Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (5): 1135-1146    DOI: 10.11720/wtyht.2021.1522
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
花岗质岩浆岩土壤重金属地球化学特征及生态风险评价——以云南盈江旧城—姐冒地区为例
肖高强1,2(), 向龙洲3, 代达龙1, 高晓红1, 宗庆霞3
1.云南省地质调查院,云南 昆明 650216
2.自然资源部 三江成矿作用及资源勘查利用重点实验室,云南 昆明 650051
3.云南省国土资源规划设计研究院,云南 昆明 650216
Geochemical characteristics and ecological risk assessment of heavy metals in granitic magmatic soil: A case study of the Jiucheng-Jiemao area in Yingjiang County, Yunnan Province
XIAO Gao-Qiang1,2(), XIANG Long-Zhou3, DAI Da-Long1, GAO Xiao-Hong1, ZONG Qing-Xia3
1. Yunnan Institute of Geological Survey, Kunming 650216, China
2. Key Laboratory of Sanjing Metallogeny and Resources Exploration and Utilization, MNR, Kunming 650051, China
3. Yunnan Planning and Design Institute of Land and Resources, Kunming 650216, China
全文: PDF(5119 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

基于云南盈江旧城—姐冒地区238件岩石样品和4 931件土壤样品,与其他地质单元对比,重点研究花岗质岩浆岩岩石和土壤中重金属地球化学特征和来源,并进行土壤重金属生态风险评价。结果表明:花岗质岩浆岩和高黎贡山岩群(Pt1GL.)具有相似的物源或继承性,二者岩石中Pb含量相对上地壳偏高,而其他重金属含量较低;第四系(Qa)、芒棒组(N2m)和高黎贡山岩群(Pt1GL.)土壤重金属含量和变化特征与花岗质岩浆岩基本一致,且土壤重金属含量明显低于第四系(Qb)和关上组(D1g)地层;结合岩性组分看,成土母质可能均以花岗质岩浆岩为主;花岗质岩浆岩和关上组(D1g)土壤重金属含量主要受自然源影响,人为活动影响相对较小;地累积指数和潜在生态风险指数表明花岗质岩浆岩土壤重金属生态风险小,为清洁土壤;德宏州地区具有粮、糖、蔬菜等生产功能的农田土壤成土母质以花岗质岩浆岩为主,但相关工作程度低。通过对比研究认为,德宏州地区具有发展绿色、无公害食品产地的巨大潜力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖高强
向龙洲
代达龙
高晓红
宗庆霞
关键词 土壤重金属花岗质岩浆岩来源解析生态风险评价盈江县    
Abstract

Based on 238 rock samples and 4,931 soil samples collected from the Jiucheng-Jiemao area of Yingjiang County, Yunnan Province, and compared with other geological units, this paper is focused on the study of geochemical characteristics and sources of heavy metals in granitic magmatic rocks and soils as well as ecological risk assessment of soil heavy metals. According to the results obtained, the granitic magmatic rocks and Gaoligongshan group(Pt1GL.)rocks have similar provenances or inheritances. The Pb content in the two kinds of rocks is higher than that in the upper crust, while the content of other heavy metals is lower. The soil heavy metal content and change characteristics of the Quaternary (Qa), Mangbang formation (N2m) and Gaoligongshan group (Pt1GL.) are basically the same as those of the granitic magmatic rock, which are significantly lower than the Quaternary (Qb) and Guanshang formation (D1g). Combined with lithologic compositions, the soil parent materials of the Quaternary (Qa), Mangbang formation (N2m) and Gaoligongshan group (Pt1GL.)may be mainly granitic magmatic rocks. The soil heavy metal values of the granitic magmatic rock and Guanshang formation (D1g) are mainly affected by natural sources, and the influence of human activities is little. The geoaccumulation index and the potential ecological risk index indicate that the granitic magmatic soil has a low ecological risk of heavy metals and is a clean soil.The soil-forming parent materials of farmland with the production function of grain, sugar, vegetable, etc. in Dehong Prefecture are mainly granitic magmatic rock, but related study work is insufficient. Through comparative research, it is believed that Dehong Prefecture has great potential in developing green and pollution-free food production.

Key wordssoil heavy metals    granitic magmatic rock    source analysis    ecological risk assessment    Yingjiang County
收稿日期: 2020-11-14      修回日期: 2021-01-28      出版日期: 2021-10-20
ZTFLH:  X53  
  X820.4  
基金资助:云南省自然资源厅地质勘查基金项目(D201711)
作者简介: 肖高强(1983-),男,高级工程师,硕士,主要从事勘查和环境地球化学工作。Email: 13057980@qq.com
引用本文:   
肖高强, 向龙洲, 代达龙, 高晓红, 宗庆霞. 花岗质岩浆岩土壤重金属地球化学特征及生态风险评价——以云南盈江旧城—姐冒地区为例[J]. 物探与化探, 2021, 45(5): 1135-1146.
XIAO Gao-Qiang, XIANG Long-Zhou, DAI Da-Long, GAO Xiao-Hong, ZONG Qing-Xia. Geochemical characteristics and ecological risk assessment of heavy metals in granitic magmatic soil: A case study of the Jiucheng-Jiemao area in Yingjiang County, Yunnan Province. Geophysical and Geochemical Exploration, 2021, 45(5): 1135-1146.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1522      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I5/1135
Fig.1  盈江县地质图(a)及其区域地质(b)、区域位置示意(c)
地质单元 统计参数 As Cd Cr Cu Hg Ni Pb Zn
N2m(n=6) 最小值/10-6 1.49 0.01 29.9 8.14 0.009 7.5 14.3 13.6
最大值/10-6 3.23 0.13 56 26.2 0.055 29.1 48.4 98.7
算术平均值/10-6 2.40 0.053 40.8 15.9 0.025 15.0 26.0 52.1
标准差/10-6 0.72 0.056 9.26 7.14 0.02 7.81 15.0 35.3
变异系数/% 29.8 105 22.7 45.0 72.9 52.0 57.8 67.8
中位值/10-6 2.41 0.025 38.8 14.7 0.021 13.1 17.9 40.4
D1g(n=50) 最小值/10-6 0.69 0.01 15.7 7.42 0.005 3.61 7.24 7.85
最大值/10-6 469 0.15 178 51.1 0.008 57.2 74.9 189
算术平均值/10-6 33.4 0.053 80.9 21.7 0.006 35.8 20.5 84.1
标准差/10-6 104 0.035 34.2 8.65 0.001 14.8 12.0 36.2
变异系数/% 311 66.8 42.3 39.9 9.56 41.3 58.4 43.1
中位值/10-6 2.8 0.040 88.4 20.8 0.006 40.3 17.9 87.4
Pt1GL.(n=55) 最小值/10-6 0.61 0.01 7.24 4.8 0.006 1.8 34.8 4.95
最大值/10-6 4.95 0.08 26.5 34.3 0.018 18.3 71.4 132
算术平均值/10-6 2.16 0.027 11.4 11.0 0.010 4.03 50.3 30.2
标准差/10-6 0.90 0.012 2.57 5.09 0.002 2.24 9.57 23.8
变异系数/% 41.5 43.8 22.6 46.2 23.6 55.6 19.0 78.9
中位值/10-6 1.91 0.030 11 9.32 0.01 3.56 48.8 21.0
花岗质岩浆岩(n=127) 最小值/10-6 0.37 0.01 7.17 2.99 0.005 1.24 5.05 4.86
最大值/10-6 8.53 0.11 73.5 27.3 0.046 29.1 55.3 95.2
算术平均值/10-6 2.13 0.027 16.2 8.68 0.009 6.34 28.3 37.9
标准差/10-6 1.17 0.014 9.03 3.59 0.006 4.63 13.4 18.1
变异系数/% 54.8 52.6 55.9 41.4 62.7 73.1 47.1 47.7
中位值/10-6 1.94 0.020 13.6 7.82 0.007 4.66 29.8 41.2
上地壳含量[43]/10-6 4.8 0.09 92 28 0.05 47 17 67
Table 1  不同地质单元岩石重金属含量统计结果
Fig.2  不同地质单元岩石和土壤重金属含量变化特征
地质单元 统计参数 As Cd Cr Cu Hg Ni Pb Zn
Qa(n=3018) 含量范围/10-6 0.03~35.4 0.01~1.79 4.24~127 2.08~65.5 0.006~0.453 0.85~78.7 15.9~305 20~331
算术平均值/10-6 2.64 0.094 38.4 12.4 0.032 13.7 41.7 68.8
变异系数/% 86.5 82.7 40.7 43.0 71.2 52.3 27.5 27.7
中位值/10-6 2.15 0.080 38.2 11.7 0.028 13.1 41.6 67.1
Qb(n=674) 含量范围/10-6 0.18~136 0.01~4.06 10.3~175 4.45~68.6 0.007~0.628 3.69~137 8.52~372 19.5~533
算术平均值/10-6 15.5 0.142 88.8 27.4 0.048 41.1 48.8 91.2
变异系数/% 83.0 149.9 40.8 39.5 77.3 48.8 51.9 45.5
中位值/10-6 13.5 0.090 91.6 29.2 0.044 43.3 42.5 84.1
N2m(n=258) 含量范围/10-6 0.05~51.4 0.01~1.58 7.42~108 2.68~52.4 0.006~0.145 2.25~53 22.2~221 26.4~341
算术平均值/10-6 4.30 0.049 48.1 13.2 0.039 18.9 37.0 59.1
变异系数/% 104.4 206.3 49.9 58.7 48.2 61.7 36.7 39.4
中位值/10-6 3.05 0.040 44.9 10.95 0.036 16.0 35.7 57.5
D1g(n=396) 含量范围/10-6 2.61~296 0.01~3.46 37.3~152 8.23~91.6 0.017~0.13 16.9~137 13.5~899 17.1~887
算术平均值/10-6 25.7 0.195 103 35.2 0.060 51.9 60.2 122
变异系数/% 126.7 174.6 17.6 27.2 30.3 29.9 148.5 61.2
中位值/10-6 17.5 0.095 104 35.5 0.058 49.9 37.4 109
Pt1GL.(n=198) 含量范围/10-6 0.1~11.2 0.01~0.17 11.5~108 3.05~52.8 0.012~0.165 1.99~56.2 8.25~94.8 17.1~329
算术平均值/10-6 3.10 0.046 48.8 14.4 0.051 18.6 39.3 67.9
变异系数/% 80.4 56.5 53.8 72.8 42.0 70.5 30.2 37.9
中位值/10-6 2.28 0.040 41.2 9.34 0.047 14.6 40.2 65.8
花岗质岩浆岩(n=374) 含量范围/10-6 0.03~13 0.01~0.771 2~281 2.88~40.8 0.007~0.149 1.01~109 7.5~76.8 20.5~145
算术平均值/10-6 3.17 0.041 49.2 12.7 0.045 17.6 35.2 55.7
变异系数/% 86.9 125.8 56.7 60.5 44.9 72.0 33.8 28.0
中位值/10-6 2.20 0.030 47.6 10.65 0.040 15.6 36.0 53.7
云南省土壤背景值[38]/10-6 18.4 0.22 65.2 46.3 0.06 42.5 40.6 89.7
宣威市落水镇[44]/10-6 13.6 1.62 135.2 233.8 0.09 74.5 32.8 185.7
宣威市热水镇[45]/10-6 18.1 1.18 174.1 202.2 0.09 71.1 34.9 167.2
广南县[46]/10-6 29.88 4.96 111.49 50.02 0.35 63.58 45.42 224.63
保山市[47]/10-6 23 0.269 128 48.7 0.178 57.9 45.2 114.8
Table 2  不同地质单元土壤重金属平均含量统计结果
Fig.3  土壤环境等级评价
Fig.4  不同成土母质耕作土和自然土重金属含量变化特征
Fig.5  关上组(D1g)土壤元素旋转因子载荷
Fig.6  花岗质岩浆岩土壤元素旋转因子载荷
Fig.7  不同成土母质土壤重金属地累积指数(Igeo)等级评价
Fig.8  不同成土母质土壤重金属潜在生态风险指数评价
[1] 吴克宁. 耕地质量及其提升“密码”的破译[J]. 国土资源科普与文化, 2017(4):12-17.
[1] Wu K N. Cultivated land quality and its improvement[J]. Popularization of Land and Resources Science and Culture, 2017(4):12-17.
[2] 中国地质调查局. 中国耕地地球化学调查报告(2015年)[EB/OL]. 中国地质调查局网站, 2015-06-25[2020-09-25]. http://www.cgs.gov.cn/upload/201506/20150626/gdbg.pdf .
[2] China Geological Survey. China’s cultivated land geochemical survey report (2015) [EB/OL]. China Geological Survey website, 2015-06-25[2020-09-25]. http://www.cgs.gov.cn/upload/201506/20150626/gdbg.pdf .
[3] 骆永明, 滕应. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 2018, 33(2):145-152.
[3] Luo Y M, Teng Y. Regional difference in soil pollution and strategy of soil zonal governance and remediation in China[J]. Bulletin of the Chinese Academy of Sciences, 2018, 33(2):145-152.
[4] Zhao F J, Ma Y, Zhu Y G, et al. Soil contamination in China: Current status and mitigation strategies[J]. Environ Sci Technol, 2015, 49(2):750-759.
doi: 10.1021/es5047099
[5] Chen H, Teng Y, Lu S, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of The Total Environment, 2015(512-513):143-153.
[6] 周江明. 中国耕地重金属污染现状及其人为污染源浅析[J]. 中国土壤与肥料, 2020(2):83-92.
[6] Zhou J M. The present status of heavy metal(loid)s pollution in farmland soils and analysis of polluting sources in China[J]. Soils and Fertilizers Sciences in China, 2020(2):83-92.
[7] Cai L, Xu Z, Bao P, et al. Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China[J]. Journal of Geochemical Exploration, 2015, 148:189-195.
doi: 10.1016/j.gexplo.2014.09.010
[8] 崔元俊, 李肖鹏, 董建, 等. 山东烟台金矿区及城镇周边土壤重金属化学形态分布及转化[J]. 物探与化探, 2013, 37(6):1100-1106.
[8] Cui Y J, Li X P, Dong J, et al. The chemical speciation distribution and transition of heavy metals in soil around gold ore districts as well as cities and towns in Yantai, Shandong province[J]. Geophysical and Geochemical Exploration, 2013, 37(6):1100-1106.
[9] 孙泽航. 小型多金属矿山周边土壤及作物重金属污染及居民潜在健康风险评估[D]. 广州:中国科学院大学, 2020.
[9] Sun Z H. Soil and crops heavy metal pollution and potential health risk assessment for the residents around small-scale polymetallic mine[D]. Guangzhou:University of Chinese Academy of Sciences, 2020.
[10] Xie W, Peng C, Wang H, et al. Bioaccessibility and source identification of heavy metals in agricultural soils contaminated by mining activities[J]. Environmental Earth Sciences, 2018, 77(17):1-12.
doi: 10.1007/s12665-017-7169-5
[11] 薛淼, 谢金亮. 我国城市生活垃圾焚烧厂周边土壤重金属和有机污染特征[J]. 有色冶金节能, 2019, 35(4):60-65.
[11] Xue M, Xie J L. Characteristics of heavy metals and organic pollution in soil around MSW incineration plant in China[J]. Energy Saving of Nonferrous Metallurgy, 2019, 35(4):60-65.
[12] 焦海林. 城市生活污水和污泥中的重金属[J]. 化学工程与装备, 2019, 271(8):319-321.
[12] Jiao H L. Heavy metals in municipal sewage and sludge[J]. Chemical Engineering & Equipment, 2019, 271(8):319-321.
[13] Singh P, Purakayastha T J, Mitra S, et al. River water irrigation with heavy metal load influences soil biological activities and risk factors[J]. Journal of Environmental Management, 2020, 270:110517.
doi: 10.1016/j.jenvman.2020.110517
[14] Sardar A, Shahid M, Natasha , et al. Risk assessment of heavy metal(loid)s via Spinacia oleracea ingestion after sewage water irrigation practices in Vehari District[J]. Environmental Science and Pollution Research, 2020, 27(32):39841-39851.
doi: 10.1007/s11356-020-09917-4
[15] 杨硕, 阎秀兰, 冯依涛. 河北曹妃甸某农场农田土壤重金属空间分布特征及来源分析[J]. 环境科学学报, 2019, 39(9):3064-3072.
[15] Yang S, Yan X L, Feng Y T. Spatial distribution and source identification of heavy metals in the farmland soil of the Caofeidian in Hebei Province[J]. Acta Scientiae Circumstantiae, 2019, 39(9):3064-3072.
[16] 王增辉. 鲁西南平原区大气干湿沉降元素输入通量及来源浅析:以巨野县为例[J]. 物探与化探, 2020, 44(4):839-846.
[16] Wang Z H. An analysis of the input flux and source of elements in dry and wet atmospheric deposition of southwest plain of Shandong: A case study of Juye County[J]. Geophysical and Geochemical Exploration, 2020, 44(4):839-846.
[17] 吕悦风, 谢丽, 朱文娟, 等. 基于环境容量的县域农用地土壤重金属风险概率预警研究[J]. 长江流域资源与环境, 2020, 29(1):253-264.
[17] Lyu Y F, Xie L, Zhu W J, et al. Risk prediction of heavy metals in farmland soil based on environmental capacity: Case study of the county scale in northern Zhejiang Province[J]. Resources and Environment in the Yangtze Basin, 2020, 29(1):253-264.
[18] 郭颖, 李玉冰, 薛生国, 等. 广西某赤泥堆场周边土壤重金属污染风险[J]. 环境科学, 2018, 39(7):3349-3357.
[18] Guo Y, Li Y B, Xue S G, et al. Risk analysis of heavy metal contamination in farmland soil around a bauxite residue disposal area in Guangxi[J]. Environmental Science, 2018, 39(7):3349-3357.
[19] 李英华, 杨朝旭, 伯鑫, 等. 生活垃圾焚烧厂周边土壤中PCDD/Fs及重金属含量[J]. 中国环境科学, 2020, 40(2):726-735.
[19] Li Y H, Yang C X, Bo X, et al. PCDD/Fs levels and heavy metal characteristics in soils surrounding typical municipal waste incineration plants in the Chengdu[J]. China Environmental Science, 2020, 40(2):726-735.
[20] 童立志, 韦黎华, 王峰, 等. 焚烧飞灰重金属含量及浸出长期变化规律研究[J]. 中国环境科学, 2020, 40(5):2132-2139.
[20] Tong L Z, Wei L H, Wang F, et al. Study on the long-term changes of heavy metal content and leaching behavior of municipal solid waste incineration fly ash[J]. China Environmental Science, 2020, 40(5):2132-2139.
[21] Wu W, Qu S, Nel W, et al. The influence of natural weathering on the behavior of heavy metals in small basaltic watersheds: A comparative study from different regions in China[J]. Chemosphere, 2020, 262:127897.
doi: 10.1016/j.chemosphere.2020.127897
[22] Mendoza-Grimón V, Hernández-Moreno J M, Rodríguez Martín J A, et al. Trace and major element associations in basaltic ash soils of El Hierro Island[J]. Journal of Geochemical Exploration, 2014, 147:277-282.
doi: 10.1016/j.gexplo.2014.06.010
[23] Mikkonen H G, van de Graaff R, Clarke B O, et al. Geochemical indices and regression tree models for estimation of ambient background concentrations of copper, chromium, nickel and zinc in soil[J]. Chemosphere, 2018, 210:193-203.
doi: S0045-6535(18)31213-X pmid: 30005340
[24] Wen Y, Li W, Yang Z, et al. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China[J]. Chemosphere, 2020, 245:125620.
doi: 10.1016/j.chemosphere.2019.125620
[25] 王佛鹏, 肖乃川, 周浪, 等. 桂西南地球化学异常区农田重金属空间分布特征及污染评价[J]. 环境科学, 2020, 41(2):876-885.
[25] Wang F P, Xiao N C, Zhou L, et al. Spatial distribution characteristics and pollution assessment of heavy metals on farmland of geochemical anomaly area in Southwest Guangxi[J]. Environmental Science, 2020, 41(2):876-885.
doi: 10.1021/es061576c
[26] 马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤—作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1):449-459.
[26] Ma H H, Peng M, Liu F, et al. Bioavailability, translocation, and accumulation characteristic of heavy metals in soil-crop system from a typical carbonate rocks Area in Guangxi, China[J]. Environmental Science, 2020, 41(1):449-459.
[27] 陈同斌, 庞瑞, 王佛鹏, 等. 桂西南土壤镉地质异常区水稻种植安全性评估[J]. 环境科学, 2020, 41(4):1855-1863.
[27] Chen T B, Pang R, Wang F P, et al. Safety assessment of rice planting in soil cadmium geological anomaly areas in Southwest Guangxi[J]. Environmental Science, 2020, 41(4):1855-1863.
[28] Xia X, Ji J, Yang Z, et al. Cadmium risk in the soil-plant system caused by weathering of carbonate bedrock[J]. Chemosphere, 2020, 254:126799.
doi: 10.1016/j.chemosphere.2020.126799
[29] Peng B, Rate A, Song Z, et al. Geochemistry of major and trace elements and Pb-Sr isotopes of a weathering profile developed on the Lower Cambrian black shales in central Hunan, China[J]. Applied Geochemistry, 2014, 51:191-203.
doi: 10.1016/j.apgeochem.2014.09.007
[30] Liu Y, Xiao T, Perkins R B, et al. Geogenic cadmium pollution and potential health risks, with emphasis on black shale[J]. Journal of Geochemical Exploration, 2017, 176:42-49.
doi: 10.1016/j.gexplo.2016.04.004
[31] 赵万伏, 宋垠先, 管冬兴, 等. 典型黑色岩系分布区土壤重金属污染与生物有效性研究[J]. 农业环境科学学报, 2018, 37(7):1332-1341.
[31] Zhao W F, Song Y X, Guan D X, et al. Pollution status and bioavailability of heavy metals in soils of a typical black shale area[J]. Journal of Agro-Environment Science, 2018, 37(7):1332-1341.
[32] 余昌训, 彭渤, 唐晓燕, 等. 黑色页岩与土壤重金属污染[J]. 矿物岩石地球化学通报, 2008, 27(2):137-145.
[32] Yu C X, Peng B, Tang X Y, et al. The black shale and relative heavy metal contamination of soils derived from the black shale[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(2):137-145.
[33] 程靖伟. 云南大盈江河谷第四纪地层研究[D]. 北京:中国地质大学(北京), 2013.
[33] Cheng J W. Study on quaternary strata in Yingjiang valley of Yunnan[D]. Beijing:China University of Geosciences (Beijing), 2013.
[34] 肖高强, 宗庆霞, 向龙洲, 等. 云南省盈江县旧城—姐冒地区土壤和农产品硒地球化学特征及影响因素[J]. 物探与化探, 2020, 44(2):412-418.
[34] Xiao G Q, Zong Q X, Xiang L Z, et al. Geochemical characteristics and influencing factors of Selenium in soils and agricultural products in the Jiucheng-Jiemao area Yingjiang County, Yunnan Province[J]. Geophysical and Geochemical Exploration, 2020, 44(2):412-418.
[35] 谢冰晶. 滇西南大盈江流域梁河、盈江盆地第四纪地层及活动构造特征研究[D]. 北京:中国地质大学(北京), 2014.
[35] Xie B J. Research of quaternary strata and active fault in Lianghe and Yingjiang basin of Dayingjiang valley, Southwest Yunnan[D]. Beijing:China University of Geosciences (Beijing), 2014.
[36] Muller G. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2(3):109-118.
[37] 段嘉欣, 梁斌, 李忠惠, 等. 川南兴文僰王山酸化土壤重金属污染特征及来源解析[J]. 四川环境, 2020, 39(4):129-135.
[37] Duan J X, Liang B, Li Z H, et al. Pollution characteristics and source analysis of heavy metals in acidified soil in Xingwen area, South Sichuan[J]. Sichuan Environment, 2020, 39(4):129-135.
[38] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
[38] China Environmental Monitoring Center. Background value of soil elements in China[M]. Beijing: China Environmental Science Press, 1990.
[39] 陈奕云, 唐名阳, 王淑桃, 等. 基于文献计量的中国农田土壤重金属污染评价[J]. 土壤通报, 2016, 47(1):219-225.
[39] Chen Y Y, Tang M Y, Wang S T, et al. Evaluation of heavy metal pollution in farmland soil of China based on bibliometrics[J]. Chinese Journal of Soil Science, 2016, 47(1):219-225.
[40] Hakanson L. An ecological risk index for aquatic pollution control.a sedimentological approach[J]. Water Research, 1980, 14(8):975-1001.
doi: 10.1016/0043-1354(80)90143-8
[41] Tian K, Huang B, Xing Z, et al. Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China[J]. Ecological Indicators, 2017, 72:510-520.
doi: 10.1016/j.ecolind.2016.08.037
[42] 周亚龙, 郭志娟, 王成文, 等. 云南省镇雄县土壤重金属污染及潜在生态风险评估[J]. 物探与化探, 2019, 43(6):1358-1366.
[42] Zhou Y L, Guo Z J, Wang C W, et al. Assessment of heavy metal pollution and potential ecological risks of soils in Zhenxiong County, Yunnan Province[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1358-1366.
[43] Rudnick R, Gao S. Composition of the Continental Crust[M]//Holland H D, Turekian K K. Treatise on Geochemistry(2nd edition). Oxford:Elsevier Ltd, 2014:4-55.
[44] 唐瑞玲, 王惠艳, 吕许朋, 等. 西南重金属高背景区农田系统土壤重金属生态风险评价[J]. 现代地质, 2020, 34(5):917-927.
[44] Tang R L, Wang H Y, Lyu X P, et al. Ecological risk assessment of heavy metals in farmland system from an area with high background of heavy metals, Southwestern China[J]. Geoscience, 2020, 34(5):917-927.
[45] 张富贵, 彭敏, 王惠艳, 等. 基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价[J]. 环境科学, 2020, 41(9):4197-4209.
[45] Zhang F G, Peng M, Wang H Y, et al. Ecological risk assessment of heavy metals at township scale in the high background of heavy metals, Southwestern, China[J]. Environmental Science, 2020, 41(9):4197-4209.
[46] 洪涛, 孔祥胜, 岳祥飞. 滇东南峰丛洼地土壤重金属含量、来源及潜在生态风险评价[J]. 环境科学, 2019, 40(10):4620-4627.
[46] Hong T, Kong X S, Yue X F. Concentration characteristics, source analysis, and potential ecological risk assessment of heavy metals in a peak-cluster depression area, Southeast of Yunnan Province[J]. Environmental Science, 2019, 40(10):4620-4627.
[47] Zhang L, McKinley J, Cooper M, et al. A regional soil and river sediment geochemical study in Baoshan area, Yunnan province, southwest China[J]. Journal of Geochemical Exploration, 2020, 217:106557.
doi: 10.1016/j.gexplo.2020.106557
[48] 刘意章, 肖唐付, 宁增平, 等. 三峡库区巫山建坪地区土壤镉等重金属分布特征及来源研究[J]. 环境科学, 2013, 34(6):2390-2398.
[48] Liu Y Z, Xiao T F, Ning Z P, et al. Cadmium and selected heavy metals in soils of Jianping area in Wushan County, the three gorges region: Distribution and source recognition[J]. Environmental Science, 2013, 34(6):2390-2398.
[49] 宋波, 张云霞, 庞瑞, 等. 广西西江流域农田土壤重金属含量特征及来源解析[J]. 环境科学, 2018, 39(9):4317-4326.
[49] Song B, Zhang Y X, Pang R, et al. Analysis of characteristics and sources of heavy metals in farmland soils in the Xijiang river draining of Guangxi[J]. Environmental Science, 2018, 39(9):4317-4326.
doi: 10.1021/es050244p
[50] 陆景冈. 土壤地质学[M]. 北京: 地质出版社, 2006:9-33.
[50] Lu J G. Soil geology[M]. Beijing: Geological Publishing House, 2006:9-33.
[51] 陈天培, 彭镇芳, 韩文华, 等. 腾冲幅G-47-27盈江幅G-47-26 1/20万区域地质调查报告[R]. 玉溪:云南地质矿产局区域地质调查队, 1982:39-40.
[51] Chen T P, Peng Z F, Han W H, et al. Tengchong map-sheet G-47-27 Yingjiang map-sheet G-47-26 1∶200,000 Regional Geological Survey Report [R]. Yuxi: Regional Geological Survey Team of Yunnan Bureau of Geology and Mineral Resources, 1982:39-40.
[52] 杨宋玲, 李方林, 黄建军, 等. 碳酸盐岩风化过程中次生富集作用对土壤地球化学异常评价的影响——以浙江下铜山铅锌异常评价为例[J]. 物探与化探, 2015, 39(6):1124-1131.
[52] Yang S L, Li F L, Huang J J, et al. The influence of the carbonate weathering secondary enrichment on soil geochemical anomaly evaluation: A case study of the evaluation of the Xiatong Mountain lead and zinc anomaly in Zhejiang province[J]. Geophysical and Geochemical Exploration, 2015, 39(6):1124-1131.
[53] 肖高强, 向龙洲, 宗庆霞, 等. 云南省盈江县旧城—姐冒地区 1∶5 万土地质量地球化学调查评价成果报告[R]. 昆明: 云南省地质调查院, 2019.
[53] Xiao G Q, Xiang L Z, Zong Q X, et al. 1∶50,000 land quality geochemical survey and evaluation results report in Jiucheng-Jiemao area, Yingjiang County, Yunnan Province[R]. Kunming: Yunnan Provincial Geological Survey Institute, 2019.
[1] 赵秀芳, 张永帅, 冯爱平, 王艺璇, 夏立献, 王宏雷, 杜伟. 山东省安丘地区农业土壤重金属元素地球化学特征及环境评价[J]. 物探与化探, 2020, 44(6): 1446-1454.
[2] 肖高强, 宗庆霞, 向龙洲, 刀艳, 徐永强. 云南省盈江县旧城—姐冒地区土壤和农产品硒地球化学特征及影响因素[J]. 物探与化探, 2020, 44(2): 412-418.
[3] 吴雪芳, 岑况, 赵伦山, 刘秀丽, 史瑾瑾, 朱雪涛. 顺德地区土壤重金属污染生态地球化学调查与物源识别[J]. 物探与化探, 2015, 39(3): 595-601,605.
[4] 周国华. 土壤重金属生物有效性研究进展[J]. 物探与化探, 2014, 38(6): 1097-1106.
[5] 胡树起, 汤丽玲, 马生明, 王惠艳. 渤海湾表层沉积物中有机污染物组成、来源及其生态风险[J]. 物探与化探, 2014, 38(2): 309-317,324.
[6] 张建东 赖建清 范舟 王雄军 李德胜 王建武 周继华. 理想点法在太原盆地土壤重金属污染等级评价中的应用[J]. 物探与化探, 2009, 33(2): 161-164.
[7] 王志坤, 宁福政, 付巧玲, 王恒旭, 王文成. 洛阳城区土壤重金属污染现状评价[J]. 物探与化探, 2008, 32(4): 412-416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com