Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (6): 1358-1366    DOI: 10.11720/wtyht.2019.0214
  生态环境调查 本期目录 | 过刊浏览 | 高级检索 |
云南省镇雄县土壤重金属污染及潜在生态风险评估
周亚龙1,2, 郭志娟1,2, 王成文1,2, 陈杰3, 彭敏1,2, 成杭新1,2
1. 中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
2. 中国地质科学院 地球表层碳—汞地球化学循环重点实验室,河北 廊坊 065000
3. 云南省地质调查院,云南 昆明 650216
Assessment of heavy metal pollution and potential ecological risks of soils in Zhenxiong County,Yunnan Province
Ya-Long ZHOU1,2, Zhi-Juan GUO1,2, Cheng-Wen WANG1,2, Jie CHEN3, Min PENG1,2, Hang-Xin CHENG1,2
1. Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China
2. Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone,CAGS, Langfang 065000, China
3. Yunnan Institute of Geological Survey,Kunming 650216, China
全文: PDF(3396 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为查明镇雄县调查区土壤重金属污染环境风险等级及空间分布特征,基于现行土壤环境质量评价和食品安全评价标准,开展土地质量地球化学调查;运用单因子指数法、内梅罗综合指数法和Hakanson潜在生态危害指数法开展土壤重金属污染及潜在生态风险评估。内梅罗综合评估结果表明:调查区土壤存在重金属污染,其土壤轻度污染、中度污染、重度污染比例分别为39.03%、16.62%和28.57%。但8种重金属中Cu、Hg、As、Ni、Pb、Cr、Zn潜在生态危害程度低,仅Cd存在较高等级的潜在生态风险,其潜在生态危害等级程度低、中、较高、高、严重的样品数比例分别为17.71%、39.21%、22.77%、12.31%和8.00%,潜在生态危害指数( E r i )均值为118.24。土壤Cd高潜在生态危害和较高潜在生态危害样点主要位于下二叠统地层单元中。同时,调查区45件农作物玉米籽实重金属评价结果显示,仅1件玉米籽实样品Cd含量超标,农作物玉米籽实与其对应的农作物根系土中的重金属Cd全量无明显的相关性。调查区土壤Cd高含量主要受地质背景影响,对调查区内玉米籽实影响较小,在强酸性土壤环境下,随土壤中可溶态Cd含量增加,导致农作物对Cd的吸收富集风险加大。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周亚龙
郭志娟
王成文
陈杰
彭敏
成杭新
关键词 土壤污染重金属风险评价Hakanson指数地球化学特征    
Abstract

Based on the current evaluation standards of soil environmental quality and food safety, the authors used the single factor index method, Nemero composite index method and Hakanson potential ecological hazard index method to carry out soil heavy metal pollution and potential ecological risk assessment so as to find out the environmental risk level and spatial distribution characteristics of soil heavy metal pollution in the study area. The results of Nemero composite index evaluation indicate that high pollution occurs in the study area, and the proportion of slight pollution , moderate pollution and high pollution is respectively 39.03%, 16.62% and 28.57%. However, the potential ecological risk of Cu, Hg, As, Ni, Pb, Cr, Zn is low in soil in eight heavy metals, while the level of risk of Cd is higher, and the proportion of the samples with low, medium, slight, high, seriously potential risk is 17.71%, 17.71%, 22.77%, 12.31% and 8.00%, with the average of potential ecological harm index ( E r i )being 118.24. The sites of high and higher potential ecological hazard of Cd in the soil are mainly located in the Lower Permian stratigraphic unit. Meanwhile, the heavy metal evaluation of 45 corn seeds shows that only one corn seed has excessive Cd content, and there is no obvious correlation between the content of Cd in corn seeds and the corresponding crop root soil. The high content of Cd seems mainly affected by geological background, but has no influence on corn seeds in the study area,and the risk of the absorption and enrichment of Cd by crops is higher with the increase of the soluble Cd content in a highly acidic soil environment.

Key wordssoil pollution    heavy metal    risk evaluation    Hakanson index    geochemical characteristics
收稿日期: 2019-04-15      出版日期: 2019-11-28
:  P632  
基金资助:中国地质调查局地质调查项目联合资助(DD20160313);中国地质调查局地质调查项目联合资助(DD20189123)
作者简介: 周亚龙(1984-),男,高级工程师,资源勘查工程专业,主要从事地球化学勘查研究工作。Email:zhouyalong@igge.cn
引用本文:   
周亚龙, 郭志娟, 王成文, 陈杰, 彭敏, 成杭新. 云南省镇雄县土壤重金属污染及潜在生态风险评估[J]. 物探与化探, 2019, 43(6): 1358-1366.
Ya-Long ZHOU, Zhi-Juan GUO, Cheng-Wen WANG, Jie CHEN, Min PENG, Hang-Xin CHENG. Assessment of heavy metal pollution and potential ecological risks of soils in Zhenxiong County,Yunnan Province. Geophysical and Geochemical Exploration, 2019, 43(6): 1358-1366.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0214      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I6/1358
指标 一等 二等 三等 四等 五等
单因子污染指数 Pi≤1 1﹤Pi≤2 2﹤Pi≤3 3﹤Pi≤5 Pi>5
描述 清洁 轻微污染 轻度污染 中度污染 重度污染
内梅罗综合指数 P≤0.7 0.7﹤P≤1 1﹤P≤2 2﹤P≤3 P>3
描述 清洁 尚清洁 轻度污染 中度污染 重度污染
潜在生态危害指数 RI﹤150 150≤RI﹤300 300≤RI﹤600 RI≥600
描述 较高
颜色
R:G:B 0:176:80 146:208:80 255:255:0 255:192:0 255:0:0
Table 1  土壤重金属环境质量等级划分及其表达
评价 指标 一等 二等 三等 四等 五等
单因子污染评价 Pi Pi≤1 1﹤Pi≤2 2﹤Pi≤3 3﹤Pi≤5 Pi>5
描述 清洁 轻微污染 轻度污染 中度污染 重度污染
As 98.46 1.49 0.04 0 0
Cd 8.97 31.12 22.68 15.34 21.89
Cr 78.42 21.14 0.44 0 0
Cu 69.76 16.22 7.43 6.37 0.22
Hg 99.91 0.04 0 0 0.04
Ni 81.67 17.67 0.44 0.18 0.04
Pb 95.25 3.34 0.70 0.44 0.26
Zn 93.58 5.45 0.62 0.31 0.04
内梅罗综合评价 P P≤0.7 0.7﹤P≤1 1﹤P≤2 2﹤P≤3 P>3
描述 清洁 尚清洁 轻度污染 中度污染 重度污染
P 4.92 10.86 39.03 16.62 28.57
潜在生态危害评价 RI RI﹤150 150≤RI﹤300 300≤RI﹤600 RI≥600
描述 较高
RI 72.75 16.40 9.63 1.23
Table 2  调查区土壤重金属元素地球化学等级评价样品数占比统计%
Fig.1  调查区土壤Cd单因子污染指数评价
Fig.2  调查区不同地质单元土壤重金属Cd含量箱线图
Fig.3  调查区土壤内梅罗综合指数评价
指标等级 一等 二等 三等 四等 五等 Eri特征值
危害程度 较高 严重 平均值 最大值 最小值 中位数
Eri指数 Eri<40 40≤Eri<80 80≤Eri<160 160≤Eri<320 Eri≥320
As 100.00 0 0 0 0 3.92 21.17 0.40 3.42
Cd 17.71 39.21 22.77 12.31 8.00 118.24 2515.00 5.90 70.30
Cr 100.00 0 0 0 0 1.55 5.69 0.51 1.35
Cu 100.00 0 0 0 0 5.37 27.80 0.74 3.51
Hg 99.91 0.09 0 0 0 4.79 227.79 0.49 4.16
Ni 100.00 0 0 0 0 3.27 37.17 0.33 2.60
Pb 100.00 0.09 0 0 0 3.09 401.91 0.49 2.60
Zn 100.00 0.04 0 0 0 0.74 250.63 0.12 0.56
Table 3  调查区土壤重金属元素单因子潜在生态危害指数样品数占比统计%
Fig.4  调查区土壤潜在生态危害指数评价
元素 植物籽实重金属含量/10-6 富集系数/% GB2762-2017
上限值/10-6
超上限值
样品数
最大值 最小值 平均值 中位数 最大值 最小值 平均值 中位数
As 0.029 0.015 0.020 0.019 0.461 0.067 0.185 0.182 0.5 0
Cr 0.175 0.092 0.103 0.099 0.198 0.037 0.096 0.096 1 0
Cd 0.189 0.006 0.022 0.015 29.844 0.388 2.867 1.424 0.1 1
Cu 3.646 1.444 2.698 2.756 15.205 1.351 6.190 6.007
Hg 0.004 0.001 0.002 0.002 5.559 0.137 1.361 1.083 0.02 0
Ni 0.395 0.070 0.154 0.134 1.363 0.086 0.360 0.297 1 0
Pb 0.063 0.032 0.042 0.040 0.198 0.010 0.092 0.086 0.2 0
Zn 32.754 14.782 21.322 21.008 68.137 2.034 16.759 14.410
Table 4  调查区玉米籽实样品分析结果统计
Fig.5  调查区玉米籽实样品重金属Cd评价
相关性分析 As Cd Cr Cu Hg Ni Pb Zn Se
Pearson相关 相关性 0.169 0.034 0.031 -0.014 -0.243 -0.097 0.1 0.445** 0.389**
显著性(双侧) 0.268 0.823 0.841 0.926 0.107 0.527 0.513 0.002 0.008
Spearman相关 相关系数 -0.008 0.137 0.062 -0.013 -0.107 -0.099 0.195 0.042 0.055
Sig.(双侧) 0.959 0.37 0.684 0.931 0.485 0.519 0.2 0.784 0.72
偏相关 相关性 0.168 0.022 0.044 -0.004 -0.236 -0.143 0.099 0.431 0.383
显著性(双侧) 0.275 0.885 0.776 0.978 0.123 0.355 0.522 0.004 0.01
Table 5  调查区农作物—根系土中土壤重金属元素相关性分析统计 (样品数N=45)
[1] Oliver M A . Soil and human health: a review[J]. European Journal of Soil Science, 2010,48(4):573-592.
[2] Li G, Sun G X, Ren Y , et al. Urban soil and human health: a review[J]. European Journal of Soil Science, 2018,69(1):196-215.
[3] 郑国璋 . 农业土壤重金属污染研究的理论与实践[M]. 北京: 中国环境科学出版社, 2007, 101-104.
[3] Zheng G Z. Theory and practice of research on heavy metal pollution in agricultural soil[M]. Beijing: China Environmental Science Press, 2007, 101-104.
[4] 周国华 . 土壤重金属生物有效性研究进展[J]. 物探与化探, 2014,38(6):1097-1106.
doi: 10.11720/wtyht.2014.6.01
[4] Zhou G H . Recent progress in the study of heavy metal bioavailability in soil[J]. Geophysical and Geochemical Exploration, 2014,38(6):1097-1106.
[5] 孟敏, 杨林生, 韦炳干 , 等. 我国设施农田土壤重金属污染评价与空间分布特征[J]. 生态与农村环境学报, 2018,34(11):1019-1026.
[5] Meng M, Yang L S, Wei B G , et al. Contamination assessment and spatial distribution of heavy metals in greenhouse soils in China[J]. Journal of Ecology and Rural Environment, 2018,34(11):1019-1026.
[6] 王玉军, 吴同亮, 周东美 , 等. 农田土壤重金属污染评价研究进展[J]. 农业环境科学学报, 2017,36(12):2365-2378.
[6] Wang Y J, Wu T L, Zhou D M , et al. Advances in soil heavy metal pollution evaluation based on bibliometrics analysis[J]. Journal of Agro-Environment Science, 2017,36(12):2365-2378.
[7] 柳云龙, 章立佳, 韩晓非 , 等. 上海城市样带土壤重金属空间变异特征及污染评价[J]. 环境科学, 2012,33(2):599-605.
[7] Liu Y L, Zhang L J, Han X F , et al. Spatial variability and evaluation of soil heavy metal contamination in the urban-transect of Shanghai[J]. Environmental Science, 2012,33(2):599-605.
[8] 徐争启, 倪师军, 张成江 , 等. 应用污染负荷指数法评价攀枝花地区金沙江水系沉积物中的重金属[J]. 四川环境, 2004,23(3):64-67.
[8] Xu Z Q, Ni S J, Zhang C J , et al. Assessment on heavy metals in the sediments of Jinsha river in Panzhihua area by pollution load index[J]. SiChuan Environment, 2004,23(3):64-67.
[9] Zhu X, Ji H, Chen Y , et al. Assessment and sources of heavy metals in surface sediments of Miyun Reservoir, Beijing[J]. Environmental Monitoring & Assessment, 2013,185(7):6049-6062.
[10] 赵庆令, 李清彩, 谢江坤 , 等. 应用富集系数法和地累积指数法研究济宁南部区域土壤重金属污染特征及生态风险评价[J]. 岩矿测试, 2015,34(1):129-137.
[10] Zhao Q L, Li Q C, Xie J K , et al. Characteristics of soil heavy metal pollution and its ecological risk assessment in south Jining district using methods of enrichment factor and index of geoaccumulation[J]. Rock and Mineral Analysis, 2015,34(1):129-137.
[11] 张倩, 陈宗娟, 彭昌盛 , 等. 大港工业区土壤重金属污染及生态风险评价[J]. 环境科学, 2015,36(11):4232-4240.
[11] Zhang Q, Chen Z J, Peng C S , et al. Heavy metals pollution in topsoil from Dagang industry area and its ecological risk assessment[J]. Environmental Science, 2015,36(11):4232-4240.
[12] Benhaddya M, Hadjel M . Spatial distribution and contamination assessment of heavy metals in surface soils of Hassi Messaoud, Algeria[J]. Environmental Earth Sciences, 2014,71(3):1473-1486.
[13] Pardo T, Clemente R, Epelde L , et al. Evaluation of the phytostabilisation efficiency in a trace elements contaminated soil using soil health indicators[J]. Journal of Hazardous Materials, 2014,268(3):68-76.
[14] 姚荣江, 杨劲松, 陈小兵 , 等. 苏北海涂围垦区土壤质量模糊综合评价[J]. 中国农业科学, 2009,42(6):2019-2027.
doi:
[14] Yao R J, Yang J S, Chen X B , et al. Fuzzy synthetic evaluation of soil quality in coastal reclamation region of north Jiangsu Province[J]. Scientia Agricultura Sinica, 2009,42(6):2019-2027.
[15] 罗厚枚, 王宏康 . 用灰色聚类法综合评价土壤中重金属污染程度[J]. 北京农业大学学报, 1994,20(2):197-203.
[15] Luo H M, Wang H K . Application of grey cluster method in comprehensive evaluation of heacy metal pollution in soil[J]. Journal of China Agricultural University, 1994,20(2):197-203.
[16] 岑静, 陈家玮, 杨忠芳 , 等. 层次分析法在四川省通江县广纳镇土地评估中的应用[J]. 地质通报, 2008,27(2):277-285.
[16] Cen J, Chen J W, Yang Z F , et al. Application of the analytic hierarchy process in the evaluation of land quality of Guangna Town, Tongjiang County, Sichuan, China[J]. Geological Bulletin of China, 2008,27(2):277-285.
[17] Lee C S, Li X, Shi W , et al. Metal contamination in urban, suburban, and country park soils of Hong Kong: a study based on GIS and multivariate statistics[J]. Science of the Total Environment, 2006,356(1):45-61.
[18] Lars H . An ecological risk index for aquatic pollution control:a sedimentalogical approach[J]. Water Research, 1980,14(8):975-1001.
[19] 刘霈珈, 吴克宁, 罗明 , 等. 农用地土壤重金属超标评价与安全利用分区[J]. 农业工程学报, 2016,32(23):254-262.
[19] Liu P J, Wu K N, Luo M , et al. Evaluation of agricultural land soil heavy metal elements exceed standards and safe utilization zones[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(23):254-262.
[20] 姜菲菲, 孙丹峰, 李红 , 等. 北京市农业土壤重金属污染环境风险等级评价[J]. 农业工程学报, 2011,27(8):330-337.
[20] Jiang F F, Sun D F, Li H , et al. Risk grade assessment for farmland pollution of heavy metals in Beijing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011,27(8):330-337.
[21] 毛志刚, 谷孝鸿, 陆小明 , 等. 太湖东部不同类型湖区疏浚后沉积物重金属污染及潜在生态风险评价[J]. 环境科学, 2014,35(1):186-193.
[21] Mao Z G, Gu X H, Lu X M , et al. Pollution distribution and potential ecological risk assessment of heavy metals in sediments from the different eastern dredging regions of lake Taihu[J]. Environmental Science, 2014,35(1):186-193.
[22] Qu M K, Li W D, Zhang C R . Spatial distribution and uncertainty assessment of potential ecological risks of heavy metals in soil using sequential gaussian simulation[J]. Human and Ecological Risk Assessment, 2014,20(3):764-778.
[23] Khan K, Lu Y, Khan H , et al. Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan[J]. Food and Chemical Toxicology, 2013,58(8):449-458.
[24] 疏志明, 王雄军, 赖健清 , 等. 分形理论在太原盆地土壤重金属元素分析中的应用[J]. 物探与化探, 2009,33(2):157-160.
[24] Shu Z M, Wang X J, Lai J Q , et al. The application of fractal theory to soil heavy trace metal analysis in Taiyuan basin, Shanxi Province[J]. Geophysical and Geochemical Exploration, 2009,33(2):157-160.
[25] 张建东, 赖建清, 范舟 , 等. 理想点法在太原盆地土壤重金属污染等级评价中的应用[J]. 物探与化探, 2009,33(2):161-164.
[25] Zhang J D, Lai J Q, Fan Z , et al. The application of the ideal point method to the grade evaluation of hHeavy metal pollution in soils of Taiyuan bBasin[J]. Geophysical and Geochemical Exploration, 2009,33(2):161-164.
[26] 范拴喜, 甘卓亭, 李美娟 , 等. 土壤重金属污染评价方法进展[J]. 中国农学通报, 2010,26(17):310-315.
[26] Fan S X, Gan Z T, Li M J , et al. Progress of assessment methods of heavy metal pollution in soil[J]. Chinese Agricultural Science Bulletin, 2010,26(17):310-315.
[27] 梁兴, 叶熙, 张介辉 , 等. 滇黔北坳陷威信凹陷页岩气成藏条件分析与有利区优选[J]. 石油勘探与开发, 2011,38(6):693-699.
[27] Liang X, Ye X, Zhang J H , et al. Reservoir forming conditions and favorable exploration zones of shale gas in the Weixin Sag, Dianqianbei Depression[J]. Petroleum Exploration and Development, 2011,38(6):693-699.
[28] 梁兴, 叶熙, 张介辉 , 等. 滇黔北下古生界海相页岩气藏赋存条件评价[J]. 海相油气地质, 2011,16(4):11-21.
[28] Liang X, Ye X, Zhang J H , et al. Evaluation of preservation conditions of lower paleozoic marine shale gas reservoirs in the northern part of dianqianbei depression[J]. Marine Origin Petroleum Geology, 2011,16(4):11-21.
[29] 刘心开, 高建国, 常河 , 等. 彝良—镇雄铅锌矿集区预测资源量定量估算[J]. 矿物学报, 2011,31(3):434-440.
[29] Liu X K, Gao J G, Chang H , et al. A study on resource prediction quantitative estimation of Yiliang-Zhenxiong Pb-Zn metallogenic district,NE Yunnan Province,China[J]. Acta Mineralogica Sinica, 2011,31(3):434-440.
[30] 秦亚, 杨启军, 吕勇 , 等. 云南威信地区玄武岩的地质地球化学特征及其意义[J]. 桂林理工大学学报, 2018,38(4):625-639.
[30] Qin Y, Yang Q J, Lyu Y , et al. Geological, geochemical characteristics and its significance of basalts in Weixin area, Yunnan[J]. Journal of Guilin University of Technology, 2018,38(4):625-639.
[31] 云南省地质矿产局. 云南省区域地质志[M]. 北京: 地质出版社, 1990, 45-202.
[31] Yunnan Bureau of Geology and Mineral Resources. Regional geology of Yunnan Province[M]. Beijing: Geological Publishing House, 1990, 45-202.
[32] 叶霖, 潘自平, 李朝阳 , 等. 镉的地球化学研究现状及展望[J]. 岩石矿物学杂志, 2005,24(4):339-348.
[32] Ye L, Pan Z P, Li C Y , et al. The present situation and prospects of geochemical researches on cadmium[J]. Acta Petrologica Et Mineralogica, 2005,24(4):339-348.
[33] 叶霖, 李朝阳, 刘铁庚 , 等. 铅锌矿床中镉的表生地球化学研究现状[J]. 地球与环境, 2006,34(1):55-60.
[33] Ye L, Li C Y, Liu T G , et al. The status-quo of research on supergenic geochemistry of cadmium in Pb-Zn deposits[J]. Earth and Environment, 2006,34(1):55-60.
[34] 李瑞萍, 王安建, 曹殿华 , 等. 兰坪金顶铅锌矿区土壤重金属Zn、Cd分布特征研究[J]. 地质论评, 2009,55(1):126-133.
[34] Li R P, Wang A J, Cao D H , et al. Research on the distribution characteristics of Zn, Cd in the soil of Jinding Pb-Zn deposit, Lanping county[J]. Geological Review, 2009,55(1):126-133.
[35] 窦磊, 周永章, 高全洲 , 等. 土壤环境中重金属生物有效性评价方法及其环境学意义[J]. 土壤通报, 2007,38(3):576-583.
[35] Dou L, Zhou Y Z, Gao Q Z , et al. Methods and environmental implications of measuring bioavailability of heavy metals in soil environment[J]. Chinese Journal of Soil Science, 2007,38(3):576-583.
[36] 杨忠芳, 陈岳龙, 钱鑂 , 等. 土壤pH对镉存在形态影响的模拟实验研究[J]. 地学前缘, 2005,12(1):252-260.
[36] Yang Z F, Chen Y L, Qian X , et al. A study of the effect of soil pH on chemical species of cadmium by simulated experiments[J]. Earth Science Frontiers, 2005,12(1):252-260.
[37] 廖敏, 黄昌勇, 谢正苗 . pH对镉在土水系统中的迁移和形态的影响[J]. 环境科学学报, 1999,19(1):81-86.
[37] Liao M, Huang C Y, Xie Z M . Effect of pH on transport and transformation of cadmium in soil-water system[J]. Acta Scientiae Circumstantiae, 1999,19(1):81-86.
[38] 刘恩玲, 王亮 . 土壤中重金属污染元素的形态分布及其生物有效性[J]. 安徽农业科学, 2006,34(3):547-548,557.
[38] Liu E N, Wang L . Distribution of different heavy metal forms in soil and their bio-availability[J]. Journal of Anhui Agricultural Sciences, 2006,34(3):547-548,557.
[1] 王志强, 杨建锋, 魏丽馨, 石天池, 曹园园. 石嘴山地区碱性土壤硒地球化学特征及生物有效性[J]. 物探与化探, 2022, 46(1): 229-237.
[2] 孟伟, 莫春虎, 刘应忠. 黔西北地区土壤重金属地球化学背景及管理目标值[J]. 物探与化探, 2022, 46(1): 250-257.
[3] 侯佳渝, 杨耀栋, 程绪江. 天津市城区不同功能区绿地土壤重金属分布特征及来源研究[J]. 物探与化探, 2021, 45(5): 1130-1134.
[4] 肖高强, 向龙洲, 代达龙, 高晓红, 宗庆霞. 花岗质岩浆岩土壤重金属地球化学特征及生态风险评价——以云南盈江旧城—姐冒地区为例[J]. 物探与化探, 2021, 45(5): 1135-1146.
[5] 杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 2021, 45(5): 1147-1156.
[6] 赵辰, 孙彬彬, 周国华, 贺灵, 曾道明. 福建龙海杨梅生态地质适生模型研究与应用[J]. 物探与化探, 2021, 45(5): 1121-1129.
[7] 徐云峰, 郝雪峰, 秦宇龙, 王显锋, 熊昌利, 李名则, 武文辉, 詹涵钰. 四川岔河地区水系沉积物地球化学特征及找矿方向[J]. 物探与化探, 2021, 45(3): 624-638.
[8] 李欢, 黄勇, 张沁瑞, 贾三满, 徐国志, 冶北北, 韩冰. 北京平原区土壤地球化学特征及影响因素分析[J]. 物探与化探, 2021, 45(2): 502-516.
[9] 吴松, 陈政, 李元彬, 黄钊, 张林, 许胜超, 王开贵. 云南省者竜—嘎洒地区Cr、Ni地球化学特征及土壤污染风险防控建议[J]. 物探与化探, 2021, 45(2): 517-527.
[10] 陶春军, 史春鸿, 张笑蓉, 管后春, 贾十军. 淮北平原覆盖区土壤采样密度及其环境质量研究——以1∶5万高炉集幅为例[J]. 物探与化探, 2021, 45(1): 200-206.
[11] 谢薇, 杨耀栋, 侯佳渝, 菅桂芹, 李国成, 赵新华. 多种评价方法应用于天津核桃主产区的土壤环境质量评价[J]. 物探与化探, 2021, 45(1): 207-214.
[12] 韩伟, 王乔林, 宋云涛, 彭敏, 王成文. 四川省沐川县北部土壤硒地球化学特征与成因探讨[J]. 物探与化探, 2021, 45(1): 215-222.
[13] 赵秀芳, 张永帅, 冯爱平, 王艺璇, 夏立献, 王宏雷, 杜伟. 山东省安丘地区农业土壤重金属元素地球化学特征及环境评价[J]. 物探与化探, 2020, 44(6): 1446-1454.
[14] 田建民, 徐争启, 尹明辉, 李涛, 孙康. 临沧地区富铀花岗岩体地球化学特征及其地质意义[J]. 物探与化探, 2020, 44(5): 1103-1115.
[15] 王小高, 王英超, 程宝成, 杨永千, 王杰, 陈鹏. 河南省西簧钒矿岩石地球化学特征及矿床成因[J]. 物探与化探, 2020, 44(5): 1116-1124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com