Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (4): 954-964    DOI: 10.11720/wtyht.2025.1275
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
山东省某典型工业城镇土壤重金属污染特征及风险评估
曾蛟1,2(), 孔令号1,2(), 刘淑亮1,2, 褚宏宪1,2, 赵正鹏1,2, 杨开丽1,2, 郭旭军1,2, 陈亮1,2
1.中国地质调查局 烟台海岸带地质调查中心, 山东 烟台 264000
2.自然资源部 黄河入海口陆海交互作用野外科学观测研究站, 山东 烟台 264000
Contamination characteristics and risk assessment of soil heavy metals in a typical industrial town in Shandong Province, China
ZENG Jiao1,2(), KONG Ling-Hao1,2(), LIU Shu-Liang1,2, CHU Hong-Xian1,2, ZHAO Zheng-Peng1,2, YANG Kai-Li1,2, GUO Xu-Jun1,2, CHEN Liang1,2
1. Yantai Center of Coastal Zone Geological Survey, China Geological Survey, Yantai 264000, China
2. Ministry of Natural Resources Observation and Research Station of Land-Sea Interaction Field in the Yellow River Estuary, Yantai 264000, China
全文: PDF(2434 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 为探究山东某典型工业城镇土壤重金属污染情况、来源及生态风险,于2022年8~10月采集了499件研究区表层土壤样品,采用经典统计法与空间插值法分析土壤Hg、Cd、As、Pb、Cu、Cr、Zn和Ni重金属含量及其空间分布特征,并运用PCA主成分分析法对研究区重金属进行来源解析,使用污染指数法评价研究区重金属污染水平。结果显示:研究区土壤Hg、Cd、As、Pb含量平均值均超过烟台市土壤重金属背景值,且8种元素均存在高值区域,显示重金属元素呈不同程度富集趋势;变异系数分析表明,除Ni外,其余重金属元素受人类活动影响较大;主成分分析表明,土壤中Cd、Pb、Cu、Zn和Cr主要来源于工业和交通源,As和Hg主要来源于工业、农业和生活源,Ni主要来源于自然条件土壤母质;单因子污染法、地累积指数法和内梅罗污染指数法研究表明,研究区土壤重金属除Hg和Cd外,整体呈无污染和轻微污染,Hg和Cd为研究区污染水平较高的元素;潜在生态风险评价显示,研究区土壤重金属污染整体呈轻微风险等级,少量污染较严重的点位主要分布在工业区周边,工业活动产生的“三废”是周边的土壤重金属富集的主要影响因素。研究区土壤重金属污染整体为中低污染水平,部分土壤重金属含量严重超标,尤其是Hg和Cd为研究区污染程度最重的元素,需引起重视。建议加强工业区周边土壤重金属监测工作,采取科学合理的措施以确保土壤可持续利用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曾蛟
孔令号
刘淑亮
褚宏宪
赵正鹏
杨开丽
郭旭军
陈亮
关键词 工业城镇土壤重金属污染特征源解析风险评价    
Abstract

To investigate the contamination, source, and ecological risk of soil heavy metals in a typical industrial town in Shandong Province, China, this study collected 499 topsoil samples from the study area from August to October 2022. The contents and spatial distributions of heavy metals like Hg, Cd, As, Pb, Cu, Cr, Zn, and Ni in the samples were analyzed using classical statistics and spatial interpolation methods. The source apportionment of heavy metals in the study area was explored through the principal component analysis (PCA). The contamination levels of heavy metals in the study area were assessed using the contamination index method. The results indicate that the average contents of Hg, Cd, As, and Pb in soils all exceeded their background values in Yantai City, and high-value zones were observed for all eight elements, indicating various degrees of enrichment. The analysis of coefficients of variation reveals that except for Ni, other heavy metals were significantly influenced by human activities. The PCA suggests that Cd, Pb, Cu, Zn, and Cr originated primarily from industrial and traffic sources. As and Hg were predominantly derived from industrial, agricultural, and domestic sources, while Ni was primarily from natural soil parent materials. The analyses based on the single-factor contamination index, geoaccumulation index, and Nemerow contamination index show that apart from Hg and Cd, other soil heavy metals in the study area exhibited no or slight contamination overall, demonstrating that the study area was principally contaminated by Hg and Cd. The potential ecological risk assessment suggests that the overall heavy metal contamination posed a minor risk level. A few sites with relatively severe contamination were primarily located around the industrial area. The waste gas, wastewater, and industrial residue generated by industrial activities constituted the dominant factor influencing the enrichment of heavy metals in surrounding soils. Overall, soil heavy metal contamination in the study area was at a moderate to low level, with some metals, particularly Hg and Cd, severely exceeding standard levels, warranting attention. It is recommended to strengthen the monitoring of heavy metals in soils around the industrial area, and adopt scientific and reasonable measures to ensure sustainable soil utilization.

Key wordsindustrial town    soil heavy metals    contamination characteristics    source apportionment    risk assessment
收稿日期: 2024-06-21      修回日期: 2024-11-22      出版日期: 2025-08-20
ZTFLH:  X142  
  X825  
基金资助:中国地质调查局项目(DD20243133);中国地质调查局项目(DD20230411)
通讯作者: 孔令号(1992-),男,硕士,高级工程师,主要从事矿山生态环境及海岸带地质调查研究工作。Email:1245046910@qq.com
作者简介: 曾蛟(1988-),男,硕士,高级工程师,主要从事分析测试工作。Email:416892321@qq.com
引用本文:   
曾蛟, 孔令号, 刘淑亮, 褚宏宪, 赵正鹏, 杨开丽, 郭旭军, 陈亮. 山东省某典型工业城镇土壤重金属污染特征及风险评估[J]. 物探与化探, 2025, 49(4): 954-964.
ZENG Jiao, KONG Ling-Hao, LIU Shu-Liang, CHU Hong-Xian, ZHAO Zheng-Peng, YANG Kai-Li, GUO Xu-Jun, CHEN Liang. Contamination characteristics and risk assessment of soil heavy metals in a typical industrial town in Shandong Province, China. Geophysical and Geochemical Exploration, 2025, 49(4): 954-964.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1275      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I4/954
Fig.1  研究区域示意及采样点分布
指标 方法来源 测定仪器
As 《岩石矿物分析》氢化物发生—原子荧光光谱法测定砷、锑、铋(DZG20.01—2011) 原子荧光光度计(AFS-8330)
Cu、Ni、
Zn
《岩石矿物分析》电感耦合等离子体发射法测定27种主、次、痕量元素(DZG20.01—2011) 等离子光谱仪(iCAP 6300)
Cr、Cd、
Pb
《岩石矿物分析》电感耦合等离子体质谱法测定30种痕量元素(DZG20.01—2011) 等离子体质谱(iCAP Q)
Hg 《岩石矿物分析》冷蒸汽—原子荧光光谱法测定汞(DZG20.01—2011) 原子荧光仪(XGY1011A)
Table 1  土壤重金属含量测定方法及仪器
元素 Hg Cd As Pb Ni Cu Cr Zn
毒性响应系数(${T}_{r}^{i}$) 40 30 10 5 5 5 2 1
Table 2  重金属元素毒性响应系数
单因子指数法 内梅罗指数法 地累积指数法 潜在生态风险指数法
Pi 污染程度 PN 污染程度 Igeo 污染程度 ${E}_{r}^{i}$ RI 风险等级
Pi≤1 无污染 PN≤0.7 清洁 Igeo≤0 ${E}_{r}^{i}$<40 RI<150 轻微危害
1<Pi≤2 轻微污染 0.7<PN≤1 警戒 0<Igeo≤1 无—中度 40≤${E}_{r}^{i}$<80 150≤RI<300 中等危害
2<Pi≤3 轻度污染 1<PN≤2 轻度污染 1<Igeo≤2 中度 80≤${E}_{r}^{i}$<160 300≤RI<600 强危害
3<Pi≤5 中度污染 2<PN≤3 中度污染 2<Igeo≤3 中—强度 160≤${E}_{r}^{i}$<320 600≤RI<1200 很强危害
Pi>5 重度污染 PN>3 重度污染 3<Igeo≤4 强度 ${E}_{r}^{i}$≥320 RI≥1200 极强危害
4<Igeo≤5 强度—极强
Igeo>5 极强
Table 3  土壤重金属评价标准
重金属 均值/10-6 标准差 偏度 峰度 变异系数/% 范围/10-6 背景值[38]/10-6 背景值变异系数/%
Hg 0.051 30.9 2.8 13 60.3 0.005~0.258 34 47.0
Cu 22.19 29.6 13.1 200.2 133.5 2.66~529.00 26 52.0
Ni 20.44 10.9 11.3 171.7 33.3 4.90~203.00 24.6 39.0
Zn 54.6 50.5 18.2 371.7 92.5 13.3~1100.0 60.4 30.0
As 7.52 2.9 3.8 39.2 39.0 1.4~41.50 6.4 34.0
Cr 50.32 24.1 13.2 212.2 47.9 17.7~472.00 57 38.0
Cd 0.160 0.4 16.9 323.5 218.1 0.029~7.200 0.12 35.0
Pb 30.070 18.8 12 181.6 62.5 12.857~347.100 27.2 23.0
Table 4  研究区土壤重金属元素含量统计特征
Fig.2  研究区土壤重金属元素含量空间分布
元素 Hg Cu Ni Zn As Cr Cd Pb
Hg 1
Cu 0.067 1
Ni -0.012 0.152** 1
Zn 0.102* 0.844** 0.176** 1
As 0.312** 0.309** 0.053 0.137** 1
Cr -0.004 0.661** 0.361** 0.848** -0.030 1
Cd 0.308** 0.513** 0.058 0.505** 0.490** 0.284** 1
Pb 0.377** 0.399** 0.023 0.430** 0.421** 0.215** 0.793** 1
Table 5  土壤重金属元素Pearson相关性分析
元素 主成分
1 2 3
Hg 0.323 0.564 0.243
Cu 0.841 -0.27 -0.18
Ni 0.247 -0.373 0.872
Zn 0.865 -0.39 -0.188
As 0.468 0.567 0.215
Cr 0.7 -0.616 0.012
Cd 0.797 0.384 -0.062
Pb 0.727 0.459 -0.055
特征值 3.494 1.74 1.04
贡献率/% 43.130 21.479 12.838
累积贡献率/% 43.13 64.609 77.447
Table 6  土壤重金属元素主成分分析
Fig.3  重金属旋转空间成分
元素 污染指数范围 污染指数均值 不同污染级别样点占比/%
无污染 轻微污染 轻度污染 中度污染 重度污染
Hg 0.14~7.59 1.51 26.1 55.5 13.0 3.6 1.8
Cu 0.10~20.35 0.85 87.4 10.2 1.4 0.4 0.6
Ni 0.20~8.46 0.85 83.4 15.8 0.4 0 0.4
Zn 0.22~18.21 0.90 81.6 17.6 0 0.4 0.4
As 0.22~6.48 1.18 30.1 67.5 2.0 0 0.4
Cr 0.31~8.23 0.88 86.8 12.6 0.2 0 0.4
Cd 0.24~59.57 1.34 46.5 47.5 3.6 0.8 1.6
Pb 0.47~12.76 1.11 42.5 55.5 1.4 0 0.6
Table 7  土壤重金属元素单因子污染评价
内梅罗指
数范围
内梅罗指
数均值
不同污染指数分级样点占比/%
清洁 警戒 轻度污染 中度污染 重度污染
0.71~43.14 1.64 0 13.6 72.7 9.8 3.8
Table 8  内梅罗综合污染指数评价
元素 地累积指数
范围
地累积指数
均值
不同污染指数分级样点占比/%
无污染 无—中度污染 中度污染 中度—强污染 强度污染 强—极强污染 极强污染
Hg -2.79~2.92 0.38 26.1 55.5 16.6 1.8 0 0 0
Cu -3.87~3.76 -1.02 95.6 3.4 0.4 0.2 0.4 0 0
Ni -2.88~2.50 -0.90 98.4 1.2 0.2 0.2 0 0 0
Zn -2.77~3.60 -0.83 98.6 0.6 0.6 0 0.2 0 0
As -2.78~2.11 -0.45 86.6 13.0 0.2 0.2 0 0 0
Cr -2.27~2.46 -0.82 99.0 0.6 0.2 0.2 0 0 0
Cd -2.63~5.31 -0.49 88.0 9.6 1.2 0.6 0.4 0 0.2
Pb -1.67~3.09 -0.53 94.4 5.0 0.2 0.2 0.2 0 0
Table 9  地累积指数法污染评价
元素 ${E}_{r}^{i}$指数范围
不同污染指数分级样点占比/%
轻微
危害
中等
危害
强危害 很强
危害
极强
危害
Hg 5.8~303.5 60.2 26.1 55.5 16.6 1.8 0
Cu 0.5~101.7 4.3 99.4 0.4 0.2 0 0
Ni 1.0~42.3 4.3 99.8 0.2 0 0 0
Zn 0.2~18.2 0.9 100.0 0 0 0 0
As 2.2~64.8 11.8 99.6 0.4 0 0 0
Cr 0.6~16.6 1.8 100.0 0 0 0 0
Cd 7.3~1790.1 40.2 81.6 14.8 2.4 0.6 0.6
Pb 2.4~63.8 5.5 99.8 0.2 0 0 0
Table 10  单项重金属元素潜在生态风险程度评价
综合潜在生态
风险指数范围
均值 不同污染指数分级样点占比/%
轻微
危害
中等
危害
强危害 很强
危害
极强
危害
37.8~864.7 121.4 0 0.14 0.73 0.10 0.04
Table 11  多种重金属元素潜在生态风险程度评价
Fig.4  重金属元素RI贡献率
[1] 李晓曼, 李青青, 杨洁, 等. 上海市典型工业用地土壤和地下水重金属复合污染特征及生态风险评价[J]. 环境科学, 2022, 43(12):5687-5697.
[1] Li X M, Li Q Q, Yang J, et al. Compound pollution characteristics and ecological risk assessment of heavy metals in soil and groundwater of typical industrial lands in Shanghai[J]. Environmental Science, 2022, 43(12):5687-5697.
[2] 赵琳兴, 雷红平, 王雁鹤, 等. 黄河上游典型工业园区周边土壤重金属污染评价及来源解析[J/OL]. 环境科学,1-24[2024-09-10].DOI:10.13227/j.hjkx.202404210.
[2] Zhao L X, Lei H P, Wang Y H, et al. Evaluation and source analysis of soil heavy metal pollution around typical Industrial parks in upper reaches of Yellow River[J/OL]. Environmental Science,1-24 [2024-09-10].DOI:10.13227/j.hjkx.202404210.
[3] 赵庆令, 李清彩, 马龙, 等. 单县表层土壤重金属污染特征、健康风险及溯源解析[J]. 环境科学, 2025, 46(1):442-452.
[3] Zhao Q L, Li Q C, Ma L, et al. Characteristics,health risks,and source analysis of heavy metal pollution in surface soil in Shanxian County[J]. Environmental Science, 2025, 46(1):442-452.
[4] 徐玉玲, 冯巩俐, 蒋晓煜, 等. 兰州市某交通干道土壤重金属分布特征及其对绿化植物的影响[J]. 应用生态学报, 2020, 31(4):1341-1348.
doi: 10.13287/j.1001-9332.202004.040
[4] Xu Y L, Feng G L, Jiang X Y, et al. Distribution characteristics of heavy metals in soil and its influence on greening plants in a main road of Lanzhou City,Northwest China[J]. Chinese Journal of Applied Ecology, 2020, 31(4):1341-1348.
[5] Hu B F, Jia X L, Hu J, et al. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta,China[J]. International Journal of Environmental Research and Public Health, 2017, 14(9):1042.
[6] 韩冰, 黄勇, 李欢, 等. 北京市房山区土壤重金属元素分布、富集特征及来源解析[J]. 物探与化探, 2024, 48(3):820-833.
[6] Han B, Huang Y, Li H, et al. Distributions, enrichment characteristics,and sources of heavy metals in soils in Fangshan District,Beijing[J]. Geophysical and Geochemical Exploration, 2024, 48(3):820-833.
[7] 夏敏, 赵炳梓, 张佳宝. 基于GIS的黄淮海平原典型潮土区土壤重金属积累研究[J]. 土壤学报, 2013, 50(4):684-692.
[7] Xia M, Zhao B Z, Zhang J B. Gis-based research on soil heavy metal accumulation in a fluvo-aquic soil area typical of the Huang-Huai-Hai plain[J]. Acta Pedologica Sinica, 2013, 50(4):684-692.
[8] 高智群, 张美剑, 赵科理, 等. 土壤—水稻系统重金属空间异质性研究——以浙江省嵊州市为例[J]. 中国环境科学, 2016, 36(1):215-224.
[8] Gao Z Q, Zhang M J, Zhao K L, et al. Heavy metal contamination in soil-rice system and its spatial variation in Shengzhou City[J]. China Environmental Science, 2016, 36(1):215-224.
[9] 邱孟龙, 李芳柏, 王琦, 等. 工业发达城市区域耕地土壤重金属时空变异与来源变化[J]. 农业工程学报, 2015, 31(2):298-305.
[9] Qiu M L, Li F B, Wang Q, et al. Spatio-temporal variation and source changes of heavy metals in cultivated soils in industrial developed urban areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(2):298-305.
[10] 杨勇, 梅杨, 张楚天, 等. 基于时空克里格的土壤重金属时空建模与预测[J]. 农业工程学报, 2014, 30(21):249-255.
[10] Yang Y, Mei Y, Zhang C T, et al. Spatio-temporal modeling and prediction of soil heavy metal based on spatio-temporal Kriging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(21):249-255.
[11] Jiang Y X, Chao S H, Liu J W, et al. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province,China[J]. Chemosphere, 2017,168:1658-1668.
[12] 刘坤, 李雨桐, 余海, 等. 重庆某工业园土壤重金属污染特征、风险及源解析[J]. 中国环境监测, 2024, 40(2):74-83.
[12] Liu K, Li Y T, Yu H, et al. Pollution characteristics,risk assessment and sources analysis of soil heavy metals in an industrial park of Chongqing[J]. Environmental Monitoring in China, 2024, 40(2):74-83.
[13] 杨艳, 刘彬, 夏飞强, 等. 皖南典型区耕地土壤重金属富集特征、来源识别及健康风险评估[J]. 物探与化探, 2024, 48(1):255-263.
[13] Yang Y, Liu B, Xia F Q, et al. Enrichment characteristics,source identification,and health risk assessment of soil heavy metals in typical cultivated land in the mountainous area of southern Anhui Province[J]. Geophysical and Geochemical Exploration, 2024, 48(1):255-263.
[14] 丁祥, 袁贝, 杜平, 等. 典型矿冶城市土壤重金属累积驱动因子研究和概率风险评估[J]. 地学前缘, 2024, 31(2):31-41.
doi: 10.13745/j.esf.sf.2023.11.46
[14] Ding X, Yuan B, Du P, et al. Heavy metal accumulation in soils of a typical mining community:Driving factors and probabilistic health risk assessment[J]. Earth Science Frontiers, 2024, 31(2):31-41.
[15] 车凯, 陈崇明, 郑庆宇, 等. 燃煤电厂重金属排放与周边土壤中重金属污染特征及健康风险[J]. 环境科学, 2022, 43(10):4578-4589.
[15] Che K, Chen C M, Zheng Q Y, et al. Heavy metal emissions from coal-fired power plants and heavy metal pollution characteristics and health risks in surrounding soils[J]. Environmental Science, 2022, 43(10):4578-4589.
[16] Liang J H, Liu Z Y, Tian Y Q, et al. Research on health risk assessment of heavy metals in soil based on multi-factor source apportionment:A case study in Guangdong Province,China[J]. Science of The Total Environment, 2023,858:159991.
[17] 于元赫, 吕建树, 王亚梦. 黄河下游典型区域土壤重金属来源解析及空间分布[J]. 环境科学, 2018, 39(6):2865-2874.
[17] Yu Y H, Lyu J S, Wang Y M. Source identification and spatial distribution of heavy metals in soils in typical areas around the lower Yellow River[J]. Environmental Science, 2018, 39(6):2865-2874.
[18] 艾建超, 王宁, 杨净. 基于UNMIX模型的夹皮沟金矿区土壤重金属源解析[J]. 环境科学, 2014, 35(9):3530-3536.
[18] Ai J C, Wang N, Yang J. Source apportionment of soil heavy metals in Jiapigou goldmine based on the UNMIX model[J]. Environmental Science, 2014, 35(9):3530-3536.
[19] 董騄睿, 胡文友, 黄标, 等. 基于正定矩阵因子分析模型的城郊农田土壤重金属源解析[J]. 中国环境科学, 2015, 35(7):2103-2111.
[19] Dong L R, Hu W Y, Huang B, et al. Source appointment of heavy metals in suburban farmland soils based on positive matrix factorization[J]. China Environmental Science, 2015, 35(7):2103-2111.
[20] 郭军康, 赵隽隽, 李怡凡, 等. 矿区土壤重金属污染修复技术研究进展[J]. 农业资源与环境学报, 2023, 40(2):249-260.
[20] Guo J K, Zhao J J, Li Y F, et al. Research progress on remediation technology for heavy metal-contaminated soil in mines[J]. Journal of Agricultural Resources and Environment, 2023, 40(2):249-260.
[21] 白贵琪, 傅开彬, 谌书, 等. 建设用地重金属污染修复技术筛选模型构建[J]. 中国环境科学, 2023, 43(8):4147-4153.
[21] Bai G Q, Fu K B, Chen S, et al. Construction of screening model for remediation of heavy metal pollution in construction land[J]. Construction of screening model for remediation of heavy metal pollution in construction land[J]. China Environmental Science, 2023, 43(8):4147-4153.
[22] 赵鑫娜, 杨忠芳, 余涛. 矿区土壤重金属污染及修复技术研究进展[J]. 中国地质, 2023, 50(1):84-101.
[22] Zhao X N, Yang Z F, Yu T. Review on heavy metal pollution and remediation technology in the soil of mining areas[J]. Geology in China, 2023, 50(1):84-101.
[23] 李锋, 刘思源, 李艳, 等. 工业发达城市土壤重金属时空变异与源解析[J]. 环境科学, 2019, 40(2):934-944.
[23] Li F, Liu S Y, Li Y, et al. Spatiotemporal variability and source apportionment of soil heavy metals in a industrially developed city[J]. Environmental Science, 2019, 40(2):934-944.
[24] 陈明, 李名阅, 周锦阳, 等. 西北某重工业区降尘重金属污染特征及源解析[J]. 环境科学与技术, 2024, 47(2):155-164.
[24] Chen M, Li M Y, Zhou J Y, et al. Pollution characteristics and source analysis of heavy metals in the atmosphere dustfall of a typical heavy industrial city in northwest China[J]. Environmental Science and Technology, 2024, 47(2):155-164.
[25] 赵庆令, 李清彩, 安茂国, 等. 基于PMF-PCA/APCS与PERI的菏泽油用牡丹种植区表层土壤重金属潜在来源识别及生态风险评估[J]. 环境科学, 2023, 44(9):5253-5263.
[25] Zhao Q L, Li Q C, An M G, et al. Potential source identification and ecological risk assessment of heavy metals in surface soil of Heze oil peony planting area based on PMF-PCA/APCS and PERI[J]. Environmental Science, 2023, 44(9):5253-5263.
[26] 张文强, 滕跃, 柳浩然, 等. 聊城市典型农业区土壤重金属分布特征、生态风险及来源解析[J]. 干旱区资源与环境, 2024, 38(4):171-180.
[26] Zhang W Q, Teng Y, Liu H R, et al. Distribution, ecological risks,and sources of heavy metals in soil of typical agricultural areas in Liaocheng City[J]. Journal of Arid Land Resources and Environment, 2024, 38(4):171-180.
[27] 赵玉杰, 师荣光, 白志鹏, 等. 山东淄博玉米产区土壤砷含量空间变异研究[J]. 环境科学, 2006, 27(8):1676-1681.
[27] Zhao Y J, Shi R G, Bai Z P, et al. Spatial variability analysis of soil arsenic in Zibo maize producing area,Shandong Province[J]. Environmental Science, 2006, 27(8):1676-1681.
[28] 王菲, 费敏, 韩冬锐, 等. 山东省典型污灌区土壤—小麦重金属健康风险评估[J]. 环境科学, 2023, 44(6):3609-3618.
[28] Wang F, Fei M, Han D R, et al. Health risk assessment of heavy metals in soil and wheat grain in the typical sewage irrigated area of Shandong Province[J]. Environmental Science, 2023, 44(6):3609-3618.
[29] 李梦婷, 沈城, 吴健, 等. 快速城市化区域不同用地类型土壤重金属含量分布特征及生态风险[J]. 环境科学, 2021, 42(10):4889-4896.
[29] Li M T, Shen C, Wu J, et al. Content and ecological risks of heavy metals in soil with different land uses in a rapidly urbanizing area[J]. Environmental Science, 2021, 42(10):4889-4896.
[30] 孟令华, 杜小亮, 刘乾, 等. 泰安市城区土壤重金属污染特征及风险评价[J]. 中国无机分析化学, 2022, 12(5):41-49.
[30] Meng L H, Du X L, Liu Q, et al. Pollution characteristics and risk assessment of Heavy metals in soil in urban area of Tai'an[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(5):41-49.
[31] 代杰瑞, 庞绪贵, 宋建华, 等. 山东淄博城市和近郊土壤元素地球化学特征及生态风险研究[J]. 中国地质, 2018, 45(3):617-627.
[31] Dai J R, Pang X G, Song J H, et al. A study of geochemical characteristics and ecological risk of elements in soil of urban and suburban areas of Zibo City,Shandong Province[J]. Geology in China, 2018, 45(3):617-627.
[32] 王碧莹, 李振函, 李海岗, 等. 黄河口国家公园湿地土壤重金属污染评价[J]. 济南大学学报:自然科学版, 2024, 38(3):267-273.
[32] Wang B Y, Li Z H, Li H G, et al. Evaluation of soil pollution caused by heavy mental in wetland of the Yellow River Estuary National Park[J]. Journal of University of Jinan:Science and Technology, 2024, 38(3):267-273.
[33] 赵莉源, 孔令号, 赵志刚, 等. 胶东半岛某金矿周边土壤重金属的污染特征、来源分析及风险评价[J]. 中国地质, 2024, 51(5):1485-1500.
[33] Zhao L Y, Kong L H, Zhao Z G, et al. Pollution characteristics,source analysis and risk assessment of heavy metals in soil around a gold mine in Jiaodong Peninsula[J]. Geology in China, 2024, 51(5):1485-1500.
[34] 朱林宇. 胶东金矿区土壤重金属时空变异及来源解析研究[D]. 济南: 山东师范大学, 2022.
[34] Zhu L Y. Spatiotemporal variation and source apportionment of heavy metals in soils of Jiaodong gold mine[D]. Jinan: Shandong Normal University, 2022.
[35] 李波, 胡舒娅, 赵全升. 莱州湾沿岸海水入侵区地下水化学特征[J]. 世界地质, 2020, 39(4):971-977.
[35] Li B, Hu S Y, Zhao Q S. Chemical characteristics of groundwater in coastal seawater intrusion area of Laizhou Bay[J]. Global Geology, 2020, 39(4):971-977.
[36] 冯晨馨, 邱隆伟, 高茂生, 等. 山东半岛北部泥质海岸带地下水水化学演化[J]. 海洋地质前沿, 2022, 8(12):16-25.
[36] Feng C X, Qiu L W, Gao M S, et al. Hydrochemical evolution of groundwater in muddy coastal zone of the northern Shandong Peninsula[J]. Marine Geology Frontiers, 2022, 8(12):16-25.
[37] 万梦雪, 焦文涛, 胡文友, 等. 城市工业区土壤重金属累积特征与来源解析——以上海市闵行区典型工业区为例[J]. 环境化学, 2023, 42(6):1886-1898.
[37] Wan M X, Jiao W T, Hu W Y, et al. Accumulation and source apportionment of heavy metals in urban-industrial soils—A case study in Minhang District of Shanghai[J]. Environmental Chemistry, 2023, 42(6):1886-1898.
[38] 庞绪贵, 代杰瑞, 陈磊, 等. 山东省17市土壤地球化学背景值[J]. 山东国土资源, 2019, 35(1):46-56.
[38] Pang X G, Dai J R, Chen L, et al. Soil geochemical background value of 17 cities in Shandong Province[J]. Shandong Land and Resources, 2019, 35(1):46-56.
[39] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2):112-115.
[39] Xu Z Q, Ni S J, Tuo X G, et al. Calculation of heavy metals' toxicity coefficient in the evaluation of potential ecological risk index[J]. Environmental Science & Technology, 2008, 31(2):112-115.
[40] 杨崛园, 熊健, 李伟, 等. 基于PCA-APCS-MLR模型的西藏扎西岗湿地土壤重金属风险评价及来源解析[J]. 生态学杂志, 2024, 43(6):1807-1816.
[40] Yang J Y, Xiong J, Li W, et al. Soil heavy metal risk evaluation and source analysis of Zhaxigang wetland in Tibet based on PCA-APCS-MLR Model[J]. Chinese Journal of Ecology, 2024, 43 (6):1807-1816.
doi: 10.13292/j.1000-4890.202406.038
[41] 陈小敏, 朱保虎, 杨文, 等. 密云水库上游金矿区土壤重金属空间分布、来源及污染评价[J]. 环境化学, 2015, 34(12):2248-2256.
[41] Chen X M, Zhu B H, Yang W, et al. Sources,spatial distribution and contamination assessments of heavy metals in gold mine area soils of Miyun Reservoir upstream,Beijing,China[J]. Environmental Chemistry, 2015, 34 (12):2248-2256.
[42] 李浪. 山西省典型工业园区土壤重金属空间分布、来源及风险评价[D]. 太原: 太原科技学, 2023.
[42] Li L. Spatial distribution,sources and risk assessment of soil heavy metals in typical Industrial park in Shanxi Province[D]. Taiyuan: Taiyuan University of Science and Technology, 2023.
[43] 张东明. 工业区周边农田土壤重金属分布特征及风险评价[D]. 石河子: 石河子大学, 2017.
[43] Zhang D M. Heavy metal distribution and risk evaluation in farmland soil around an industrial area in northern Xinjiang[D]. Shihezi: Shihezi University, 2017.
[44] 赖涓涓, 杨德钰, 刘亮, 等. 中国西北地区银川市浅表土重金属污染特征及来源解析[J/OL]. 中国环境科学,1-12[2024-09-10].https://doi.org/10.19674/j.cnki.issn1000-6923.20240326.006.
[44] Lai J J, Yang D Y, Liu L, et al. Characteristics and source identification of heavy metal pollution in shallow topsoil in Yinchuan City,northwest China[J/OL]. 中国环境科学,1-12[2024-09-10].https://doi.org/10.19674/j.cnki.issn1000-6923.20240326.006.
[45] 樊新刚, 米文宝, 马振宁, 等. 宁夏石嘴山河滨工业园区表层土壤重金属污染的时空特征[J]. 环境科学, 2013, 34(5):1887-1894.
[45] Fan X G, Mi W B, Ma Z M, et al. Spatial and temporal characteristics of heavy metal concentration of surface soil in Hebin industrial park in Shizuishan northwest China[J]. Environmental Science, 2013, 34 (5):1887-1894.
[46] 王中阳. 朝阳地区耕地土壤重金属污染风险评价与来源解析研究[D]. 沈阳: 沈阳农业大学, 2018.
[46] Wang Z Y. Research on risk assessment and source analysis of heavy metal pollution in farmland soil in Chaoyang Region[D]. Shenyang: Shenyang Agricultural University, 2018.
[47] 田甜, 杨婷, 邹县梅, 等. 钢铁厂周边土壤重金属污染特征及风险评价——以闽西三明钢铁厂周边农田为例[J]. 农学学报, 2021, 11(6):42-46.
doi: 10.11923/j.issn.2095-4050.cjas20191000246
[47] Tian T, Yang T, Zou X M, et al. Heavy metals in farmland surrounding the Sanming steel plant in western Fujian:Pollution characteristics and risk assessment[J] Journal of Agriculture, 2021, 11 (6):42-46.
doi: 10.11923/j.issn.2095-4050.cjas20191000246
[48] 谢小进, 康建成, 李卫江, 等. 上海宝山区农用土壤重金属分布与来源分析[J]. 环境科学, 2010, 31(3):768-774.
[48] Xie X J, Kang J C, Li W J, et al. Analysis on heavy metal concentrations in agricultural soils of Baoshan,Shanghai[J] Environmental Science, 2010, 31 (3):768-774.
[49] 王改玲, 李立科, 郝明德, 等. 长期定位施肥对土壤重金属含量的影响及环境评价[J]. 水土保持学报, 2010, 24(3):60-63,70.
[49] Wang G L, Li L K, Hao M D, et al. Effects of long-term fertilization on heavy-metal contents of soil and environmental quality evaluation[J]. Journal of Soil and Water Conservation, 2010, 24 (3):60-63,70.
[50] 刘勇, 岳玲玲, 李晋昌. 太原市土壤重金属污染及其潜在生态风险评价[J]. 环境科学学报, 2011, 31(6):1285-1293.
[50] Liu Y, Yue L L, Li J C. Evaluation of heavy metal contamination and its potential ecological risk to the soil in Taiyuan,China[J]. Acta Scientiae Circumstantiae, 2011, 31 (6):1285-1293.
[51] 戴前进, 冯新斌, 唐桂萍. 土壤汞的地球化学行为及其污染的防治对策[J]. 地质地球化学, 2002, 30(4):75-79.
[51] Dai Q J, Feng X B, Tang G P. The geochemical behavior of mercury in soil and its pollution control[J]. Geology-Geochemistry, 2002, 30 (4):75-79.
[52] 沈城, 刘馥雯, 吴健, 等. 再开发利用工业场地土壤重金属含量分布及生态风险[J]. 环境科学, 2020, 41(11):5125-5132.
[52] Shen C, Liu F W, Wu J, et al. Distribution and ecological risk of heavy metals in the soil of redevelopment industrial sites[J]. Environmental Science, 2020, 41 (11):5125-5132.
[1] 王志强, 倪萍, 张宏绪, 石天池, 杨建锋, 张惠玲. 土壤—农作物系统中重金属元素地球化学特征及健康风险评价[J]. 物探与化探, 2025, 49(4): 943-953.
[2] 程琰勋, 徐磊, 吴亮, 赵萌生, 王福华, 钱坤, 郑洪福, 李文辉, 张宏辉. 金沙江流域底泥重金属污染特征及来源解析——以蜻蛉河为例[J]. 物探与化探, 2025, 49(2): 500-509.
[3] 韩冰, 黄勇, 李欢, 安永龙. 北京市房山区土壤重金属元素分布、富集特征及来源解析[J]. 物探与化探, 2024, 48(3): 820-833.
[4] 史敬涛, 刘俊建, 张军超, 王江玉龙, 姜禹戈, 王末, 李横飞, 杨文号, 颜翔锦. 浅山区典型小流域土壤重金属影响因素及来源分析[J]. 物探与化探, 2024, 48(3): 834-846.
[5] 余飞, 王锐, 周皎, 张风雷, 蒋玉莲, 张云逸, 朱世林. 典型汞矿区周边耕地土壤重金属来源解析与农作物健康风险评价[J]. 物探与化探, 2024, 48(3): 847-857.
[6] 肖高强, 赵娟, 陈子万, 宋旭锋, 朱能刚. 基于地质大数据技术对云南土壤重金属地质高背景区的划定[J]. 物探与化探, 2024, 48(1): 216-227.
[7] 杨艳, 刘彬, 夏飞强, 陈平峰, 张祥. 皖南典型区耕地土壤重金属富集特征、来源识别及健康风险评估[J]. 物探与化探, 2024, 48(1): 255-263.
[8] 杨婵, 吴娟娟, 车旭曦, 岳思羽, 刘智峰, 宋凤敏. 汉江上游水体沉积物污染状况分析与评价[J]. 物探与化探, 2023, 47(5): 1361-1370.
[9] 包凤琴, 成杭新, 永胜, 周立军, 杨宇亮. 包头南郊农田土壤环境质量特征及农作物健康风险评价[J]. 物探与化探, 2023, 47(3): 816-825.
[10] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[11] 阎琨, 庞国涛, 李伟, 毛方松. 广西茅尾海入海河口表层沉积物重金属分布及风险评价[J]. 物探与化探, 2022, 46(4): 1030-1036.
[12] 肖高强, 向龙洲, 代达龙, 高晓红, 宗庆霞. 花岗质岩浆岩土壤重金属地球化学特征及生态风险评价——以云南盈江旧城—姐冒地区为例[J]. 物探与化探, 2021, 45(5): 1135-1146.
[13] 杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 2021, 45(5): 1147-1156.
[14] 赵秀芳, 张永帅, 冯爱平, 王艺璇, 夏立献, 王宏雷, 杜伟. 山东省安丘地区农业土壤重金属元素地球化学特征及环境评价[J]. 物探与化探, 2020, 44(6): 1446-1454.
[15] 周亚龙, 郭志娟, 王成文, 陈杰, 彭敏, 成杭新. 云南省镇雄县土壤重金属污染及潜在生态风险评估[J]. 物探与化探, 2019, 43(6): 1358-1366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com