Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (5): 1361-1370    DOI: 10.11720/wtyht.2023.1433
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
汉江上游水体沉积物污染状况分析与评价
杨婵1(), 吴娟娟1, 车旭曦1, 岳思羽1,2, 刘智峰1,2, 宋凤敏1,2()
1.陕西理工大学 化学与环境科学学院,陕西 汉中 723001
2.秦巴生物资源与生态环境国家重点实验室(培育),陕西 汉中 723001
Pollution analysis and assessment of sediments in the upper reaches of the Hanjiang River
YANG Chan1(), WU Juan-Juan1, CHE Xu-Xi1, YUE Si-Yu1,2, LIU Zhi-Feng1,2, SONG Feng-Min1,2()
1. School of Chemical and Environmental Science, Shaanxi University of Technology,Hanzhong 723001, China
2. Key Laboratory of Qinba Biological Resources and Ecological Environment (Cultivation),Hanzhong 723001, China
全文: PDF(1572 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为研究汉江上游水体沉积物污染状况及其来源,以汉江上游水体17个样点沉积物为对象,测定了沉积物中有机氯化合物(α-666;β-666;γ-666;δ-666;4,4’-DDE;4,4’-DDD;2,4’-DDT;4,4’-DDT)和重金属元素(V、Cr、Mn、Co、Ni、Cu、Zn、As、Cd、Pb)的含量,采用地累积指数法和潜在生态风险指数评价了重金属污染状况,并结合冗余分析和多元统计分析探讨沉积物理化性质与重金属的关系以及重金属的来源。结果表明,所有样点沉积物中有机氯化合物的含量水平均较低,未对生态环境产生影响,但仍需注意预防此类污染;所有样点重金属除Cd为偏强度污染程度外,其余元素均显示为无污染—轻度污染程度。潜在生态风险分析显示,重金属元素总体处于极重潜在风险,对环境造成污染的样点中贡献最大的是Cd,是研究区域环境生态风险的主要影响因子;冗余分析表明该研究区域沉积物的理化性质和重金属含量没有显著性关系;多元统计分析表明,Cd、Pb可能与农业生产资料(化肥、农药等)的施用和工业“三废”的排放有关,属于人为源; V、Cr、Mn、Co、Ni、Cu、Zn、As的含量主要与岩石的自然风化有关,部分样点与工业废水和农业活动有关,污染源主要是自然源。综合研究表明,由Cd污染为主的汉江上游沉积物重金属潜在生态危害应引起重视。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨婵
吴娟娟
车旭曦
岳思羽
刘智峰
宋凤敏
关键词 汉江上游沉积物有机氯化合物重金属污染风险评价    
Abstract

To ascertain the pollution characteristics and source of sediments in the upper reaches of the Hanjiang River, this study collected sediment samples at 17 sampling sites in the study area. Based on these samples, this study determined the concentrations of organochlorine compounds (α-666;β-666;γ-666;δ-666;4,4'-DDE;4,4'-DDD;2,4'-DDT; and 4,4'-DDT) and heavy metals (V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd, and Pb) in the sediments. Then, it assessed the heavy metal pollution using the geoaccumulation and potential ecological risk indices. Furthermore, through redundancy analysis and multivariate statistical analysis, this study explored the sources of heavy metals and the relationships between the physicochemical properties of the sediments and heavy metals concentrations. The results indicate that: (1) The organochlorine compounds in the sediments at all sampling sites show low concentrations, without affecting the ecological environment. However, attention should be paid to the pollution caused by organochlorine compounds; (2) All the heavy metals from the sampling sites show non-pollution or mild pollution, except for Cd, which caused slightly strong pollution; (3) As revealed by the analysis of potential ecological risks, heavy metals generally show extremely high potential risks. Cd, which causes the most serious environmental pollution at the sampling sites, serves as the main factor influencing the environmental and ecological risks in the study area; (4) The redundancy analysis shows that there is no significant relationship between the physicochemical properties of sediments and the concentrations of heavy metals in the study area; (5) As revealed by the multivariate statistical analysis, Cd and Pb may be related to the application of agricultural materials (e.g., chemical fertilizers and pesticides) and the discharge of waste gas, wastewater, and industrial residue, indicating anthropogenic sources; the concentrations of V, Cr, Mn, Co, Ni, Cu, Zn, and As are related to the natural weathering of rocks mainly and to industrial wastewater and agricultural activities partially, indicating dominant natural sources. The comprehensive study shows that the potential ecological hazards caused by heavy metals (dominated by Cd) in the sediments should be treated seriously.

Key wordsupper reaches of the Hanjiang River    sediment    organochlorine compound    heavy metal    pollution risk assessment
收稿日期: 2022-08-29      修回日期: 2023-02-22      出版日期: 2023-10-20
ZTFLH:  X820.4  
基金资助:国家自然科学基金项目(22073059);陕西省教育厅科研专项(20JY008);陕西省教育厅科研专项(20JS017);陕西理工大学秦巴生物资源与生态环境重点实验室“市校共建”科研专项(SXJ-2016)
通讯作者: 宋凤敏
作者简介: 杨婵(1998-),女,硕士研究生,主要从事分析化学研究工作。Email:yc1487819481@163.com
引用本文:   
杨婵, 吴娟娟, 车旭曦, 岳思羽, 刘智峰, 宋凤敏. 汉江上游水体沉积物污染状况分析与评价[J]. 物探与化探, 2023, 47(5): 1361-1370.
YANG Chan, WU Juan-Juan, CHE Xu-Xi, YUE Si-Yu, LIU Zhi-Feng, SONG Feng-Min. Pollution analysis and assessment of sediments in the upper reaches of the Hanjiang River. Geophysical and Geochemical Exploration, 2023, 47(5): 1361-1370.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1433      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I5/1361
Fig.1  汉江上游沉积物采样点分布
地累积指数Igeo Igeo< 0 0≤I geo< 1 1≤I geo< 2 2≤I geo< 3 3≤I geo< 4 4≤I geo< 5 I geo≥5
等级 0 1 2 3 4 5 6
污染程度 无污染 无—中污染 中度污染 中强污染 强污染 强—极强污染 极强污染
Table 1  沉积物中重金属的地累积指数污染程度分类
单金属潜在生态
风险指数(Ei)
综合潜在生态风
险指数(R)
潜在生态
风险等级
Ei < 30 R< 80 轻度污染
30≤Ei <60 80≤R < 160 中度污染
60≤Ei<120 160≤R <240 偏重污染
120≤Ei<240 240≤R < 320 重度污染
Ei≥240 R≥320 极重污染
Table 2  潜在生态风险指数划分标准
Fig.2  各采样点重金属含量分布
重金属 最大值/10-6 最小值/10-6 平均值/10-6 标准差/10-6 超标率/% 变异系数/% 陕西省土壤
重金属背景
[15]/10-6
V 108.21 18.88 46.49 23.08 5.88 49.65 76.40
Cr 54.18 12.33 35.63 10.76 11.76 30.20 51.90
Mn 2855.13 110.14 673.15 571.20 58.82 84.85 482.00
Co 22.75 3.54 11.17 4.59 41.18 39.20 11.20
Ni 75.67 3.38 24.78 18.66 17.65 75.30 28.60
Cu 56.50 8.12 22.10 12.43 41.18 56.24 20.40
Zn 156.98 13.06 48.93 30.31 11.76 61.95 68.00
As 32.39 1.45 10.21 6.44 35.29 63.08 11.10
Cd 14.85 0.16 2.22 3.36 100 151.35 0.10
Pb 40.93 11.01 20.86 8.51 35.29 40.80 21.2
Table 3  汉江上游表层沉积物中重金属总量分析结果统计(n=17)
样点 pH 总磷TP/
10-3
铵态氮NH3-N/
10-6
S1 7.24 0.28 2.38
S2 7.42 0.24 1.93
S3 7.50 0.25 2.10
S4 6.93 0.91 0.96
S5 7.66 0.25 2.16
S6 7.53 0.24 1.54
S7 7.39 0.25 2.89
S8 6.78 0.25 3.03
S9 7.60 0.90 1.51
S10 7.49 0.74 1.56
S11 7.35 1.44 2.24
S12 6.99 0.31 1.63
S13 7.85 0.59 0.82
S14 7.23 0.25 0.02
S15 7.22 0.67 1.11
S16 7.26 0.25 2.21
S17 7.35 0.29 1.73
均值 7.34 0.48 1.75
Table 4  沉积物的理化性质
元素 地累积指数(Igeo) 不同污染等级样点个数
最大值 最小值 均值 0级 1级 2级 3级 4级 5级 6级 7级
V -0.08 -2.60 -1.45 17 0 0 0 0 0 0 0
Cr -0.52 -2.66 -1.21 17 0 0 0 0 0 0 0
Mn 1.98 -2.71 -0.40 14 2 1 0 0 0 0 0
Co 0.44 -2.25 -0.72 15 2 0 0 0 0 0 0
Ni 0.82 -3.67 -1.14 15 2 0 0 0 0 0 0
Cu 0.88 -1.91 -0.68 13 4 0 0 0 0 0 0
Zn 0.62 -2.97 -1.25 16 1 0 0 0 0 0 0
As 0.96 -3.52 -0.96 16 1 0 0 0 0 0 0
Cd 6.63 0.09 2.94 0 1 4 4 3 4 0 1
Pb 0.36 -1.53 -0.72 15 2 0 0 0 0 0 0
Table 5  汉江上游沉积物中重金属的地累积污染等级统计
样点 单项潜在生态风险系数(Ei) 综合潜在生态
危害指数(R)
V Cr Mn Co Ni Cu Zn As Cd Pb
S1 1.12 1.58 1.16 4.26 4.83 5.13 0.53 5.29 327 4.26 355.16
S2 2.83 2.03 5.92 10.16 11.77 13.85 1.06 29.18 264 7.06 347.85
S3 0.60 0.48 0.85 3.03 2.38 3.55 0.42 3.84 96 2.90 114.04
S4 1.13 1.57 1.36 6.52 5.01 7.55 0.79 12.52 894 6.33 936.78
S5 1.74 2.09 1.62 7.61 13.23 10.26 2.31 12.36 222 4.77 277.99
S6 0.90 0.97 0.84 3.36 2.07 2.65 0.44 6.85 1266 4.27 1288.35
S7 0.91 1.22 0.97 3.68 2.23 3.14 0.58 7.27 153 9.02 182.03
S8 0.95 1.29 0.87 2.67 2.08 2.37 0.55 5.60 204 3.12 223.52
S9 0.49 1.53 1.49 5.83 4.24 6.08 0.76 7.72 4455 9.65 4492.81
S10 0.78 1.12 0.82 3.38 2.11 2.64 0.43 6.21 126 4.68 148.16
S11 1.09 1.48 1.49 4.95 5.19 5.65 0.77 10.67 447 3.87 482.14
S12 1.86 1.75 1.52 5.83 4.95 6.70 0.92 11.31 591 5.55 631.39
S13 1.26 1.34 1.17 5.38 4.03 4.94 0.73 10.46 990 5.28 1024.59
S14 0.68 0.70 0.23 1.58 0.59 1.99 0.47 1.31 408 2.60 418.14
S15 0.99 1.33 1.04 4.84 3.73 4.64 0.67 8.86 741 3.54 770.66
S16 1.07 1.11 0.86 4.38 1.92 3.15 0.19 7.36 48 2.75 70.80
S17 2.29 1.75 1.52 7.27 3.27 7.76 0.62 9.59 108 3.99 146.06
均值 1.22 1.37 1.40 4.98 4.33 5.42 0.72 9.20 667 4.92 700.62
Table 6  汉江上游表层沉积物中重金属潜在生态风险系数
元素 V Cr Mn Co Ni Cu Zn As Cd Pb
V 1
Cr 0.748** 1
Mn 0.773** 0.609** 1
Co 0.829** 0.854** 0.811** 1
Ni 0.669** 0.793** 0.717** 0.824** 1
Cu 0.828** 0.831** 0.849** 0.964** 0.900** 1
Zn 0.455 0.693** 0.352 0.605* 0.875** 0.686** 1
As 0.810** 0.705** 0.950** 0.888** 0.770** 0.885** 0.458 1
Cd -0.321 0.080 -0.015 0.096 -0.028 0.032 0.019 -0.042 1
Pb 0.105 0.409 0.375 0.423 0.281 0.368 0.229 0.389 0.581* 1
Table 7  沉积物重金属含量与理化性质的Pearson相关性系数
成分 初始特征值 提取载荷平方和
总计 方差/% 累积/% 总计 方差/% 累积/%
1 6.484 64.841 64.841 6.484 64.841 64.841
2 1.635 16.347 81.188 1.635 16.347 81.188
3 0.939 9.390 90.578
4 0.357 3.569 94.147
5 0.334 3.339 97.486
6 0.105 1.051 98.536
7 0.077 0.773 99.310
8 0.051 0.512 99.822
9 0.013 0.126 99.948
10 0.005 0.052 100.000
Table 8  沉积物重金属主成分分析
重金属 成分
主成分1 主成分2
V 0.848 -0.378
Cr 0.881 0.071
Mn 0.864 -0.041
Co 0.962 0.052
Ni 0.912 -0.055
Cu 0.980 -0.016
Zn 0.706 0.013
As 0.919 -0.054
Cd 0.019 0.930
Pb 0.424 0.782
Table 9  沉积物重金属初始因子载荷矩阵
Fig.3  重金属系统聚类分析树状图
[1] 宋力, 黄民生. 底泥中持久性有毒物质研究现状与展望[J]. 华东师范大学学报:自然科学版, 2011, 37(1):73-86.
[1] Song L, Huang M S. Research status and prospect of persistent toxic substances in sediment[J]. Journal of East China Normal University:Natural Science, 2011, 37(1):73-86.
[2] 开晓莉. 清水河重金属与有机氯农药的环境行为及健康风险研究[D]. 银川: 宁夏大学, 2021.
[2] Kai X L. Study on environmental behavior and health risk of heavy metals and organochlorine pesticides in Qing-shui River[D]. Yinchuan: Ningxia University, 2021.
[3] 于霞, 安艳玲, 吴起鑫. 赤水河流域表层沉积物重金属的污染特征及生态风险评价[J]. 环境科学学报, 2015, 35 (5):1400-1407.
[3] Yu X, An Y L, Wu Q X. Pollution characteristics and ecological risk assessment of heavy metals in surface sediments of Chishui River Basin[J]. Acta Scientiae Circumstantiae, 2015, 35 (5):1400-1407.
[4] 王国光, 刘巧灵, 冯丽娟, 等. 黄海、东海及其邻近海域沉积物中的典型持久性有机污染物[J]. 中国科学:化学, 2017, 47 (11):1284-1297.
[4] Wang G G, Liu Q L, Feng L J, et al. Typical persistent organic pollutants in sediments of the Yellow Sea,the East China Sea and their adjacent sea areas[J]. Chinese Science:Chemistry, 2017, 47 (11):1284-1297.
[5] Pitacco V, Mistri M, Ferrari C R, et al. Heavy metals OCPs,PAHs, and PCDD/Fs contamination in surface sediments of a coastal lagoon(Valli di Comacchio,NW Adriatic,Italy):Long term trend (2002-2013) and effect on benthic community[J]. Marine Pollution Bulletin, 2018, 135 (OCT.):1221-1229.
doi: 10.1016/j.marpolbul.2018.08.057
[6] Duarte-Restrepo E, Noguera-Oviedo K, Butryn D. et al. Spatial distribution of pesticides,organochlorine compounds,PBDEs,and metals in surface marine sediments from Cartagena Bay,Colombia[J]. Environ. Sci. Pollut. Res. 2021, 28:14632-14653.
doi: 10.1007/s11356-020-11504-6
[7] El-Alfy M A, Hasballah A F, Abd El-Hamid H T. et al. Toxicity assessment of heavy metals and organochlorine pesticides in freshwater and marine environments,Rosetta area,Egypt using multiple approaches[J]. Sustain Environ. Res.2019, 29:19.
[8] Kronvang B, Laubel A, Larsen S E, et al. Pesticides and heavy metals in Danish streambed sediment[J]. Hydrobiologia, 2003, 494 (1-3):93-101.
doi: 10.1023/A:1025441610434
[9] 张桂斋. 两类持久性有机污染物和重金属在南四湖食物链中的分布和生物积累[D]. 济南: 山东大学, 2014.
[9] Zhang G Z. Distribution and bioaccumulation of two kinds of persistent organic pollutants and heavy metals in the food chain of Nansi Lake[D]. Jinan: Shandong University, 2014.
[10] 卫亚宁. 柘林湾养殖底泥中毒性污染物的生态风险及生物毒性评价[D]. 兰州: 兰州理工大学, 2017.
[10] Wei Y N. Ecological risk and biological toxicity assessment of toxic pollutants from aquaculture sediment in Zhelin Bay[D]. Lanzhou: Lanzhou University of Technology, 2017.
[11] 曹源, 仇雁翎, 杨晓红, 等. 南太湖区域表层沉积物中有机氯化合物及重金属污染现状[J]. 湖泊科学, 2011, 23 (4):561-567.
[11] Cao Y, Qiu Y L, Yang X H, et al. Pollution status of organochlorine compounds and heavy metals in surface sediments of South Taihu Lake area[J]. Journal of Lake Sciences, 2011, 23 (4):561-567.
doi: 10.18307/2011.0411
[12] 水利部长江水利委员会. 2016年长江流域及西南诸河水资源公报[M]. 武汉: 长江出版社, 2017.
[12] Changjiang Water Resources Commission of the Ministry of Water Resources. 2016 Yangtze River Basin and southwest rivers resources bulletin[M]. Wuhan: Changjiang Publishing House,2017.
[13] 周琴, 曹夏飞. 汉江流域水利现代化建设问题探讨[J]. 人民长江, 2013, 44 (24):79-83.
[13] Zhou Q, Cao X F. Discussion on water conservancy modernization construction in Hanjiang River Basin[J]. People's Changjiang, 2013, 44 (24):79-83.
[14] 李欢娟, 李会霞, 史兴民. 西安市主要湖泊表层沉积物重金属污染及生态风险评估[J]. 干旱区资源与环境, 2019, 33 (2):122-126.
[14] Li H J, Li H X, Shi X M, et al. Pollution characteristics of heavy metals and ecological risk assessment for the surface sediments of the lakes in Xi'an[J]. Journal of Arid Land Resources and Environment, 2019, 33(2):122-126.
[15] 魏复盛. 中国土壤元素背景值(第2版)[M]. 北京: 中国环境科学出版社, 1990:247-251.
[15] Wei F S. Background values of soil elements in China (2nd Edition)[M]. Beijing: China Environmental Science Press, 1990:247-251.
[16] Hakanson L. An econological risk index for aquatic pollution control:A sedimentological approach[J]. Water Research, 1980, 14 (8):975-1001.
doi: 10.1016/0043-1354(80)90143-8
[17] 张玉玺, 孙继朝, 向小平, 等. 阳宗海表层沉积物中的重金属生态风险评估[J]. 水资源保护, 2012, 28 (5):19-24.
[17] Zhang Y X, Sun J Z, Xiang X P, et al. Ecological risk assessment of heavy metals in surface sediments of Yangzonghai sea[J]. Water Resources Protection, 2012, 28 (5):19-24.
[18] 李向阳, 吴疆, 刘洪强. 鄂东南5种森林土壤重金属含量及污染评价[J]. 中南林业科技大学学报, 2019, 39 (10):102-108.
[18] Li X Y, Wu J, Liu H Q. Content and pollution assessment of heavy metals in five forest soils in Southeastern Hubei[J]. Journal of Central South University of Forestry & Technology, 2019, 39 (10):102-108.
[19] 马建华, 韩昌序, 姜玉玲. 潜在生态风险指数法应用中的一些问题[J]. 地理研究, 2020, 39 (6):1233-1241.
doi: 10.11821/dlyj020190632
[19] Ma J H, Han C X, Jiang Y L. Some problems in the application of potential ecological risk index[J]. Geographical Research, 2020, 39 (6):1233-1241.
doi: 10.11821/dlyj020190632
[20] Wang S H, Wang W W, Chen J Y, et al. Geochemical baselineestablishment and pollution source determination of heavy metalsin lake sediments:A case study in Lihu Lake,China[J]. Science of the Total Environment, 2019, 657:978-986.
doi: 10.1016/j.scitotenv.2018.12.098
[21] Pan L, Ma J, Hu Y, et al. Assessment of levels,potential ecological risk,an human health risk of heavy metals in the soils from a typical county in Shanxi Province,China[J]. Environment Science & Pollution Research, 2016, 23 (19):1-11.
[22] Karim Z, Qureshi B A, Mumtaz M. Geochemical baseline determination and pollution assessment of heavy metals in urban soils of Kara-chi,Pakistan[J]. Ecological Indicate, 2015, 48:358-364.
[23] 冯乾伟, 王兵, 马先杰, 等. 黔西北典型铅锌矿区土壤重金属污染特征及其来源分析[J]. 矿物岩石地球化学通报, 2020, 39 (4):863-870.
[23] Feng Q W, Wang B, Ma X J, et al. Pollution characteristics and source analysis of heavy metals in soils of typical lead-zinc mining areas in Northwest Guizhou[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2020, 39 (4):863-870.
[24] 宋凤敏, 岳晓丽, 刘智峰, 等. 汉江上游水体表层沉积物重金属污染特征评价[J]. 农业环境科学学报, 2020, 39(7):1576-1584.
[24] Song F M, Yue X L, Liu Z F, et al. Evaluation on heavy metal pollution characteristics of surface sediments in the upper reaches of Hanjiang River[J]. Journal of Agro-Environmental Science, 2020, 39(7):1576-1584.
[25] 彭清辉, 罗琳, 张嘉超, 等. 涟水及其支流沉积物重金属污染特征及风险评价[J]. 环境科学与技术, 2021, 44 (S2):316-324.
[25] Peng Q H, Luo L, Zhang J C, et al. Pollution characteristics and risk assessment of heavy metals in sediments of Lianshui and its tributaries[J]. Environmental Science & Technology, 2021, 44 (S2):316-324.
doi: 10.1021/es902582y
[26] 周旭, 吕建树. 山东省广饶县土壤重金属来源、分布及生态风险[J]. 地理研究, 2019, 38(2):414-426.
doi: 10.11821/dlyj020171151
[26] Zhou X, Lyu J S. Source, distribution and ecological risk of heavy metals in soil of Guangrao County,Shandong Province[J]. Geographical Research, 2019, 38(2):414-426.
[27] 余贵芬, 蒋新, 孙磊, 等. 有机物质对土壤镉有效性的影响研究综述[J]. 生态学, 2002, 22(5):682-688.
[27] Yu G F, Jiang X, Sun L, et al. A review for effect of organic substances on the availability of cadmium in soils[J]. Acta EcologicaSinica, 2002, 22(5):682-688.
[1] 万太平, 张丽, 刘汉粮. 黑龙江省额尔古纳地块战略性矿产锑区域地球化学特征及远景区预测[J]. 物探与化探, 2023, 47(5): 1179-1188.
[2] 范海印, 宋蕊蕊, 于林松, 滕永波, 万方, 张秀文, 李圣玉, 赵闯. 鲁西北地区某典型化工园区地下水重金属污染特征及健康风险评价[J]. 物探与化探, 2023, 47(5): 1326-1335.
[3] 王惠艳, 彭敏, 马宏宏, 张富贵. 贵州典型重金属高背景区耕地土壤重金属生态风险评价[J]. 物探与化探, 2023, 47(4): 1109-1117.
[4] 张嘉升, 周伟, 李伟良, 祁晓鹏, 杨杰, 王璐. 陕西简池镇地区1∶2.5万水系沉积物测量地球化学特征及找矿潜力[J]. 物探与化探, 2023, 47(3): 659-669.
[5] 弓秋丽, 杨剑洲, 王振亮, 严慧. 海南省琼中县土壤—茶树中重金属的迁移特征及饮茶健康风险[J]. 物探与化探, 2023, 47(3): 826-834.
[6] 王磊, 卓小雄, 吴天生, 凌胜华, 钟晓宇, 赵晓孟. 调查评价的土壤元素累积趋势预测——以广西南宁市西乡塘区为例[J]. 物探与化探, 2023, 47(1): 1-13.
[7] 宋运红, 杨凤超, 刘凯, 戴慧敏, 许江, 杨泽. 三江平原耕地土壤重金属元素分布特征及影响因素的多元统计分析[J]. 物探与化探, 2022, 46(5): 1064-1075.
[8] 徐雄, 孙艳亭, 肖方, 肖培平, 董应尚, 李敏. 菏泽市水系沉积物重金属特征及风险评估[J]. 物探与化探, 2022, 46(4): 1021-1029.
[9] 阎琨, 庞国涛, 李伟, 毛方松. 广西茅尾海入海河口表层沉积物重金属分布及风险评价[J]. 物探与化探, 2022, 46(4): 1030-1036.
[10] 居字龙, 秦志军, 万翔, 袁航, 张小波, 王登. 湖北红安县生态地质调查土壤重金属分布特征及生态风险评价[J]. 物探与化探, 2022, 46(4): 988-998.
[11] 范晨子, 袁继海, 刘成海, 郭威, 孙冬阳, 刘崴, 赵九江, 胡俊栋, 赵令浩. 云南省安宁地区土壤重金属等元素生态地球化学调查与评价[J]. 物探与化探, 2022, 46(3): 761-771.
[12] 李生清. 海河流域沉积物重金属形态分布特征及生态风险评估[J]. 物探与化探, 2022, 46(3): 781-786.
[13] 张沁瑞, 李欢, 邓宇飞, 黄勇, 张博, 许一波. 北京东南郊土壤重金属元素分布及其在表层土壤中的富集特征[J]. 物探与化探, 2022, 46(2): 490-501.
[14] 周文龙, 杨志忠, 张涛, 忙是材, 杨正坤. 黔南荔波县水稻—根系土系统中硒含量影响因素分析[J]. 物探与化探, 2022, 46(2): 502-510.
[15] 孟伟, 莫春虎, 刘应忠. 黔西北地区土壤重金属地球化学背景及管理目标值[J]. 物探与化探, 2022, 46(1): 250-257.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com