Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (5): 1147-1156    DOI: 10.11720/wtyht.2021.1497
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析
杨育振1,2(), 刘森荣1,2, 杨勇3, 李丽芬1,2, 刘圣华4,5, 亢益华5, 费新强1,2, 高云亮1,2, 高宝龙1,2()
1.中国冶金地质总局 中南地质调查院,湖北 武汉 430074
2.中国冶金地质总局 矿产资源研究院,北京 101300
3.湖北省地质局,湖北 武汉 430022
4.中国地质科学院 水文地质环境地质研究所,河北 石家庄 050061
5.中国地质大学(北京) 地球科学与资源学院,北京 100083
Heavy metals in peri-urban soil of Huangshi: Their distribution, risk assessment and source identification
YANG Yu-Zhen1,2(), LIU Sen-Rong1,2, YANG Yong3, LI Li-Fen1,2, LIU Sheng-Hua4,5, KANG Yi-Hua5, FEI Xin-Qiang1,2, GAO Yun-Liang1,2, GAO Bao-Long1,2()
1. Central South Geological Survey Institute, China Metallurgical Geology Bureau, Wuhan 430074,China
2. Institute of Mineral Resources Research, China Metallurgical Geology Bureau, Beijing 101300,China
3. Hubei Geological Bureau, Wuhan 430022,China
4. Institute of Hydrology and Environmental Geology, CAGS, Shijiazhuang 050061,China
5. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083,China
全文: PDF(2200 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为掌握黄石市城市边缘区农用土壤环境质量现状,在高密度表、深层土壤采样的基础上,重点分析了土壤重金属元素的分布规律和特征,对其进行了生态环境风险评价,并对重金属元素成因进行了溯源分析。结果表明:研究区土壤中的重金属元素As、Pb、Hg、Cd、Zn、Ni、Cu和Cr含量范围分别为(5.2~155.9)×10-6 、(19.2~426.1)×10-6 、(0.012~1.823)×10-6 、(0.03~4.59)×10-6 、(34.8~529.6)×10-6 、(8.5~86.2)×10-6 、(16.52~104.39)×10-6 和(51.2~145.5)×10-6,平均含量均超过区域土壤环境背景值,且Cd超过农用地土壤风险筛选值。重金属污染物主要集中在表层40 cm以上土壤中,土地类型中以水田和旱地污染为主,污染物中以Cd、As和Pb为主要特征。水田中As、Pb、Cu和Zn为轻度污染,Cd和Hg为中度污染,而Cr和Ni无污染;旱地和林地中As、Pb和Hg为轻度污染,Cd为中度污染,而Cr、Cu、Ni和Zn无污染。多元统计分析表明,研究区土壤中Cr和Ni为自然源成因,与成土母质相关;Cd和Pb、As和Hg主要为人为源污染,与黄石市高强度工矿业生产和硫化物矿物酸化释放有关;而Cu和Zn为混合源成因,部分来源于土壤环境背景,部分来源于人类活动和工业生产排放。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨育振
刘森荣
杨勇
李丽芬
刘圣华
亢益华
费新强
高云亮
高宝龙
关键词 城市边缘区重金属分布特征源解析风险评价    
Abstract

To study the quality of the arable soil in peri-urban area of Huangshi City, the present research focused on analyzing heavy metals distribution characteristics, assessed its risk to environment, and subsequently identified its sources by multivariate statistical analysis based on high-density topsoil and subsoil sampling. The results show that the content of heavy metals in the soil isas follows: As (5.2×10-6~155.9×10-6), Pb (19.2×10-6~426.1×10-6), Hg (0.012×10-6~1.823×10-6), Cd (0.03×10-6~4.59×10-6), Zn (34.8×10-6~529.6×10-6), Ni (8.5×10-6~86.2×10-6), Cu (16.52×10-6~104.39×10-6) and Cr (51.2×10-6~145.5×10-6). The average content of Cd exceeds the regional soil environmental background value, and Cd even exceeds the soil risk screening value of agricultural land. Heavy metal pollutants are mainly concentrated in the topsoil above 40 cm. Among the land use types, paddy lands and dry lands are heavily polluted, and Cd, As and Pb are the main pollutants. In paddy lands, As, Pb, Cu and Zn exhibit slight pollution, Cd and Hg exhibit moderate pollution, whereas Cr and Ni do not exhibit pollution. In dry lands and forest lands, As, Pb and Hg exhibit slight pollution, Cd exhibits moderate pollution and Cr, Cu, Ni and Zn do not exhibit pollution. The multivariate statistical analysis indicates that Cr and Ni in the soil of the study area are of natural origin and related to the parent material of the soil. Cd, Pb, As and Hg are mainly of anthropogenic pollutants, which is related to high-intensity industrial and mining production and sulfide mineral acidification release in Huangshi City.However Cu and Zn constitute mixed sources, partly from soil environmental background, and partly from human activities and industrial production emissions.

Key wordsperi-urban    heavy metals    distribution characteristics    source identification    risk assessment
收稿日期: 2020-10-27      修回日期: 2021-01-22      出版日期: 2021-10-20
ZTFLH:  P632  
基金资助:湖北省自然资源厅科研项目(ZRZY2019KY06)
通讯作者: 高宝龙
作者简介: 杨育振(1986-),男,高级工程师,现从事环境地球化学调查研究工作。Email: 527657213@qq.com
引用本文:   
杨育振, 刘森荣, 杨勇, 李丽芬, 刘圣华, 亢益华, 费新强, 高云亮, 高宝龙. 黄石市城市边缘区土壤重金属分布特征、风险评价及溯源分析[J]. 物探与化探, 2021, 45(5): 1147-1156.
YANG Yu-Zhen, LIU Sen-Rong, YANG Yong, LI Li-Fen, LIU Sheng-Hua, KANG Yi-Hua, FEI Xin-Qiang, GAO Yun-Liang, GAO Bao-Long. Heavy metals in peri-urban soil of Huangshi: Their distribution, risk assessment and source identification. Geophysical and Geochemical Exploration, 2021, 45(5): 1147-1156.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1497      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I5/1147
Fig.1  研究区区域位置和采样点位示意
参数 pH As Pb Hg Cd Zn Ni Cu Cr
平均值 水田(N=180) 7.26 26.7 70.7 0.170 0.55 152.9 42.6 51.99 96.4
旱地(N=60) 6.90 25.5 84.5 0.136 0.76 131.9 32.4 38.80 83.7
林地(N=36) 6.72 21.6 56.9 0.106 0.48 112.1 32.2 37.82 89.0
富集系数 水田(N=180) 2.94 2.70 4.15 5.02 2.08 1.36 1.76 1.30
旱地(N=60) 2.81 3.22 3.32 6.95 1.79 1.04 1.32 1.13
林地(N=36) 2.38 2.17 2.58 4.32 1.52 1.03 1.28 1.20
最大值 8.41 155.9 426.1 1.823 4.59 529.6 86.2 104.39 145.5
最小值 4.90 5.2 19.2 0.012 0.03 34.8 8.5 16.52 51.2
中位数 7.19 21.4 57.3 0.090 0.43 136.0 38.3 48.80 90.0
变异系数 0.10 0.70 0.66 1.24 0.86 0.52 0.36 0.34 0.19
区域背景值 6.87 9.1 26.2 0.041 0.11 73.6 31.2 29.5 74.2
风险筛选值 水田 25 120 0.6 0.3 250 100 100 200
其他 30 2.4
Table 1  研究区土壤样品重金属描述性统计数据
Fig.2  土壤样品中重金属元素含量的柱状图[3,4](n=276)
Fig.3  深层土壤与表层土壤中pH和各重金属对比
a—水田(表层和深层土壤样品各90件);b—旱地(表层和深层土壤样品各30件);c—林地(表层和深层土壤样品各18件)
Fig.4  水田重金属元素含量(图中虚线表示在该剖面中重金属元素平均含量)
元素 ≤0 0~1 1~2 2~3 3~4 4~5 平均值 中位数 最小值 最大值
无污染 轻度污染 中度污染 中强污染 强污染 较强污染
As 20(14.5) 67(48.6) 46(33.3) 4(2.9) 1(0.7) 0.78 0.77 -1.40 3.51
Cd 7(5.1) 31(22.5) 50(36.2) 37(26.8) 12(8.7) 1(0.7) 1.64 1.66 -0.66 4.05
Cr 116(84.1) 22(15.9) -0.30 -0.30 -1.12 0.28
Pb 29(21.0) 63(45.6) 39(28.3) 7(5.1) 0.68 0.58 -0.86 2.71
Cu 53(38.4) 84(60.9) 1(0.7) 0.07 0.21 -1.42 1.23
Hg 34(24.6) 49(35.5) 26(18.8) 27(19.6) 1(0.7) 1(0.7) 0.81 0.72 -2.36 4.87
Ni 99(71.7) 39(28.3) -0.38 -0.29 -2.46 0.70
Zn 50(36.2) 69(50.0) 18(13.0) 1(0.7) 0.20 0.33 -1.67 2.19
Table 2  研究区表层土壤重金属地累积指数统计
Igeo As Cd Cr Pb Cu Hg Ni Zn
水田 0.94 1.69 -0.25 0.75 0.25 1.19 -0.24 0.36
旱地 0.48 1.68 -0.44 0.68 -0.30 0.04 -0.71 -0.12
林地 0.47 1.30 -0.31 0.34 -0.24 0.17 -0.57 -0.08
表层土壤 0.78 1.64 -0.30 0.68 0.07 0.81 -0.38 0.20
Table 3  不同土地类型表层土壤重金属平均地累积指数对比
元素 As Cd Cr Pb Cu Hg Ni Zn
As 1
Cd 0.388 1
Cr 0.331 0.356 1
Pb 0.444 0.907** 0.400 1
Cu 0.468 0.337 0.326 0.282 1
Hg 0.877* 0.348 0.338 0.390 0.468 1
Ni 0.507 0.539 0.721* 0.542 0.662 0.577 1
Zn 0.672 0.736* 0.571 0.724* 0.649 0.717* 0.883* 1
Table 4  研究区土壤重金属含量之间的Pearson相关系数矩阵(n=276)
Fig.5  研究区土壤重金属聚类树状图(n=276)
元素 PC1 PC2 PC3
Cr 0.858 0.180 0.034
Ni 0.857 0.297 0.312
Cu 0.635 0.110 0.458
Zn 0.606 0.574 0.490
Cd 0.200 0.948 0.158
Pb 0.228 0.934 0.195
Hg 0.186 0.138 0.913
As 0.203 0.236 0.848
方差/% 30.101 28.850 27.041
累积方差/% 30.101 58.951 85.992
Table 5  研究区土壤重金属主成分分析旋转成分矩阵(n=276)
[1] Pan L B, Wang Y, Ma J, et al. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities[J]. Environmental Science and Pollution Research, 2018, 25:1055-1069.
doi: 10.1007/s11356-017-0513-1
[2] Akinwunmi F, Akinhanmi T F, Atobatele Z A, et al. Heavy metal burdens of public primary school children related to playground soils and classroom dusts in Ibadan North-West local government area, Nigeria[J]. Environmental Toxicology and Pharmacology, 2017, 49:21-26.
doi: S1382-6689(16)30294-0 pmid: 27889649
[3] Yu G Y, Qin X F, Xu J, et al. Characteristics of particulate-bound mercury at typical sites situated on dust transport paths in China[J]. Science of the Total Environment, 2019, 648:1151-1160.
doi: 10.1016/j.scitotenv.2018.08.137
[4] Yuan G L, Sun T H, Han P, et al. Environmental geochemical mapping and multivariate geostatistical analysis of heavy metals in topsoils of a closed steel smelter: Capital Iron & Steel Factory, Beijing, China[J]. Journal of Geochemical Exploration, 2013, 130:15-21.
doi: 10.1016/j.gexplo.2013.02.010
[5] Yuan G L, Sun T H, Han P, et al. Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: Typical urban renewal area in Beijing, China[J]. Journal of Geochemical Exploration, 2014, 136:40-47.
doi: 10.1016/j.gexplo.2013.10.002
[6] Duan X C, Yu H H, Ye T R, et al. Geostatistical mapping and quantitative source apportionment of potentially toxic elements in top-and sub-soils: A case of suburban area in Beijing, China[J]. Ecological Indicators, 2020, 112:106085.
doi: 10.1016/j.ecolind.2020.106085
[7] Lin Y, Han P, Huang Y, et al. Source identification of potentially hazardous elements and their relationships with soil properties in agricultural soil of the Pinggu district of Beijing, China: Multivariate statistical analysis and redundancy analysis[J]. Journal of Geochemical Exploration, 2017, 173:110-118.
doi: 10.1016/j.gexplo.2016.12.006
[8] Wang A T, Wang Qi, Li Jun, et al. Geo-statistical and multivariate analyses of potentially toxic elements’ distribution in the soil of Hainan Island (China): A comparison between the topsoil and subsoil at a regional scale[J]. Journal of Geochemical Exploration, 2019, 197:48-59.
doi: 10.1016/j.gexplo.2018.11.008
[9] 邹玲, 王翠红, 李洪斌, 等. 长沙市边缘带菜园土壤重金属含量及污染现状评价[J]. 湖南农业大学学报:自然科学版, 2009, 35(1):107-110.
[9] Zou L, Wang C H, Li H B, et al. Assessment on contents of heavy metal and its pollution situation in vegetable soils at peri-urban area of Changsha[J]. Journal of Hunan Agricultural University:Natural Sciences, 2009, 35(1):107-110.
[10] 田帅, 冯万忠, 高彩云. 城市边缘区土壤重金属污染及其生态环境效应研究进展[J]. 宁夏农林科技, 2013, 54(3):52-55.
[10] Tian S, Feng W Z, Gao C Y. Research progress of heavy metal pollution and its eco-environmental effect in the urban fringe area[J]. Ningxia Journal of Agricultural and Forest Science and Technology, 2013, 54(3):52-55.
[11] 阎伍玖. 芜湖市城市边缘区土壤重金属污染空间特征研究[J]. 地理科学, 2008, 28(2):282-285.
doi: 10.13249/j.cnki.sgs.2008.02.282
[11] Yan W J. Heavy metal pollution in soils of peri-urban zone of Wuhu city[J]. Scientia Geographica Snica, 2008, 28(2):282-285.
[12] 庄腾飞, 柳云龙, 章立佳, 等. 上海城郊土壤重金属含量的空间变异与分布特征——以上海市闵行区为例[J]. 长江流域资源与环境, 2012, 21(S1):99-104.
[12] Zhuang T F, Liu Y L, Zhang L J, et al. Spatial variability and distribution of soil heavy metals content in suburbs of Shanghai — A case study of Minhang Shanghai city[J]. Resources and Environmental in the Yangtze Basin, 2012, 21(S1):99-104.
[13] 虎彩娇, 成海容, 李锦伦, 等. 黄石市大气PM 10和 PM 2.5中元素特征及重金属生态风险评价[J]. 环境化学, 2018, 37(1):138-145.
[13] Hu C J, Cheng H R, Li J L, et al. Characteristics of elements and ecological risk assessment of heavy metals in PM 10 and PM 2.5 in Huangshi[J]. Environmental Chemistry, 2018, 37(1):138-145.
[14] 姚瑞珍, 张勇, 王亚良, 等. 黄石市大气降尘中重金属污染特征与评价[J]. 地球与环境, 2016, 44(2):212-218.
[14] Yao R Z, Zhang Y, Wang Y L, et al. Distribution characteristics and risk assessment of heavy metals in atmosphere dustfall of Huangshi city, China[J]. Earth and Evironment, 2016, 44(2):212-218.
[15] 马鑫, 尹刚, 吴乐和. 黄石市某钢铁厂周边苔藓植物重金属含量研究及污染评价[J]. 湖北农业科学, 2019, 58(10):51-56.
[15] Ma X, Yin G, Wu L H. Research on content of heavy metals in moss around a steel mill and its pollution assessment in Huangshi city[J]. Hubei Agricultural Sciences, 2019, 58(10):51-56.
[16] 许大毛, 张家泉, 占长林, 等. 有色金属冶炼厂周边地表水和农业土壤中重金属污染特征与评价[J]. 环境化学, 2016, 35(11):2305-2314.
[16] Xu D M, Zhang J Q, Zhan C L, et al. Pollution characteristics and health risk assessment of heavy metals in surface water and agricultural soil around the Nonferrous Metal Smeltery[J]. Environmental Chemistry, 2016, 35(11):2305-2314.
[17] 年夫喜, 陈会, 黎南关, 等. 黄石市青山湖底泥重金属污染评价分析[J]. 人民长江, 2014, 45(16):22-25.
[17] Nian F X, Chen H, Li N G, et al. Analysis and assessment on heavy metal pollution in bottom mud of Qingshan Lake in Huangshi city[J]. Yangtze River, 2014, 45(16):22-25.
[18] 尹晓蛟, 唐利君, 曾庆春, 等. 黄石废弃采石场人工植被修复后重金属含量特征及污染评价[J]. 湖北林业科技, 2018, 47(1):34-44.
[18] Yin X J, Tang L J, Zeng Q C, et al. Distribution and pollution assessment of heavy metals in soils after artificial vegetation restoration in abandoned quarries in Huangshi[J]. Hubei Forestry Science and Technology, 2018, 47(1):34-44.
[19] 张秀芝, 鲍征宇, 唐俊红. 富集因子在环境地球化学重金属污染评价中的应用[J]. 地质科技情报, 2006, 25(1):65-72.
[19] Zhang X Z, Bao Z Y, Tang J H. Application of enrichment factor in evaluation of heavy metals contamination in the environmental geochemistry[J]. Geological Science and Technology Information, 2006, 25(1):65-72.
[20] 孟昭虹, 高玉娟. 黑龙江生态省土壤重金属分布特征及其生态风险评价[J]. 安徽农业科学, 2008, 36(31):13819-13821,13830.
[20] Meng Z H, Gao Y J. Distribution characteristics of heavy metals in soil of Heilongjiang ecological province and its ecological risk assessment[J]. Journal of Anhui Agricultural Science, 2008, 36(31):13819-13821, 13830.
[21] 郭笑笑, 刘丛强, 朱兆洲, 等. 土壤重金属污染评价方法[J]. 生态学杂志, 2011, 30(5):889-896.
[21] Guo X X, Liu C Q, Zhu Z Z, et al. Evaluation methods for soil heavy metals contamination: A review[J]. Chinese Journal of Ecology, 2011, 30(5):889-896.
[22] Müller G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal, 1969, 2(3):108-118.
[23] Salomons W, Förstner U. Metals in the hydrocycle[M]. Berlin Heidelberg:Springer-Verlag, 1984:63-98.
[24] 陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 2020, 41(6):2822-2833.
[24] Chen W X, Li Q, Wang Z, et al. Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China[J]. Environmental Science, 2020, 41(6):2822-2833.
[25] 张丽, 李秀, 张家泉, 等. 黄石市典型农业土壤中重金属污染水平及评价[J]. 环境科学与技术, 2014, 37(12):230-235.
[25] Zhang L, Li X, Zhang J Q, et al. Concentration and assessment of heavy metals in the typical agricultural soil from Huangshi city[J]. Environmental Science and Technology, 2014, 37(12):230-235.
[26] Förstner U, Ahlf W, Calmano W, et al. Sediment criteria development-contributions from environmental geochemistry to water quality management[M]. Berlin Heidelberg:Springer-Verlag, 1990:311-338.
[27] Stafilov T, Šajn R, Boev B, et al. Distribution of some elements in surface soil over the Kavadarci region, Republic of Macedonia[J]. Environmental Earth Sciences, 2010, 61(7):1515-1530.
doi: 10.1007/s12665-010-0467-9
[28] Micó C, Recatalá L, Peris M, et al. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis[J]. Chemosphere, 2006, 65(5):863-872.
pmid: 16635506
[29] 乔胜英, 李望成, 何方, 等. 漳州市城市土壤重金属含量特征及控制因素[J]. 地球化学, 2005, 34(6):635-642.
[29] Qiao S Y, Li W C, He F, et al. Characteristics and controlling factors of heavy metal contents in urban soils in Zhangzhou city, Fujian province[J]. Geochimica, 2005, 34(6):635-642.
doi: 10.1016/0016-7037(70)90024-4
[30] 赵靓, 梁云平, 陈倩, 等. 中国北方某市城市绿地土壤重金属空间分布特征、污染评价及来源解析[J]. 环境科学, 2020, 41(12):5552-5561.
[30] Zhao L, Liang Y P, Chen Q, et al. Spatial distribution, contamination assessment, and sources of heavy metals in urban green space soil of a Northern city in China[J]. Environmental Science, 2020, 41(12):5552-5561.
[31] Yang Q Q, Li Z Y, Lu X N, et al. A review of soil heavy metal pollution from industrial and agriculturalregions in China: Pollution and risk assessment[J]. Science of the Total Environment, 2018, 642:690-700.
doi: 10.1016/j.scitotenv.2018.06.068
[1] 范海印, 宋蕊蕊, 于林松, 滕永波, 万方, 张秀文, 李圣玉, 赵闯. 鲁西北地区某典型化工园区地下水重金属污染特征及健康风险评价[J]. 物探与化探, 2023, 47(5): 1326-1335.
[2] 杨婵, 吴娟娟, 车旭曦, 岳思羽, 刘智峰, 宋凤敏. 汉江上游水体沉积物污染状况分析与评价[J]. 物探与化探, 2023, 47(5): 1361-1370.
[3] 刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108.
[4] 王惠艳, 彭敏, 马宏宏, 张富贵. 贵州典型重金属高背景区耕地土壤重金属生态风险评价[J]. 物探与化探, 2023, 47(4): 1109-1117.
[5] 李开富, 马欢, 张艳, 李威龙, 姜纪沂, 黄斌, 章龙管, 秦孟博. 基于时移电阻率法的平谷局部地区地下水时空特征研究[J]. 物探与化探, 2023, 47(4): 1002-1009.
[6] 包凤琴, 成杭新, 永胜, 周立军, 杨宇亮. 包头南郊农田土壤环境质量特征及农作物健康风险评价[J]. 物探与化探, 2023, 47(3): 816-825.
[7] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[8] 赵玉岩, 姜涛, 杨秉翰, 张泽宇, 李政赫, 李兵, 汤肖丹. 农田土壤—植物系统中钒的迁移富集规律[J]. 物探与化探, 2023, 47(3): 835-844.
[9] 王磊, 卓小雄, 吴天生, 凌胜华, 钟晓宇, 赵晓孟. 调查评价的土壤元素累积趋势预测——以广西南宁市西乡塘区为例[J]. 物探与化探, 2023, 47(1): 1-13.
[10] 宋运红, 杨凤超, 刘凯, 戴慧敏, 许江, 杨泽. 三江平原耕地土壤重金属元素分布特征及影响因素的多元统计分析[J]. 物探与化探, 2022, 46(5): 1064-1075.
[11] 徐雄, 孙艳亭, 肖方, 肖培平, 董应尚, 李敏. 菏泽市水系沉积物重金属特征及风险评估[J]. 物探与化探, 2022, 46(4): 1021-1029.
[12] 阎琨, 庞国涛, 李伟, 毛方松. 广西茅尾海入海河口表层沉积物重金属分布及风险评价[J]. 物探与化探, 2022, 46(4): 1030-1036.
[13] 居字龙, 秦志军, 万翔, 袁航, 张小波, 王登. 湖北红安县生态地质调查土壤重金属分布特征及生态风险评价[J]. 物探与化探, 2022, 46(4): 988-998.
[14] 范晨子, 袁继海, 刘成海, 郭威, 孙冬阳, 刘崴, 赵九江, 胡俊栋, 赵令浩. 云南省安宁地区土壤重金属等元素生态地球化学调查与评价[J]. 物探与化探, 2022, 46(3): 761-771.
[15] 李生清. 海河流域沉积物重金属形态分布特征及生态风险评估[J]. 物探与化探, 2022, 46(3): 781-786.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com