Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (1): 255-263    DOI: 10.11720/wtyht.2024.2595
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
皖南典型区耕地土壤重金属富集特征、来源识别及健康风险评估
杨艳(), 刘彬, 夏飞强, 陈平峰, 张祥
安徽省地球物理地球化学勘查技术院,安徽 合肥 230022
Enrichment characteristics, source identification, and health risk assessment of soil heavy metals in typical cultivated land in the mountainous area of southern Anhui Province
YANG Yan(), LIU Bin, XIA Fei-Qiang, CHEN Ping-Feng, ZHANG Xiang
Anhui Institute of Geophysical and Geochemical Prospecting Techniques, Hefei 230022, China
全文: PDF(4743 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为探讨安徽省皖南山区典型耕地土壤重金属富集特征及成因,以安徽省东南部宁国市为研究对象,在耕地中采集1 399件表层土壤样品,测定As、Cd、Hg、Pb、Cr、Ni、Cu、Zn元素含量,运用相关分析、土壤环境质量农用地土壤污染风险、地质累积指数、健康风险指数及PMF(正定矩阵因子分解)模型方法开展重金属风险评价及来源识别。结果显示:As、Cd、Hg、Pb、Cr、Ni、Cu、Zn含量的平均值分别为:15.8×10-6、0.41×10-6、0.106×10-6、31×10-6、67×10-6、29.00×10-6、29×10-6、94×10-6,除Ni外,其他元素均高于安徽省背景值;重金属土壤污染风险水平整体较低,有866件土壤样品重金属含量低于风险筛选值;地质累积指数结果表明,耕地土壤主要受到Hg、Cd、As污染;健康风险评估结果显示,研究区内成人非致癌与致癌风险水平均在可接受范围内;基于PMF模型,确立了研究区重金属4种来源:与人类活动相关的工农业排放源、大气沉降源、与土壤类型相关的成土母质源和地质背景源。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨艳
刘彬
夏飞强
陈平峰
张祥
关键词 耕地土壤重金属健康风险PMF模型    
Abstract

This study aims to explore the enrichment characteristics and origin of soil heavy metals in typical cultivated land in the mountainous area of southern Anhui province. With Ningguo City in southeastern Anhui Province as the research object, this study collected 1399 topsoil samples in the cultivated land for determining the concentrations of As, Cd, Hg, Pb, Cr, Ni, Cu, and Zn. Furthermore, this study conducted a health risk assessment and source identification of heavy metals using the correlation analysis, the soil environmental quality - risk control standard for soil contamination of agricultural land, the geoaccumulation index, the health risk index, and the positive matrix factorization (PMF) model. The results are as follows: (1) The average concentrations of As, Cr, Hg, Pb, Cr, Ni, Cu, and Zn were 15.8×10-6, 0.41×10-6, 0.106×10-6, 31×10-6, 67×10-6, 29×10-6, 29×10-6, and 94×10-6, respectively, which were all higher than their background values in Anhui Province, except Ni. (2) The soil heavy metals generally exhibited low pollution risks, with the heavy metal concentrations of 866 soil samples lower than their risk screening values. (3) The cultivated soil was primarily polluted by Hg, Cd, and As, as indicated by the geoaccumulation index results. (4) Both non-carcinogenic and carcinogenic risk levels in adults in the study area were within the acceptable ranges, as revealed by the health risk assessment results. (5) Four sources of heavy metals in the study area were identified based on the PMF model: industrial and agricultural emissions associated with human activities, atmospheric deposition, soil parent materials related to soil types, and the geological background source.

Key wordscultivated land    soil heavy metals    health risk    PMF model
收稿日期: 2022-11-30      修回日期: 2023-05-05      出版日期: 2024-02-20
ZTFLH:  X142  
  X825  
基金资助:安徽省公益性地质工作项目(2016-g-3-11)
作者简介: 杨艳(1993-),女,本科,2013年毕业于中国地质大学(武汉),地球化学勘查工程师,主要研究方向为生态地球化学。Email:1061839449@qq.com
引用本文:   
杨艳, 刘彬, 夏飞强, 陈平峰, 张祥. 皖南典型区耕地土壤重金属富集特征、来源识别及健康风险评估[J]. 物探与化探, 2024, 48(1): 255-263.
YANG Yan, LIU Bin, XIA Fei-Qiang, CHEN Ping-Feng, ZHANG Xiang. Enrichment characteristics, source identification, and health risk assessment of soil heavy metals in typical cultivated land in the mountainous area of southern Anhui Province. Geophysical and Geochemical Exploration, 2024, 48(1): 255-263.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.2595      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I1/255
Fig.1  研究区地理位置示意(a)、土壤类型(b)和采样点分布(c)
1—第四系;2—白垩系;3—侏罗系;4—二叠系;5—石炭系;6—泥盆系;7—志留系;8—奥陶系;9—寒武系;10—震旦系;11—南华系;12—燕山期侵入岩(二长花岗岩);13—燕山期侵入岩(二长花岗斑岩);14—花岗斑岩;15—地层界线;16—断层;17—土壤采样点位
元素/指标 分析方法 检出限/10-6 测定范围/10-6
As AFS 0.2 0.2~500
Cd ICP-MS 0.02 0.02~4.0
Hg AFS 0.0005 0.0005~10
Pb ICP-MS 2 2~2000
Cr ICP-AES 3 3~3500
Ni ICP-AES 0.05 0.05~2000
Cu ICP-AES 1 1~2000
Zn ICP-AES 2 2~3000
pH ISE 0.1* 0.1~14.0*
Table 1  各元素(指标)分析方法及检出限
等级 1 2 3 4 5 6 7
Igeo ≤0 >0~1 >1~2 >2~3 >3~4 >4~5 ≥5
污染程度 无到中等 中等 中等到重度 重度 重度到极度 极度
Table 2  地质累积指数分级标准划分
参数 含义 单位 成人 儿童
I R 土壤摄入量 mg/d 100 200
EF 暴露频率 d/a 350 350
ED 暴露期 a 24 6
BW 平均体重 kg 61.8 19.2
AT 平均作用时间 d 9125 2190
SA 可能接触土壤的皮肤面积 cm2/d 5700 2800
AF 皮肤对土壤的吸附系数 mg/cm2 0.07 0.2
ABS 皮肤吸收率 % 0.1 0.1
PEF 土壤尘产生因子 m3/kg 1.36′109 1.36′109
I R 日空气吸入量 m3/d 14.5 7.5
Table 3  健康风险模型暴露参数[12,15-16]
元素 参考计量RfD/mg·(kg·d)-1 致癌斜率SF/[mg/(kg·d)]-1
经口 皮肤 呼吸 经口 皮肤 呼吸
As 3.00×10-4 1.23′10-4 4.29′10-6 1.50 1.50 15.10
Cd 1.00×10-3 2.50′10-5 2.86′10-6 6.30
Hg 3.00×10-4 2.14′10-5
Pb 1.40×10-3 5.24′10-4 8.50×10-3 4.20×10-2
Cr 3.00×10-3 3.00′10-5 2.86′10-5 5.01×10-1 2.00′101 4.20′101
Ni 2.00×10-2 5.40′10-3 9.00′10-5 1.70 4.25′101 8.40×10-1
Cu 4.00×10-2 1.20′10-2
Zn 3.00×10-1 6.00′10-2
Table 4  土壤重金属不同暴露途径的RfDSF[12,15-16]
参数 Cr Cu Ni Zn Cd Pb As Hg pH
原始数据 最大值 326 95 94.48 451 16.06 225 292.5 0.650 8.3
最小值 10 7 4.49 39 0.03 4 1.3 0.030 4.3
中位数 68 27 28.20 91 0.21 30 10.6 0.100 5.4
算术平均值 67 29 29.00 94 0.41 31 15.8 0.106 5.5
标准离差 17.450 10.998 9.863 34.392 0.799 7.993 18.902 0.048 0.659
变异系数 0.26 0.38 0.34 0.37 1.97 0.26 1.20 0.46 0.12
迭代剔除后 算术平均值 67 29 28.57 91 0.27 30 11.4 0.098 5.4
标准离差 14.657 9.919 9.025 26.139 0.173 4.567 6.155 0.031 0.363
变异系数 0.22 0.35 0.32 0.29 0.64 0.15 0.54 0.32 0.07
样品数量 1374 1380 1383 1363 1288 1357 1276 1329 1290
安徽省[11] 算术平均值 66.5 20.4 29.8 62 0.097 26.6 9.0 0.033 6.4
全国[17] 算术平均值 66 25 27 71 0.205 30 10.3 0.076
Table 5  土壤重金属元素参数统计
土壤污染
风险等级
样品数/件
Cr Cu Ni Zn Cd Pb As Hg 综合
低风险 1398 1343 1393 1382 930 1396 1266 1397 866
风险可控 1 56 6 17 437 3 130 2 498
较高风险 32 3 35
Table 6  研究区耕地土壤污染风险等级统计结果
元素 Igeo≤0 0<Igeo≤1 1<Igeo≤2 2<Igeo≤3 3<Igeo≤4 4<Igeo≤5 Igeo>5
污染程度 无到中等 中等 中等到重度 重度 重度到极度 极度
Cr 99.0 0.9 0.1 0 0 0 0
Cu 62.1 36.9 1.0 0 0 0 0
Ni 95.4 4.4 0.1 0 0 0 0
Zn 53.4 44.8 1.6 0.1 0 0 0
Cd 20.7 42.8 20.6 11.8 2.7 0.8 0.6
Pb 93.9 6.0 0.1 0.1 0 0 0
As 65.0 24.2 7.0 3.1 0.6 0.1 0
Hg 3.4 51.5 41.0 4.0 0.1 0 0
Table 7  各元素不同地质累积指数级别的样品数占总样品数的百分比
元素 Cr Cu Ni Zn Cd Pb As Hg
Cr 1.000
Cu 0.613 1.000
Ni 0.743 0.872 1.000
Zn 0.371 0.818 0.769 1.000
Cd 0.224 0.554 0.551 0.759 1.000
Pb 0.181 0.401 0.290 0.444 0.256 1.000
As 0.273 0.379 0.348 0.269 0.170 0.225 1.000
Hg 0.116 0.175 0.136 0.187 0.125 0.130 -0.019 1.000
Table 8  土壤重金属含量相关性分析
Fig.2  通过PMF模型获得的研究区重金属污染源成分谱
Fig.3  研究区重金属污染源成分谱
Fig.4  PMF影响因子空间分布
[1] 国务院. 中共中央国务院关于做好2022年全面推进乡村振兴重点工作的意见[N/OL]. 新华社,2022-2-22. http://www.gov.cn/zhengce/2022-02/22/content_5675035.htm
[1] The State Council. Opinions of the Central Committee of the Communist Party of China and the State Council on doing well the key work of comprehensively promoting rural revitalization in 2022[N/OL]. Xinhua News Agency,2022-2-22. http://www.gov.cn/zhengce/2022-02/22/content_5675035.htm
[2] 中国地质调查局. 中国耕地地球化学调查报告(2015年)[EB/OL]. 北京, 2015. https://www.cgs.gov.cn/xwl/dzzl/201603/U020160726370276602662.pdf.
[2] China Geological Survey. Report on geochemical survey of cultivated land in China 2015[EB/OL]. Beijing, 2015. https://www.cgs.gov.cn/xwl/dzzl/201603/U020160726370276602662.pdf.
[3] 关连珠. 普通土壤学[M]. 北京: 中国农业大学出版社, 2016:366-374.
[3] Guan L Z. General soil science[M]. Beijing: China Agricultural University Press, 2016:366-374.
[4] Wang F, Guan Q, Tian J, et al. Contamination characteristics,source apportionment,and health risk assessment of heavy metals in agricultural soil in the Hexi Corridor[J]. Catena:Giessen, 2020, 191:104573.
[5] 尹国庆, 江宏, 王强, 等. 安徽省典型区农用地土壤重金属污染成因及特征分析[J]. 农业环境科学学报, 2018, 37(1):96-104.
[5] Yin G Q, Jiang H, Wang Q, et al. Analysis of the causes and characteristics of heavy metal pollution in agricultural land in typical areas of Anhui Province[J]. Journal of Agricultural Environmental Science, 2018, 37(1):96-104.
[6] 夏飞强, 张祥, 杨艳, 等. 安徽省宁国市土壤和农产品硒地球化学特征及影响因素[J]. 土壤, 2021, 53(3):585-593.
[6] Xia F Q, Zhang X, Yang Y, et al. Selenium geochemical characteristics and influencing factors of soil and agricultural products in Ningguo City Anhui Province[J]. Soil, 2021, 53(3):585-593.
[7] 陶汝鹏, 吴志辉. 宁国山核桃主产区土壤肥力调查与分析[J]. 安徽农学通报, 2018, 24(18):73-75,84.
[7] Tao R P, Wu Z H. Investigation and analysis of soil fertility in Ningguo City cathayensis main production area[J]. Anhui Agricultural Bulletin, 2018, 24(18):73-75,84.
[8] 生态环境部国家市场监督管理总局. GB 15618—2018土壤环境质量农用地土壤污染风险管理标准(试行)[S].
[8] Ministry of Ecology and Environment General Administration for National Market Supervision. GB 15618—2018 Soil environmental quality risk management standard for soil pollution of agricultural land[S].
[9] 李笑诺, 丁寿康, 陈卫平, 等. 土壤环境质量预警体系构建与应用[J]. 环境科学, 2020, 41(6):2834-2841.
[9] Li X N, Ding S K, Chen W P, et al. Construction and application of soil environmental quality early warning system[J]. Environmental Science, 2020, 41(6):2834-2841.
[10] Muller G. Index of geoaccumulation in sediments of the Rhine river[J]. Geojournal, 1969, 2(3):109-118.
[11] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990:329-380.
[11] China National Environmental Monitoring Centre. Background value of soil elements in China[M]. Beijing: China Environmental Science Press, 1990:329-380.
[12] US EPA. Supplemental guidance for developing soil screening levels for superfund sites[R]. Washington DC: Office of Emergency and Remedial Response, 2002:4-24.
[13] US EPA. Risk assessment guidance for superfound.Volume1:human health evaluation manual[R]. Washington DC: Office of Emergency and Remedial Response, 1989:6-50.
[14] 中华人民共和国地质矿产行业标准. DZ/T 0354—2020局部生态地球化学评价规范[S].
[14] Geological and Mineral Industry Standards of the People 's Republic of China. DZ/T 0354—2020 Specification of local ecogeochemistry assessment[S].
[15] 环境保护部. 中国人群暴露参数手册[M]. 北京: 中国环境出版社, 2013:16-845.
[15] Ministry of Environmental Protection. Chinese population exposure parameter manual[M]. Beijing: China Environmental Press, 2013:16-845.
[16] Liu H, Wang H, Zhang Y, et al. Risk assessment spatial distribution and source apportionment of heavy metals in Chinese surface soils from a typically tobacco cultivated area[J]. Environmental Science and Pollution Research, 2018, 25(17):16852-16863.
doi: 10.1007/s11356-018-1866-9
[17] 侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020.
[17] Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical parameters in China[M]. Beijing: Geological Publishing House, 2020.
[18] 肖婷. 宁国市土壤pH调查及改良措施[J]. 宁夏农林科技, 2013, 54(8):46-56.
[18] Xiao T. Soil pH survey and improvement measures in Ningguo City[J]. Ningxia Journal of Agro-Forestry Science and Technology, 2013, 54(8):46-56.
[19] 杨剑洲, 龚晶晶, 王振亮, 等. 海南岛半干旱区农用地土壤重金属富集因素、健康风险及来源识别[J]. 环境科学, 2022, 43(10):4590-4600.
[19] Yang J Z, Gong J J, Wang Z L, et al. Enrichment factors health risks and source identification of heavy metals in agricultural soil in semi-arid area of Hainan Island[J]. Environmental Science, 2022, 43(10):4590-4600.
[20] 吕建树. 烟台海岸带土壤重金属定量源解析及空间预测[J]. 地理学报, 2021, 76(3):713-725.
doi: 10.11821/dlxb202103015
[20] Lyu J S. Quantitative source analysis and spatial prediction of soil heavy metals in Yantai coastal zone[J]. Acta Geographica Sinica, 2021, 76(3):713-725.
[21] Liu R, Wang Q, Lu X, et al. Distribution and speciation of mercury in the peat bog of Xiaoxing'an Mountain northeastern China[J]. Environment Pollution, 2003, 124(1):39-46.
doi: 10.1016/S0269-7491(02)00432-3
[22] 夏飞强, 张祥, 杨艳, 等. 宁国市土地质量地球化学调查与评价成果报告[R]. 安徽省地球物理地球化学勘查技术院, 2020.
[22] Xia F Q, Zhang X, Yang Y, et al. Results report of geochemical survey and evaluation of land quality in Ningguo City[R]. Anhui Institute of Geophysical and Geochemical Exploration Technology, 2020.
[23] 王云, 魏复盛. 土壤环境元素化学[M]. 北京: 中国环境科学出版社, 1995:58-71.
[23] Wang Y, Wei F S. Soil environmental element chemistry[M]. Beijing: China Environmental Science Press, 1995:58-71.
[1] 肖高强, 赵娟, 陈子万, 宋旭锋, 朱能刚. 基于地质大数据技术对云南土壤重金属地质高背景区的划定[J]. 物探与化探, 2024, 48(1): 216-227.
[2] 范海印, 宋蕊蕊, 于林松, 滕永波, 万方, 张秀文, 李圣玉, 赵闯. 鲁西北地区某典型化工园区地下水重金属污染特征及健康风险评价[J]. 物探与化探, 2023, 47(5): 1326-1335.
[3] 王惠艳, 彭敏, 马宏宏, 张富贵. 贵州典型重金属高背景区耕地土壤重金属生态风险评价[J]. 物探与化探, 2023, 47(4): 1109-1117.
[4] 包凤琴, 成杭新, 永胜, 周立军, 杨宇亮. 包头南郊农田土壤环境质量特征及农作物健康风险评价[J]. 物探与化探, 2023, 47(3): 816-825.
[5] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[6] 肖高强, 向龙洲, 代达龙, 高晓红, 宗庆霞. 花岗质岩浆岩土壤重金属地球化学特征及生态风险评价——以云南盈江旧城—姐冒地区为例[J]. 物探与化探, 2021, 45(5): 1135-1146.
[7] 赵秀芳, 张永帅, 冯爱平, 王艺璇, 夏立献, 王宏雷, 杜伟. 山东省安丘地区农业土壤重金属元素地球化学特征及环境评价[J]. 物探与化探, 2020, 44(6): 1446-1454.
[8] 徐姗. 黄骅地区水—土系统地球化学环境健康风险评估[J]. 物探与化探, 2017, 41(3): 570-576.
[9] 吴雪芳, 岑况, 赵伦山, 刘秀丽, 史瑾瑾, 朱雪涛. 顺德地区土壤重金属污染生态地球化学调查与物源识别[J]. 物探与化探, 2015, 39(3): 595-601,605.
[10] 周国华. 土壤重金属生物有效性研究进展[J]. 物探与化探, 2014, 38(6): 1097-1106.
[11] 桑玲玲, 高歌, 郧文聚, 朱德海. 地球化学与耕地质量调查数据整合方法对比[J]. 物探与化探, 2014, 38(2): 359-362,376.
[12] 张建东 赖建清 范舟 王雄军 李德胜 王建武 周继华. 理想点法在太原盆地土壤重金属污染等级评价中的应用[J]. 物探与化探, 2009, 33(2): 161-164.
[13] 王志坤, 宁福政, 付巧玲, 王恒旭, 王文成. 洛阳城区土壤重金属污染现状评价[J]. 物探与化探, 2008, 32(4): 412-416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com