 2013:129-134.
|
[19] |
陆丽娜, 李静, 沈军, 等. 夏垫活动断层土壤氡地球化学特征[J]. 震灾防御技术. 2016, 11(4):736-746.
|
[19] |
Lu L N, Li J, Shen J, et al. Geochemical characteristics of radon in summer mat active fault soil[J]. Earthquake Defense Technology. 2016, 11(4):736-746.
|
[20] |
章蔷. 污染场地调查及健康风险评估的研究[D]. 南京: 南京师范大学, 2013.
|
[20] |
Zhang Q. Research on contaminated site investigation and health risk assessment[D]. Nanjing: Nanjing Normal University, 2013.
|
[21] |
阙泽胜. 广东省放射性地质环境监测数据管理信息系统建设及应用[J]. 辐射防护通讯, 2020, 40(6):39-43.
|
[21] |
Que Z S. Construction and application of radioactive geological environment monitoring data management information system in Guangdong Province[J]. Radiation Protection Communications, 2020, 40(6):39-43.
|
[22] |
盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 北京: 高等教育出版社, 2008.
|
[22] |
Sheng Z, Xie S Q, Pan C Y. Probability theory and mathematical statistics[M]. Beijing: Higher Education Press, 2008.
|
[23] |
Muller G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal, 1969, 2(108):108-118.
|
[24] |
郑国璋. 农业土壤重金属污染研究的理论与实践[M]. 北京: 中国环境科学出版社, 2007.
|
[24] |
Zheng G Z. Theory and practice of heavy metal pollution in agricultural soil[M]. Beijing: China Environmental Science Press, 2007.
|
[25] |
杨艳, 吴攀, 李学先, 等. 贵州织金县贯城河上游煤矿区富硒高镉土壤重金属的分布特征及生态风险评价[J]. 生态学杂志, 2018, 37(6):1797-1806.
|
[25] |
Yang Y, Wu P, Li X X, et al. Distribution characteristics and ecological risk assessment of heavy metals in selenium-rich and high-cadmium soil in the upper reaches of Guancheng River,Zhijin County,Guizhou[J]. Chinese Journal of Ecology, 2018, 37(6):1797-1806.
|
[26] |
全国环境天然放射性水平调查总结报告编写小组. 全国环境天然贯穿辐射水平调查研究(1983-1990年)[J]. 辐射防护, 1992, 12(2):96-121.
|
[26] |
National Environmental Natural Radioactivity Level Survey Summary Report Preparation Team. Investigation and study of natural penetrating radiation level in the national environment(1983-1990)[J]. Radiation Protection, 1992, 12(2):96-121.
|
[27] |
Unscear, Annex B. Exposures of the public and workers from various sources of radiation[R]. New York: United Nations, 2008.
|
[28] |
Beretka J, Matthew P J. Natural radioactivity of Australian building materials,industrial wastes and by-products[J]. Health Physics, 1985, 48(1):87.
|
[29] |
秦建侯, 邓勃. 北京地区土壤元素背景值处理原则和方法[J]. 清华大学学报:自然科学版, 1988(6):56-63.
|
[1] |
全国环境天然放射性水平调查总结报告编写小组. 全国土壤中天然放射性核素含量调查研究(1983-1990年)[J]. 辐射防护, 1992, 12(2) :122-142.
|
[1] |
National Environmental Natural Radioactivity Level Survey Summary Report Preparation Team. Investigation and study on natural radionuclide content in soil in China (1983-1990)[J]. Radiation Protection, 1992, 12(2):122-142.
|
[2] |
曹龙生, 杨亚新, 张叶, 等. 中国大陆主要省份土壤中天然放射性核素含量分布规律研究[J]. 东华理工大学学报:自然科学版, 2012, 35(2):167-172.
|
[2] |
Cao L S, Yang Y X, Zhang Y, et al. Study on the distribution of natural radionuclide content in soil in major provinces of Chinese mainland[J]. Journal of East China University of Technology:Natural Science Edition, 2012, 35(2):167-172.
|
[3] |
曾庆卓, 陈联光, 郑伟. 广东省土壤中天然放射性核素含量调查研究[J]. 辐射防护, 1993, 13(5) :372-375.
|
[3] |
Zeng Q Z, Chen L G, Zheng W. Investigation and study on natural radionuclide content in soil in Guangdong Province[J]. Radiation Protection, 1993, 13(5):372-375.
|
[4] |
李文文, 汪杰, 黄涛, 等. 安徽铜陵硫化物尾矿区矿砂、土壤和沉积物的天然放射性评价[J]. 生态毒理学报, 2022, 17(2):290-298.
|
[4] |
Li W W, Wang J, Huang T, et al. Natural radioactivity evaluation of mineral sands,soil and sediments in Tongling sulphide tailings area of Anhui Province[J]. Chinese Journal of Ecotoxicology, 2022, 17(2):290-298.
|
[5] |
杨磊. 矿区周边农田土壤与农作物放射性核素水平检测和评价[J]. 山东农业大学学报:自然科学版, 2017, 48(6):918-921.
|
[5] |
Yang L. Detection and evaluation of radionuclide levels in farmland and crops around mining areas[J]. Journal of Shandong Agricultural University:Natural Science Edition, 2017, 48(6):918-921.
|
[6] |
杨永虎, 孔利锋, 李宗硕, 等. 准东煤矿开采区土壤中天然放射性水平环境调查及评价[J]. 新疆环境保护, 2017, 39(2):23-27.
|
[6] |
Yang Y H, Kong L F, Li Z S, et al. Environmental investigation and evaluation of natural radioactivity level in soil in Zhundong coal mining area[J]. Xinjiang Environmental Protection, 2017, 39(2):23-27.
|
[7] |
洪加标. 某铀尾矿库周边环境土壤和地表水放射性水平测量与健康风险评价[D]. 南昌: 东华理工大学, 2017.
|
[7] |
Hong J B. Measurement of soil and surface water radioactivity level and health risk assessment in the surrounding environment of a uranium tailings reservoir[D]. Nanchang: East China University of Technology, 2017.
|
[8] |
吴信民, 刘庆成, 杨亚新, 等. 广东下庄铀矿田土壤天然放射性测定及环境影响评价[J]. 核技术, 2005, 28(12):918-921.
|
[8] |
Wu X M, Liu Q C, Yang Y X, et al. Determination of natural radioactivity and environmental impact assessment of soil in Xiazhuang uranium mine,Guangdong[J]. Nuclear Techniques, 2005, 28(12):918-921.
|
[9] |
张琮, 施泽明, 阚泽忠, 等. 牦牛坪稀土矿区土壤天然放射性水平评价[J]. 辐射防护, 2015, 35(2):123-128.
|
[9] |
Zhang C, Shi Z M, Kan Z Z, et al. Evaluation of natural radioactivity level of soil in yakniuping rare earth mining area[J]. Radiation Protection, 2015, 35(2):123-128.
|
[10] |
钟可意, 王笠成, 邵波霖, 等. 某铀水冶厂周边土壤放射性核素U和Th分布特征及污染评价[J]. 生态毒理学报, 2022, 17(4):460-470.
|
[10] |
Zhong K Y, Wang L C, Shao B L, et al. Distribution characteristics and pollution evaluation of soil radionuclides U and Th around a uranium water smelter plant[J]. Acta Ecotoxicologica Sinica, 2022, 17(4):460-470.
|
[11] |
李冠超, 史天成, 杨波, 等. 某稀土冶炼厂及周边环境土壤中放射性核素分布特征与风险评价[J]. 有色金属:冶炼部分, 2021(8):119-126.
|
[11] |
Li G C, Shi T C, Yang B, et al. Distribution characteristics and risk assessment of radionuclides in soil of a rare earth smelter and surrounding environment[J]. Nonferrous Metals:Smelting Part, 2021(8):119-126.
|
[12] |
蒋文波, 高柏, 张海阳, 等. 某铀矿区周边土壤238U和226Ra分布特征及污染评价[J]. 中国环境科学, 2021, 41(4):1799-1805.
|
[12] |
Jiang W B, Gao B, Zhang H Y, et al. Distribution characteristics and pollution evaluation of 238U and 226Ra in the surrounding soil of a uranium mining area[J]. China Environmental Science, 2021, 41(4):1799-1805.
|
[13] |
陈小军. 污染场地健康与环境风险评估模型(HERA)在土壤污染调查修复中的应用研究[J]. 节能, 2020, 39(5):129-131.
|
[13] |
Chen X J. Application of health and environmental risk assessment model (HERA) in soil pollution investigation and remediation[J]. Energy Conservation, 2020, 39(5):129-131.
|
[29] |
Qin J H, Deng B. Principles and methods for processing soil element background values in Beijing[J]. Journal of Tsinghua University:Natural Science Edition, 1988(6):56-63.
|
|
|
|