|
|
First-arrival wave travel time-based tomography inversion with surface wave information as constraints |
ZHANG Li-Zhen( ), SUN Cheng-Yu( ), WANG Zhi-Nong, LI Shi-Zhong, JIAO Jun-Feng, YAN Ting-Rong |
China University of Petroleum(East China),Qingdao 266580,China |
|
|
Abstract The performance of ray-based tomography inversion is affected by many factors,such as initial model error and low-velocity interlayer.The conventional tomography method based on first-arrival wave travel time,which constrains or smooths models,destroys the relative relationship between model parameters and rays and affects the inversion stability.By testing the performance of first-arrival wave travel time-based tomography inversion under different initial models,this study proposed a first-arrival wave travel time-based tomography inversion method with surface wave information as constraints.The process of this method is as follows:(1)Given that surface waves feature high energy and frequency dispersion in seismic data,the surface-wave frequency dispersion curves are obtained through the multi-channel analysis of surface waves;(2)Using the damped least squares method,the shallow-surface shear wave (S-wave) velocities are determined through inversion;(3)With the S-wave velocity structure as the constraint,the initial compressional wave (P-wave) model is established,and accordingly,the first-arrival wave travel time-based tomography inversion that considers regularization is achieved.This method improves the accuracy and stability of shallow structure inversion by fully utilizing the surface wave information in seismic data to counteract the inherent defects of tomography inversion.The effectiveness of this method has been verified using actual data.
|
Received: 10 December 2022
Published: 27 October 2023
|
|
Corresponding Authors:
SUN Cheng-Yu
E-mail: 1753549195@qq.com;suncy@upc.edu.cn
|
|
|
|
层号 | 横波速度 /(m·s-1) | 纵波速度 /(m·s-1) | 泊松比 | 密度 /(g·cm-3) | 1 | 300~410 | 800~1100 | 0.42 | 2.0 | 2 | 340 | 800 | 0.39 | 2.0 | 3 | 618 | 1200 | 0.32 | 2.0 | 4 | 740 | 1500 | 0.34 | 2.0 |
|
Model parameters
|
|
Schematic diagram of the observing system
|
|
Forward modeling of first break wave tomography a—theoretical models;b—travel-time;c—ray path diagram
|
|
Inversion of incremental initial model a—incremental initial model;b—tomography inversion map;c—layer initial model;d—tomography inversion diagram
|
|
Comparison of pumping speed a—comparison of incremental model tomographic inversion velocity;b—comparison of tomographic inversion velocity of layered model
|
|
Surface wave data processing a—surface wave recording;b—dispersion curve;c—inversion of shear wave velocity;d—comparison of fitting degree
|
|
Surface wave constrained tomography inversion a—S-wave velocity model;b—P-wave initial model;c—surface wave constrained tomography inversion results;d—comparison diagram of pumping speed
|
|
Actual data single-gun seismic records
|
|
Actual data velocity profile a—MASW inversion of S-wave velocity profile;b—P-wave velocity profile inversion by constrained tomography;c—P-wave velocity profile inversion by tomography
|
[1] |
沈鸿雁, 王鑫, 李欣欣. 近地表结构调查及参数反演综述[J]. 石油物探, 2019, 58(4):471-485.
|
[1] |
Shen H Y, Wang X, Li X X. Near-surface structure survey and parameter inversion review[J]. Geophysical Prospecting for Petroleum, 2019, 58(4):471-485.
|
[2] |
Levin F K. Anatomy of diving waves[J]. Geophysics, 2012, 61(5):1417-1424.
|
[3] |
Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problems[M]. Berlin: Springer Science and Business Media, 1996.
|
[4] |
刘玉柱, 董良国, 夏建军. 初至波走时层析成像中的正则化方法[J]. 石油地球物理勘探, 2007, 42(6):682-685,698.
|
[4] |
Liu Y Z, Dong L G, Xia J J. Regularization method in first arrival wave tomography[J]. Oil Geophysical Prospecting, 2007, 42(6):682-685,698.
|
[5] |
李辉, 王华忠, 张兵. 层析反演中的正则化方法研究[J]. 石油物探, 2015, 54(5):569-581.
|
[5] |
Li H, Wang H Z, Zhang B. The study of regularization in tomography[J]. Geophysical Prospecting for Petroleum, 2015, 54(5):569-581.
|
[6] |
张军华, 吕宁, 田连玉, 等. 地震资料去噪方法、技术综合评述[J]. 地球物理学进展, 2005, 20(4):1083-1091.
|
[6] |
Zhang J H, Lyu N, Tian L Y, et al. An overview of the methods and techniques for seismic data noise attenuation[J]. Progress in Geophysics, 2005, 20(4):1083-1091.
|
[7] |
毕云云, 汪金菊, 徐小红, 等. 基于离散曲波变换字典和二维局部离散余弦变换字典组合的面波压制[J]. 石油物探, 2017, 56(2):222-231.
|
[7] |
Bi Y Y, Wang J J, Xu X H, et al. Ground roll attenuation based on the combination of discrete curvelet transform dictionary and two-dimensional local discrete cosine transform dictionary[J]. Geophysical Prospecting for Petroleum, 2017, 56(2):222-231.
|
[8] |
李继伟, 臧殿光, 刁永波, 等. 自适应相减和Curvelet变换组合压制面波[J]. 石油地球物理勘探, 2020, 55(5):1005-1015.
|
[8] |
Li J W, Zang D G, Diao Y B, et al. Adaptive subtraction and Curvelet transforms combine to suppress surface waves[J]. Oil Geophysical Prospecting, 2020, 55(5):1005-1015.
|
[9] |
伍敦仕, 孙成禹, 林美言. 基于频率—速度域多重信号分类的面波高分辨率频散成像方法[J]. 石油物探, 2017, 56(1):141-149.
|
[9] |
Wu D S, Sun C Y, Lin M Y. High resolution dispersion imaging of surface waves based on multiple signal classification in frequency-velocity domain[J]. Geophysical Prospecting for Petroleum, 2017, 56(1):141-149.
|
[10] |
Stokoe K H, Nazarian S P. Effectiveness of ground improvement from spectral analysis of surface waves[C]// Helsinki:8th European Conference on Soil Mechanics and Foundation Engineering, 1983:91-94.
|
[11] |
刘江平, 侯卫生, 许顺芳. 相邻道瑞雷波法及在防渗墙强度检测中的应用[J]. 人民长江, 2003, 34(2):34-36,56.
|
[11] |
Liu J P, Hou W S, Xu S F. Adjacent-channel transient Rayleigh wave method and its application in compression strength test of water-tight wall[J]. Yangtze River, 2003, 34(2):34-36,56.
|
[12] |
Xia J, Miller R D, Park C B. Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave[J]. Geophysics, 1999, 64(3):1390-1395.
|
[13] |
王志农, 孙成禹, 伍敦仕. 基于面波信息的近地表三维横波速度建模[C]// 中国石油学会2019年物探技术研讨会论文集, 2019:1186-1189.
|
[13] |
Wang Z N, Sun C Y, Wu D S. Near-surface 3D shear wave velocity modeling based on surface wave information[C]// Chinese Petroleum Society, 2019:1186-1189.
|
[14] |
Li H X, et al. Multichannel analysis of surface waves based on short array stacked Correlation gather[J]. Soil Dynamics and Earthquake Engineering, 2021:146.
|
[15] |
邓小娟, 酆少英, 左莹, 等. 利用浅层反射地震资料中的面波与初至波研究剖面浅部结构[J]. 大地测量与地球动力学, 2019, 39(4):425-431.
|
[15] |
Deng X J, Feng S Y, Zuo Y, et al. Research on shallow structure using the surface wave and primary wave of shallow reflection seismicdata[J]. Journal of Geodesy and Geodynamics, 2019, 39(4):425-431.
|
[16] |
陈淼, 王志辉, 刘振东, 等. 城市地下空间资源探测:面波与初至波层析成像联合探测济南泉域近地表速度结构[J]. 地球物理学进展, 2022, 37(2):786-796.
|
[16] |
Chen M, Wang Z H, Liu Z D, et al. Exploration of urban underground space resources:combined wave and first arrival tomography to detect near surface velocity structure in Jinan spring area[J]. Progress in Geophysics, 2022, 37(2):786-796.
|
[17] |
黄兴国, 孙建国, 孙章庆, 等. 基于复程函方程和改进的快速推进法的复旅行时计算方法[J]. 石油地球物理勘探, 2016, 51(6):1109-1118.
|
[17] |
Huang X G, Sun J G, Sun Z Q, et al. Calculation method for multiple travel based on the return function equation and the improved rapid propulsion method[J]. Oil Geophysical Prospecting, 2016, 51(6):1109-1118.
|
[18] |
Li S W, Vladimirsky A, Fomel S. First-break traveltime tomography with the double-square-root eikonal equation[J]. Geophysics, 2013, 78(6):U89-U101.
|
[19] |
邓乐翔. 瑞雷波场正演模拟及频散曲线的提取[D]. 西安: 长安大学, 2010.
|
[19] |
Deng L X. Rayleigh wave field simulation modeling and frequency dispersion curves of extraction.[D]. Xi’an: Chang’an University, 2010.
|
[20] |
卢建旗. 多道面波分析方法及其应用研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2013.
|
[20] |
Lu J Q. Multi-channel analysis of surface wave and its utility[D]. Harbin: Institute of Engineering Mechanics,China Earthquake Administration, 2013.
|
[21] |
伍敦仕. 基于面波信息的近地表参数反演方法研究[D]. 青岛: 中国石油大学(华东), 2018.
|
[21] |
Wu D S. Study on inversion methods of near-surface parameters based on surface-wave information[D]. Qingdao: China University of Petroleum(East China), 2018.
|
[22] |
Sun C Y, Wang Y Y, Wu D S, et al. Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm[J]. Applied Geophysics, 2017, 14(4):551-558.
|
[23] |
赵东, 王光杰, 王兴泰, 等. 用遗传算法进行瑞利波反演[J]. 物探与化探, 1995, 19(3):178-185.
|
[23] |
Zhao D, Wang G J, Wang X T, et al. The application of genetic algorithm to Rayleigh wave inversion[J]. Geophysical and Geochemical Exploration, 1995, 19(3):178-185.
|
[24] |
裴江云, 吴永刚, 刘英杰. 近地表低速带反演[J]. 长春地质学院学报, 1994, 24(3):317-320.
|
[24] |
Pei J Y, Wu Y G, Liu Y J. Near-surface low-speed band inversion[J]. Journal of Changchun University of Earth Sciences, 1994, 24(3):317-320.
|
[25] |
林美言. 基于面波信息的近地表品质因子反演方法研究[D]. 青岛: 中国石油大学(华东), 2017.
|
[25] |
Lin M Y. Research on inverting quality factor of near surface based on surface waves[D]. Qingdao: China University of Petroleum(East China), 2017.
|
[26] |
沈鸿雁, 李庆春, 严月英, 等. 多道瞬态面波相速度分析[J]. 石油物探, 2016, 55(5):692-702.
|
[26] |
Shen H Y, Li Q C, Yan Y Y, et al. Phase velocity analysis of multi-channel transient surface wave[J]. Geophysical Prospecting for Petroleum, 2016, 55(5):692-702.
|
[27] |
Fomel S. Shaping regularization in geophysical-estimation problems[J]. Geophysics, 2007, 72(2):R29-R36.
|
|
|
|