|
|
Research on the detection of underground pedestrian passage by high precision gravity exploration |
YANG Min1,2,3,8(), XU Xin-Qiang1,8(), CHEN Ming4, Ji Xiao-Lin5, WANG Wan-Yin6,7, ZHAO Dong-Ming3, ZHOU Wei1, ZHANG Yi-Mi6,7 |
1. Xi’an Division of Surveying and Mapping, Xi’an 710054, China 2. Hubei Subsurface Multi-scale Imaging Key Laboratory, School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China 3. Institute of Geospatial Information, Information Engineering University, Zhengzhou, 450001, China 4. Guangdong Geological and Geophysical Engineering Investigation Institute, Guangzhou 510000, China 5. Information and Navigation College, Air Force Engineering University 710007, China 6. School of Geology Engineering and Geomatics, Chang’an University, Xi’an 710054, China 7. National Engineering Research Center of Offshore Oil and Gas Exploration, Beijing 100028, China 8. Key Laboratory of Smart Earth, Xi’an 710054, China |
|
|
Abstract Underground cavities with shallow burial and small scale are difficult to detect. With the development of gravity sensing technology, the accurate and rapid acquisition of micro-gravity variations brings new opportunities for detecting underground cavities, and it has wide research and practical value for the detection of small-scale underground cavities. This paper systematically analyzes and studies underground cavities from three aspects: gravity basic theory, gravity detection technology, and gravity data processing and inversion. Under given body size and gravity data accuracy, the maximum burial depth of gravity detection is calculated using the bisection method. High-density acquisition and high-precision gravity detection methods are applied to the actual detection of an underground pedestrian tunnel in a certain area of a passenger station. A set of high-precision gravity grid data is obtained. The theoretical research and measurement results indicate that existing gravity instruments have the ability to detect underground cavities. By using the minimum curvature potential field separation method, 2.5D interactive inversion and the target area recognition three-dimensional physical property fast inversion method, the approximate SN distribution and burial depth of the underground pedestrian tunnel are obtained, which is approximately 2.5~5 m, consistent with the actual situation. This study has developed a complete gravity exploration process for detecting underground cavities, and it has certain reference value.
|
Received: 05 February 2024
Published: 27 June 2024
|
|
|
|
|
|
Three-dimensional diagram of the underground massive cavity model
|
|
Gravity data of cavity (The white border is the horizontal projection of the cavity model)
|
|
Schematic diagram of xOz section depth of the massive cavity model The relationship between the depth of the center ζcentre and the accuracy of gravity data Δgmse is studied
|
重力数据精度/mGal | 0.03 | 0.05 | 0.1 | 最大探测深度/m | 9.06 | 5.85 | 2.87 |
|
Maximum detection depth of underground cavity models under different gravity data accuracies
|
|
Layout of gravity measurement points in the test area of a passenger station in a certain area
|
|
Bouguer gravity grid data in the test area of a passenger station in a certain area
|
|
Regional Bouguer gravity grid data in the test area of a passenger station in a certain area
|
|
Residual Bouguer gravity grid data in the test area of a passenger station in a certain area
|
|
Plan position of profile Line A
|
|
2.5D gravity profile inversion result of Line A
|
|
Distribution of target area grids involved in the inversion calculation
|
|
Three-dimensional physical property inversion result of gravity in the test area of a passenger station in a certain area
|
[1] |
王庆宾, 江东, 赵东明, 等. 重力垂直梯度测量探测能力的正演[J]. 测绘科学技术学报, 2011, 28(3):161-168.
|
[1] |
Wang Q B, Jiang D, Zhao D M, et al. Underground vacancy detection based on vertical gravity gradient measurements[J]. Journal of Geomatics Science and Technology, 2011, 28(3):161-168.
|
[2] |
江东. 重力梯度测量探测地下人造空洞的研究[D]. 郑州: 解放军信息工程大学, 2012.
|
[2] |
Jiang D. Underground man-made vacancy detection from Gravity gradiometry[D]. Zhengzhou: PLA Information Engineering University, 2012.
|
[3] |
Fajklewicz Z J. Gravity vertical gradient measurements for the detection of small geologic and anthropogenic forms[J]. Geophysics, 1976, 41(5):1016-1030
|
[4] |
Butler D K. Microgravimetric and gravity gradient techniques for detection of subsurface cavities[J]. Geophysics, 1984, 49(7):1084-1096
|
[5] |
Romaides A J, Battis J C, Sands R W, et al. A comparison of gravimetric techniques for measuring subsurface void signals[J]. Journal of Physics, 2001, 34(3):433-443.
|
[6] |
胡强, 伍吉仓, 郑二龙, 等. 利用微重力测量探测城市地下孔洞[J]. 工程勘察, 2015, 43(11):74-78.
|
[6] |
Hu Q, Wu J C, Zheng E L, et al. Detecting underground cavities in urban areas with micro-gravity measurements[J]. Geotechnical Investigation & Surveying, 2015, 43(11):74-78.
|
[7] |
刘平利, 乔天荣, 张鸿祥. 老旧防空洞探测方法与分析[J]. 测绘与空间地理信息, 2021, 44(4):189-191.
|
[7] |
Liu P L, Qiao T R, Zhang H X. Detection methods and analysis of old air-raid shelters[J]. Surveying and Mapping and Spatial Geographic Information, 2021, 44(4):189-191.
|
[8] |
王新月, 刘杰, 孙澎勇, 等. 基于车载重力测量平台的城市地下空洞快速探测[J]. 吉林大学学报:地球科学版, 2019, 49(3):838-845.
|
[8] |
Wang X Y, Liu J, Sun P Y, et al. Rapid detection of urban underground cavity based on vehicle gravity measurement platform[J]. Journal of Jilin University:Earth Science Edition, 2019, 49(3):838-845.
|
[9] |
徐燕君, 陈明, 伍卓鹤, 等. 高精度重力在城市地下空间探测研究中的应用[J]. 地质学刊, 2021, 45(4):425-432.
|
[9] |
Xu Y J, Chen M, Wu Z H, et al. Application of high precision gravity in the research of urban underground space exploration[J]. Journal of Geology, 2021, 45(4):425-432.
|
[10] |
Agocs W B. Least-squares residual anomaly determiration[J]. Geoghysics, 1951, 16(4):686-696.
|
[11] |
程方道, 刘东甲, 姚汝信. 划分重力区域场与局部场的研究[J]. 物化探计算技术, 1987, 9(1):1-9
|
[11] |
Cheng F D, Liu D J, Yao R X. A study on the identification of regional and local gravity fields[J]. Computing Techiques for Geophysical and Geochemical Exploration, 1987, 9(1):1-9.
|
[12] |
纪晓琳, 王万银, 邱之云. 最小曲率位场分离方法研究[J]. 地球物理学报, 2015, 58(3):1042-1058.
|
[12] |
Ji X L, Wang W Y, Qiu Z Y. The research to the minimum curvature technique for potential field data separation[J]. Chinese Journal of Geophysics, 2015, 58(3):1042-1058.
|
[13] |
朱光明, 高静怀, 王玉贵. 小波变换及其在一维滤波中的应用[J]. 石油物探, 1993, 32(1):1-10.
|
[13] |
Zhu G M, Gao J H, Wang Y G. Wavelet transform and its application to 1D filtering[J]. Geophysical Prospecting for Petroleum, 1993, 32(1):1-10.
|
[14] |
徐亚, 郝天珧, 周立宏, 等. 位场小波变换研究进展[J]. 地球物理学进展, 2006, 21(4):1132-1138.
|
[14] |
Xu Y, Hao T Y, Zhou L H, et al. Review of wavelet transform in potential field[J]. Progress in Geophysics, 2006, 21(4):1132-1138.
|
[15] |
Syberg F J R. A Fourier method for the regional residual problem of potential fields[J]. Geophysical Prospecting, 1972,20:47-75.
|
[16] |
Charaborty L B. Mapping of crustal discontinuities by wavelength filtering of gravity field[J]. Geophysical Prospecting, 1992,40:801-822.
|
[17] |
王庆宾, 张超, 黄佳喜, 等.利用重力测量技术搜索、 探测人工地下空洞的技术与策略研究[C]// 第十三届国家安全地球物理专题研讨会, 2017.
|
[17] |
Wang Q B, Zhang C, Huang J X, et al. Research on techniques and strategies in searching and detecting artificial underground cavity by gravity surveying[C]// The 13rd National Security Geophysical Workshop, 2017.
|
[18] |
张超. 搜索地下空洞的重力反演技术与方法研究[D]. 郑州: 解放军信息工程大学, 2017.
|
[18] |
Zhang C. Research on techniques and methods of gravity inverting in searching underground cavity[D]. Zhengzhou: PLA Information Engineering University, 2017.
|
[19] |
Moazam S, Aghajani H, Kalate A N. The priority of microgravity focusing inversion in 3D modeling of subsurface voids[J]. Environmental Earth Sciences, 2021,80:343.
|
[20] |
Yang M, Xu X, Wang W, et al. 3D gravity fast inversion based on Krylov subspace methods[J]. Journal of Geophysics and Engineering, 2024,21:29-46.
|
[21] |
曾华霖. 重力场与重力勘探[M]. 北京: 地质出版社, 2005.
|
[21] |
Zeng H L. Gravity field and gravity exploration[M]. Beijing: Geological Publishing House, 2005.
|
[22] |
张义蜜, 王万银, 熊盛青. 给定观测精度下的点(线)源模型重力与磁力垂向识别能力研究[J]. 地球物理学报, 2020, 63(11):4220-4231.
|
[22] |
Zhang Y M, Wang W Y, Xiong S Q. Research on the vertical recognition ability of gravity and magnetic data of point (line) source model with given survey accuracy[J]. Chinese Journal of Geophysics, 2020, 63(11):4220-4231.
|
[23] |
路瀚, 孙岩, 周明霞, 等. 微重力探测城市地下空间试验及正演模拟分析[J]. CT理论与应用研究, 2022, 31(5):543-556.
|
[23] |
Lu H, Sun Y, Zhou M X, et al. Experiment and forward modeling analysis of microgravity detection of urbanunderground space[J]. CT Theory and Applications, 2022, 31(5):543-556.
|
[24] |
Yang M, Wang W, Welford J K, et al. 3D gravity inversion with optimized mesh based on edge and center anomaly detection[J]. Geophysics, 2019, 84(3):G13-G23.
|
|
|
|