Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (1): 216-227    DOI: 10.11720/wtyht.2024.1129
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
基于地质大数据技术对云南土壤重金属地质高背景区的划定
肖高强1,2,3(), 赵娟4(), 陈子万2,3,5, 宋旭锋2,3,5, 朱能刚5
1.云南省地质调查局,云南 昆明 650051
2.自然资源部三江成矿作用及资源勘查利用重点实验室,云南 昆明 650051
3.云南省三江成矿作用及资源勘查利用重点实验室,云南 昆明 650051
4.云南省生态环境监测中心,云南 昆明 650034
5.云南省地质调查院,云南 昆明 650216
Delineation of areas with high geological background values of heavy metals in soils in Yunnan Province, China based on geological big data technology
XIAO Gao-Qiang1,2,3(), ZHAO Juan4(), CHEN Zi-Wan2,3,5, SONG Xu-Feng2,3,5, ZHU Neng-Gang5
1. Yunnan Geological Survey, Kunming 650051, China
2. MNR Key Laboratory of Sanjiang Metallogeny and Resources Exploration & Utilization, Kunming 650051, China
3. Key Laboratory of Sanjiang Metallogeny and Resources Exploration and Utilization, Kunming 650051, China
4. Yunan Ecological and Environmental Monitoring Center, Yunnan 650034, China
5. Yunnan Institute of Geological Survey, Kunming 650216, China
全文: PDF(4168 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为系统研究云南省土壤重金属地质高背景区的分布范围及超标元素,以全省1∶20万水系沉积物重金属元素含量数据和区域地质图为基础,采用GIS空间分析功能,并利用昆明、玉溪、昭通等地区的土壤重金属数据进行验证,确定云南省土壤重金属含量值超农用地筛选值的地质单元61个,占全省国土面积的21.09%,其中位于地质高背景区的耕地面积约284.41万公顷,占全省国土面积的7.22%;影响土壤重金属超标的岩性主要为碳酸盐岩、基性—超基性火山岩、中基性侵入岩、含煤碎屑岩和含基性组分碎屑岩;地质高背景区超标重金属元素主要为Cu、Cr、Ni、Cd,而As主要于碳酸盐岩地层中存在超标风险,Pb、Zn仅于个别地层中存在超标风险,Hg基本无超标风险。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖高强
赵娟
陈子万
宋旭锋
朱能刚
关键词 土壤重金属地质高背景区地质大数据30米全球地表覆盖数据云南省    
Abstract

This study aims to systematically investigate the distribution and over-limit elements of areas with high geological background values of heavy metals in soils in Yunnan Province. GIS spatial analysis was conducted based on the heavy metal content data from a province-wide 1∶200,000 stream sediment survey and the regional geological map. The analysis results were validated using the data of heavy metals in soils in Kunming, Yuxi, Zhaotong, and other regions. A total of 61 geological units were identified, with heavy metal content in soils exceeding the screening values of agricultural land, accounting for 21.09% of the total land area of Yunnan. The cultivated land in high geological background areas covers an area of approximately 2.844 1 million hectares, accounting for 7.22% of the total land area of Yunnan. The lithologies that cause over-limit heavy metals in soils primarily comprise carbonate rocks, mafic-ultramafic volcanic rocks, intermediate mafic intrusive rocks, coal-bearing clastic rocks, and clastic rocks with mafic components. The over-limit heavy metal elements in high geological background areas are dominated by Cu, Cr, Ni, and Cd. In contrast, As manifests an over-limit risk mainly in carbonate rock formations, Pb and Zn only exhibit an over-limit risk in individual strata, and Hg almost shows no over-limit risk.

Key wordsheavy metal in soil    high geological background area    geological big data    30 m global land cover data    Yunnan Province
收稿日期: 2023-03-21      修回日期: 2023-06-20      出版日期: 2024-02-20
ZTFLH:  P632  
  X826  
基金资助:中央土壤污染防治专项资金(云污防土〔2018〕17号);中国地质调查局项目(DD20160313-04)
通讯作者: 赵娟(1983-),女,硕士,高级工程师,主要从事土壤和地下水污染防治方面的工作。Email:77563779@qq.com
作者简介: 肖高强(1983-),男,硕士,高级工程师,主要从事环境和勘查地球化学研究工作。Email:13057980@qq.com
引用本文:   
肖高强, 赵娟, 陈子万, 宋旭锋, 朱能刚. 基于地质大数据技术对云南土壤重金属地质高背景区的划定[J]. 物探与化探, 2024, 48(1): 216-227.
XIAO Gao-Qiang, ZHAO Juan, CHEN Zi-Wan, SONG Xu-Feng, ZHU Neng-Gang. Delineation of areas with high geological background values of heavy metals in soils in Yunnan Province, China based on geological big data technology. Geophysical and Geochemical Exploration, 2024, 48(1): 216-227.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1129      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I1/216
Fig.1  云南省1∶25万土地质量地球化学调查工作程度
Fig.2  昆明—玉溪和昭通—会泽地区土壤和水系沉积物中重金属元素含量对比
序号 地层代码 地层名称 总点数/个 超标点
数比例/%
地层面积/
km2
超标面
积比例/%
主要岩性
1 SDq 青山组 112 92.0 470 95.5 灰岩
2 Dd 达莲塘组 283 85.2 1077 93.5 灰岩、硅质岩、页岩
3 Dlh 莲花曲组 47 93.6 192 98.3 灰岩、页岩
4 Dg 古木组 296 80.7 1189 89.5 灰岩、白云岩
5 Dgg 干沟组 26 96.2 97 98.6 灰岩、白云岩
6 D2d 东岗岭组 168 97.0 644 96.3 灰岩、白云岩
7 D2q 曲靖组 470 84.0 1863 86.9 灰岩、白云岩、页岩、硅质岩
8 Dl 榴江组 69 92.8 343 99.5 灰岩、硅质岩
9 D2-3d-g 东岗岭组、革当组并层 11 100.0 42 100.0 灰岩
10 D2-3q-zj 曲靖组、一打得组、在结山组并层 14 85.7 60 100.0 白云岩、页岩、煤
11 D2-3y-zj 一打得组、在结山组并层 46 97.8 191 100.0 灰岩
12 Dy 一打得组 116 80.2 466 92.0 灰岩、页岩
13 D3g 革当组 168 95.8 673 96.0 灰岩、白云岩
14 D3zj 在结山组 177 85.9 674 92.2 灰岩、白云岩
15 D3-C1z-y 海口组、宰格组、炎方组并层 13 92.3 46 98.8 白云岩、灰岩、页岩
16 DCy 炎方组 53 94.3 207 96.3 白云岩、灰岩、页岩、煤
17 C1-2w-d 万寿山组、大埔组并层 271 86.7 1029 94.8 灰岩、白云岩、页岩、煤
18 C1b 坝达组 19 100.0 63 94.8 灰岩、硅质灰岩、硅质岩
19 C1pz 平掌组 171 89.5 683 90.1 玄武岩、灰岩
20 C1-2h-m 黄龙组、马平组并层 247 89.9 1035 97.8 灰岩
21 Ch 黄龙组 798 96.1 3199 97.2 灰岩
22 Cw-m 石炭系全系并层 134 82.8 575 90.0 灰岩
23 Cy 鱼塘寨组 221 94.1 894 95.7 灰岩、白云岩
24 C2m 马平组 21 95.2 111 99.0 灰岩
25 Cj 尖山营组 109 98.2 448 99.7 灰岩
26 C2s 水长阱组 19 100.0 89 100.0 灰岩
27 C-Pt 他披组 22 86.4 67 80.4 灰岩
28 C2d-w 丁家寨组、卧牛寺组并层 266 82.3 1051 83.1 玄武岩、灰岩
29 Cx 响姑组 62 85.5 245 94.0 灰岩、变基性火山岩
30 P1l-y 梁山组、阳新组并层 2574 93.5 10251 95.8 灰岩、页岩、煤
31 P1y 阳新组 809 95.2 3176 97.6 灰岩、白云岩
32 P1d 大名山组 199 93.5 786 97.3 灰岩、白云岩
33 P1bm-s 丙麻组、沙子坡组下部并层 60 88.3 228 83.3 灰岩、铁铝质页岩
34 Pe 峨眉山玄武岩 4222 98.6 16983 99.1 玄武岩
35 P1-2e-l 峨眉山玄武岩、龙潭组并层 23 95.7 100 87.4 玄武岩、页岩、煤
36 P2w 吴家坪组 220 93.2 906 97.8 灰岩、铁铝质泥质岩
37 P2l 龙潭组 160 98.8 647 99.5 页岩、硅质岩、煤
38 P2x 宣威组 439 97.5 1694 99.2 页岩、砂岩、煤
39 P2h 黑泥哨组 310 96.5 1195 98.6 灰岩、页岩、煤
40 Pg 冈达概组 314 86.6 1276 90.7 玄武岩
41 T1l 罗楼组 39 92.3 159 99.4 白云岩、灰岩
42 T1x 洗马塘组 61 96.7 222 98.1 泥岩、页岩、粉砂岩
43 T1f 飞仙关组 436 96.6 1831 97.4 泥岩、页岩、粉砂岩
44 Td 东川组 151 94.7 574 99.7 泥岩、页岩、粉砂岩
45 T1q 青天堡组 249 96.4 943 96.8 泥岩、页岩、粉砂岩
46 T1-2x-j 洗马塘组、嘉陵江组并层 21 100.0 84 100.0 灰岩、白云岩、页岩、粉砂岩
47 T1-2f-j 飞仙关组、嘉陵江组并层 636 89.2 2591 92.2 灰岩、白云岩、页岩、粉砂岩
48 T1-2d-j 东川组、嘉陵江组并层 174 95.4 695 97.7 灰岩、白云岩、页岩、粉砂岩
49 Tj 嘉陵江组 707 93.4 2808 97.9 灰岩、白云岩
50 Tn 尼汝组 300 81.7 1217 85.9 灰岩、砂岩、玄武岩
51 T2g 个旧组 1503 92.5 5951 96.7 灰岩、白云岩
52 T2gl 关岭组 1465 85.2 5843 93.1 灰岩、白云岩、页岩
53 T2b 北衙组 832 87.5 3440 93.3 灰岩
54 T3nh 牛喝塘组 120 85.0 448 96.8 玄武岩
55 νδ 13 92.3 64 95.3 辉长闪长岩
56 βμ 243 88.1 976 87.8 辉绿岩、辉长辉绿岩
57 N 8 87.5 30 96.4 基性岩
58 Σ-Ν 27 81.5 97 85.5 基性—超基性岩
59 σ 28 96.4 85 96.3 橄榄岩—橄辉岩
60 ψι 2 100.0 7 90.5 辉石岩
61 φω 14 100.0 47 82.5 蛇纹岩
Table 1  云南省土壤重金属地质高背景区划定结果
Fig.3  云南省土壤重金属地质高背景区分布
地层代码 地层名称 总点数/个 超标点数
比例/%
地层代码 地层名称 总点数/个 超标点数
比例/%
D2q 曲靖组 142 88.0 Pe 峨眉山玄武岩 1629 99.9
D2-3q-zj 曲靖组、一打得组、在结山组并层 15 100.0 P1-2e-l 峨眉山玄武岩、龙潭组并层 20 100.0
D2-3y-zj 一打得组、在结山组并层 4 100.0 P2l 龙潭组 91 100.0
Dy 一打得组 54 98.1 P2x 宣威组 209 100.0
D3zj 在结山组 105 100.0 T1f 飞仙关组 96 97.9
D3-C1z-y 海口组、宰格组、炎方组并层 3 66.7 Td 东川组 119 100.0
C1-2w-d 万寿山组、大埔组并层 54 94.4 T1-2f-j 飞仙关组、嘉陵江组并层 431 100.0
C1-2h-m 黄龙组、马平组并层 38 100.0 T1-2d-j 东川组、嘉陵江组并层 171 100.0
Ch 黄龙组 34 82.4 Tj 嘉陵江组 22 100.0
Cw-m 石炭系全系并层 50 100.0 T2gl 关岭组 264 96.2
C2m 马平组 4 100.0 βμ 辉绿岩、辉长辉绿岩 11 63.6
P1l-y 梁山组、阳新组并层 1256 99.5 Σ-Νσφω 基性—超基性岩 17 88.2
P1y 阳新组 61 93.4 总计 4900 98.8
Table 2  昆明—玉溪、昭通—会泽地区地质高背景单元土壤重金属污染风险评价结果
岩性组合 As Cd Cr Cu Hg Ni Pb Zn
碳酸盐岩 33.0 0.48 156 62.1 0.126 77.1 39.6 134
碳酸盐岩与(含煤)碎屑岩并层 16.9 0.37 159 72.7 0.078 66.1 31.2 121
碳酸盐岩与基性火山岩并层 14.7 0.19 160 61.3 0.061 71.4 22.5 103
含煤碎屑岩 6.10 0.20 210 128 0.038 75.5 20.7 122
含基性组分碎屑岩 7.30 0.20 224 89.8 0.040 78.0 22.0 116
基性—超基性火山岩 6.00 0.20 141 179 0.045 67.1 22.0 131
中基性侵入岩 9.20 0.25 103 90.6 0.062 65.0 18.7 135
超标风险评价值 40 0.30 150 50 1.80 70 90 200
Table 3  土壤重金属地质高背景区水系沉积物中重金属中位值统计
岩性组合 样品数/个 As Cd Cr Cu Hg Ni Pb Zn
碳酸盐岩 6664 40.19 64.33 53.24 68.01 0.48 59.11 8.55 24.94
碳酸盐岩与(含煤)碎屑岩并层 6452 22.74 59.21 54.51 74.50 0.14 43.60 5.10 11.21
碳酸盐岩与基性火山岩并层 799 12.64 24.16 54.69 66.08 0.50 51.81 3.25 3.00
含煤碎屑岩 909 10.56 23.10 81.85 87.35 0.11 65.24 2.20 4.40
含基性组分碎屑岩 897 5.57 24.41 76.81 96.43 0.00 66.33 1.23 2.23
基性—超基性火山岩 4758 3.40 28.35 45.06 94.43 0.04 43.32 2.40 2.84
中基性侵入岩 256 5.47 36.33 17.58 83.59 0.00 41.41 3.91 11.72
总计 20735 22.03 49.05 53.65 78.29 0.23 50.74 5.21 12.70
Table 4  土壤重金属地质高背景区水系沉积物中重金属超标比例统计
岩性组合 总面积/
万公顷
耕地面积/
万公顷
比例/
%
碳酸盐岩 267.18 87.44 32.73
碳酸盐岩与(含煤)碎屑岩并层 259.43 102.55 39.53
碳酸盐岩与基性火山岩并层 31.95 8.95 28.00
含煤碎屑岩 35.37 12.48 35.30
含基性组分碎屑岩 35.71 12.90 36.14
基性—超基性火山岩 190.73 56.48 29.61
中基性侵入岩 10.40 3.61 34.70
合计 830.77 284.41 34.23
Table 5  云南省土壤重金属地质高背景区耕地面积统计
Fig.4  云南省土壤重金属地质高背景区耕地分布
[1] Alloway B J. Heavy metals in soils:Trace metals and metalloids in soils and their bioavailability[M]. Netherlands:Springer, 2013.
[2] Cai L M, Xu Z C, Bao P, et al. Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde,Southeast China[J]. Journal of Geochemical Exploration, 2015, 148:189-195.
doi: 10.1016/j.gexplo.2014.09.010
[3] Sardar A, Shahid M, Natasha, et al. Risk assessment of heavy metal(loid)s via Spinacia oleracea ingestion after sewage water irrigation practices in Vehari District[J]. Environmental Science and Pollution Research, 2020, 27(32):39841-39851.
doi: 10.1007/s11356-020-09917-4
[4] Chen H Y, Teng Y G, Lu S J, et al. Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 2015,512-513:143-153.
[5] Palma P, Lopez-Orozco R, Lourinha C, et al. Assessment of the environmental impact of an abandoned mine using an integrative approach:A case-study of the "Las Musas" mine (Extremadura,Spain)[J]. Science of the Total Environment, 2019, 659:84-94.
doi: 10.1016/j.scitotenv.2018.12.321
[6] Sun Z H, Xie X D, Wang P, et al. Heavy metal pollution caused by small-scale metal ore mining activities:A case study from a polymetallic mine in South China[J]. Science of the Total Environment, 2018, 639:217-227.
doi: 10.1016/j.scitotenv.2018.05.176
[7] Xie W S, Peng C, Wang H T, et al. Bioaccessibility and source identification of heavy metals in agricultural soils contaminated by mining activities[J]. Environmental Earth Sciences, 2018, 77(17):606.
doi: 10.1007/s12665-018-7783-x
[8] Acosta J A, Martínez-Martínez S, Faz Á, et al. Accumulations of major and trace elements in particle size fractions of soils on eight different parent materials[J]. Geoderma, 2011, 161(1/2):30-42.
doi: 10.1016/j.geoderma.2010.12.001
[9] Hseu Z Y, Zehetner F, Fujii K, et al. Geochemical fractionation of chromium and nickel in serpentine soil profiles along a temperate to tropical climate gradient[J]. Geoderma, 2018, 327:97-106.
doi: 10.1016/j.geoderma.2018.04.030
[10] Wang H X, Li X M, Chen Y, et al. Geochemical behavior and potential health risk of heavy metals in basalt-derived agricultural soil and crops:A case study from Xuyi County,eastern China[J]. Science of the Total Environment, 2020, 729:139058.
doi: 10.1016/j.scitotenv.2020.139058
[11] Wen Y B, Li W, Yang Z F, et al. Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region,Southwestern China[J]. Chemosphere, 2020, 245:125620.
doi: 10.1016/j.chemosphere.2019.125620
[12] Wu W H, Qu S Y, Nel W, et al. The influence of natural weathering on the behavior of heavy metals in small basaltic watersheds:A comparative study from different regions in China[J]. Chemosphere, 2021, 262:127897.
doi: 10.1016/j.chemosphere.2020.127897
[13] Xia X Q, Ji J F, Yang Z F, et al. Cadmium risk in the soil-plant system caused by weathering of carbonate bedrock[J]. Chemosphere, 2020, 254:126799.
doi: 10.1016/j.chemosphere.2020.126799
[14] 马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤—作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1):449-459.
[14] Ma H H, Peng M, Liu F, et al. Bioavailability,translocation,and accumulation characteristic of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi,China[J]. Environmental Science, 2020, 41(1):449-459.
[15] 唐豆豆, 袁旭音, 汪宜敏, 等. 地质高背景农田土壤中水稻对重金属的富集特征及风险预测[J]. 农业环境科学学报, 2018, 37(1):18-26.
[15] Tang D D, Yuan X Y, Wang Y M, et al. Enrichment characteristics and risk prediction of heavy metals for rice grains growing in paddy soils with a high geological background[J]. Journal of Agro-Environment Science, 2018, 37(1):18-26.
[16] 夏学齐, 季峻峰, 杨忠芳, 等. 母岩类型对土壤和沉积物镉背景的控制:以贵州为例[J]. 地学前缘, 2022, 29(4):438-447.
doi: 10.13745/j.esf.sf.2021.11.2
[16] Xia X Q, Ji J F, Yang Z F, et al. Parent rock type control on cadmium background in soil and sediment:An example from Guizhou Province[J]. Earth Science Frontiers, 2022, 29(4):438-447.
[17] 赵万伏, 宋垠先, 管冬兴, 等. 典型黑色岩系分布区土壤重金属污染与生物有效性研究[J]. 农业环境科学学报, 2018, 37(7):1332-1341.
[17] Zhao W F, Song Y X, Guan D X, et al. Pollution status and bioavailability of heavy metals in soils of a typical black shale area[J]. Journal of Agro-Environment Science, 2018, 37(7):1332-1341.
[18] 彭敏. 西南典型地质高背景区土壤—作物系统重金属迁移富集特征与控制因素[D]. 北京: 中国地质大学(北京), 2020.
[18] Peng M. Heavy metals in soil-crop system from typical high geological background areas,southwest China:Transfer characteristics and controlling factors[D]. Beijing: China University of Geosciences (Beijing), 2020.
[19] 谢学锦, 任天祥, 孙焕振. 中国地球化学图集[M]. 北京: 地质出版社, 2012.
[19] Xie X J, Ren T X, Sun H Z. Geochemical atlas of China[M]. Beijing: The Geological Publishing House, 2012.
[20] Tian H Y, Zhang C, Qi S H, et al. Concentration and spatial distribution of potentially toxic elements in surface soil of a peak-cluster depression,Babao Town,Yunnan Province,China[J]. International Journal of Environmental Research and Public Health, 2021, 18(6):3122.
doi: 10.3390/ijerph18063122
[21] Zhang L, Mckinley J M, Cooper M, et al. Transfer processes of potential toxic elements (PTE) between rock-soil systems and soil risk evaluation in the Baoshan area,Yunnan Province,Southwest China[J]. Applied Geochemistry, 2020, 121:104712.
doi: 10.1016/j.apgeochem.2020.104712
[22] Zhang L, Mckinley J M, Cooper M, et al. A regional soil and river sediment geochemical study in Baoshan area,Yunnan province,southwest China[J]. Journal of Geochemical Exploration, 2020, 217:106557.
doi: 10.1016/j.gexplo.2020.106557
[23] 成杭新, 彭敏, 赵传冬, 等. 表生地球化学动力学与中国西南土壤中化学元素分布模式的驱动机制[J]. 地学前缘, 2019, 26(6):159-191.
doi: 10.13745/j.esf.sf.2019.11.28
[23] Cheng H X, Peng M, Zhao C D, et al. Epigenetic geochemical dynamics and driving mechanisms of distribution patterns of chemical elements in soil,southwest China[J]. Earth Science Frontiers, 2019, 26(6):159-191.
[24] 周亚龙, 郭志娟, 王成文, 等. 云南省镇雄县土壤重金属污染及潜在生态风险评估[J]. 物探与化探, 2019, 43(6):1358-1366.
[24] Zhou Y L, Guo Z J, Wang C W, et al. Assessment of heavy metal pollution and potential ecological risks of soils in Zhenxiong County,Yunnan Province[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1358-1366.
[25] 洪涛, 孔祥胜, 岳祥飞. 滇东南峰丛洼地土壤重金属含量、来源及潜在生态风险评价[J]. 环境科学, 2019, 40(10):4620-4627.
[25] Hong T, Kong X S, Yue X F. Concentration characteristics,source analysis,and potential ecological risk assessment of heavy metals in a peak-cluster depression area,southeast of Yunnan Province[J]. Environmental Science, 2019, 40(10):4620-4627.
[26] 李丽辉, 王宝禄. 云南省土壤As、Cd元素地球化学特征[J]. 物探与化探, 2008, 32(5):497-501.
[26] Li L H, Wang B L. Geochemical characteristics of As and Cd in soils of Yunnan Province[J]. Geophysical and Geochemical Exploration, 2008, 32(5):497-501.
[27] 范晨子, 袁继海, 刘成海, 等. 云南省安宁地区土壤重金属等元素生态地球化学调查与评价[J]. 物探与化探, 2022, 46(3):761-771.
[27] Fan C Z, Yuan J H, Liu C H, et al. Eco-geochemical survey and evaluation of heavy metals and other elements in soil in Anning City,Yunnan Province[J]. Geophysical and Geochemical Exploration, 2022, 46(3):761-771.
[28] 唐瑞玲, 王惠艳, 吕许朋, 等. 西南重金属高背景区农田系统土壤重金属生态风险评价[J]. 现代地质, 2020, 34(5):917-927.
[28] Tang R L, Wang H Y, Lyu X P, et al. Ecological risk assessment of heavy metals in farmland system from an area with high background of heavy metals,southwestern China[J]. Geoscience, 2020, 34(5):917-927.
[29] 王乔林, 宋云涛, 王成文, 等. 滇西地区土壤重金属来源解析及空间分布[J]. 中国环境科学, 2021, 41(8):3693-3703.
[29] Wang Q L, Song Y T, Wang C W, et al. Source identification and spatial distribution of soil heavy metals in western Yunnan[J]. China Environmental Science, 2021, 41(8):3693-3703.
[30] 王宇, 彭淑惠, 杨双兰. 云南岩溶区As、Cd元素异常特征[J]. 中国岩溶, 2012, 31(4):377-381.
[30] Wang Y, Peng S H, Yang S L. The anomaly features of As and Cd in the Karst area in Yunan Province[J]. Carsologica Sinica, 2012, 31(4):377-381.
[31] 肖高强, 陈杰, 白兵, 等. 云南典型地质高背景区土壤重金属含量特征及污染风险评价[J]. 地质与勘探, 2021, 57(5):1077-1086.
[31] Xiao G Q, Chen J, Bai B, et al. Content characteristics and risk assessment of heavy metals in soil of typical high geological background areas,Yunnan Province[J]. Geology and Exploration, 2021, 57(5):1077-1086.
[32] 张富贵, 彭敏, 王惠艳, 等. 基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价[J]. 环境科学, 2020, 41(9):4197-4209.
[32] Zhang F G, Peng M, Wang H Y, et al. Ecological risk assessment of heavy metals at township scale in the high background of heavy metals,Southwestern,China[J]. Environmental Science, 2020, 41(9):4197-4209.
[33] 谢学锦, 任天祥, 奚小环, 等. 中国区域化探全国扫面计划卅年[J]. 地球学报, 2009, 30(6):700-716.
[33] Xie X J, Ren T X, Xi X H, et al. The implementation of the regional geochemistry-national reconnaissance program (RGNR) in China in the past thirty years[J]. Acta Geoscientica Sinica, 2009, 30(6):700-716.
[34] 张春霖, 黄立勇冯沾明, 等. 用水系沉积物分析数据评价浙江土壤环境质量[J]. 物探与化探, 2005, 29(4):329-333.
[34] Zhang C L, Huang L Y, Feng Z M, et al. The application of the stream sediments analytical date to the evaluation of soil environmental quality of Zhejiang Province[J]. Geophysical and Geochemical Exploration, 2005, 29(4):329-333.
[35] 周余国, 高启芝, 刘继顺, 等. 个旧地区区域地球化学环境的系统评价[J]. 物探与化探, 2009, 33(6):620-625.
[35] Zhou Y G, Gao Q Z, Liu J S, et al. A systematical evaluation of the regional geochemical environment of Gejiu area[J]. Geophysical and Geochemical Exploration, 2009, 33(6):620-625.
[36] 朱辉, 黄强, 马瑛, 等. 基于水系沉积物的土壤环境预测模型——以青海省东部地区为例[J]. 矿产勘查, 2021, 12(12):2440-2446.
[36] Zhu H, Huang Q, Ma Y, et al. Soil environment prediction model based on stream sediment—A case study of eastern Qinghai Province[J]. Mineral Exploration, 2021, 12(12):2440-2446.
[37] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社,1990.
[37] China Environmental Testing Center. Chinese soil element background value[M]. Beijing: China Environmental Science Press,1990.
[38] 刘东盛, 王学求, 聂兰仕, 等. 中国钴地球化学异常特征、成因及找矿远景区预测[J]. 地球科学, 2022, 47(8):2781-2794.
[38] Liu D S, Wang X Q, Nie L S, et al. Cobalt geochemical anomalies characteristics and genesis in China and metallogenic prospecting areas prediction[J]. Earth Science, 2022, 47(8):2781-2794.
[39] 刘东盛, 王学求, 周建, 等. 中国钴地球化学基准值特征及影响因素[J]. 地球学报, 2020, 41(6):807-817.
[39] Liu D S, Wang X Q, Zhou J, et al. Characteristics of China's cobalt geochemical baselines and their influence factors[J]. Acta Geoscientica Sinica, 2020, 41(6):807-817.
[40] 张衡, 李仁涛, 巴金, 等. 川西南美姑地区下三叠统飞仙关组地球化学特征及其对物源和构造环境的指示意义[J]. 矿物岩石, 2019, 39(3):52-59.
[40] Zhang H, Li R T, Ba J, et al. Geochemical characteristics of the lower Triassic Feixianguan formation in Meigu area,southwestern Sichuan and its significance for the provenance and tectonic setting[J]. Journal of Mineralogy and Petrology, 2019, 39(3):52-59.
[41] 张英利, 王宗起, 王刚, 等. 上扬子会泽地区早三叠世飞仙关组砂岩物源特征:来自重矿物铬尖晶石和碎屑锆石的限定[J]. 地质论评, 2016, 62(1):54-72.
[41] Zhang Y L, Wang Z Q, Wang G, et al. Chromian spinel,zircon age constraints on the provenance of early Triassic Feixianguan formation sandstones from Huize Area,Upper Yangtze Region[J]. Geological Review, 2016, 62(1):54-72.
[42] Yang Q, Yang Z F, Filippelli G M, et al. Distribution and secondary enrichment of heavy metal elements in karstic soils with high geochemical background in Guangxi,China[J]. Chemical Geology, 2021,567.
[43] 刘炫志. 碳酸盐岩风化成土过程中重金属元素的富集行为及其环境风险评价——以贵州岩溶区为例[D]. 衡阳: 南华大学, 2019.
[43] Liu X Z. Enrichment behavior of heavy metal elements and environmental risk assessment during weathering and soil formation of carbonate rocks—A case study of karst region in Guizhou Province[D]. Hengyang: University of South China, 2019.
[44] 王济, 王世杰. 土壤中重金属环境污染元素的来源及作物效应[J]. 贵州师范大学学报:自然科学版, 2005, 23(2):113-120.
[44] Wang J, Wang S J. The sources and crops effect of heavy metal elements of contamination in soil[J]. Journal of Guizhou Normal University:Natural Science, 2005, 23(2):113-120.
[45] 邹若松. 浙西典型黑色岩系区重金属地表迁移规律及农田土壤风险评价[D]. 北京: 中国地质大学(北京), 2021.
[45] Zou R S. Surface migration of heavy metals and risk assessment of farmland soil in typical black shale area of western Zhejiang Province[D]. Beijing: China University of Geosciences (Beijing), 2021.
[46] Peng B, Rate A, Song Z L, et al. Geochemistry of major and trace elements and Pb-Sr isotopes of a weathering profile developed on the Lower Cambrian black shales in central Hunan,China[J]. Applied Geochemistry, 2014, 51:191-203.
doi: 10.1016/j.apgeochem.2014.09.007
[47] 周东晓, 彭渤, 王勤, 等. 扬子地台西缘下寒武统黑色页岩土壤元素地球化学特征[J]. 矿物岩石地球化学通报, 2020, 39(1):59-71.
[47] Zhou D X, Peng B, Wang Q, et al. Elemental geochemical characteristics of soils derived from the lower Cambrian black shales in the western Yangtze Platform,China[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2020, 39(1):59-71.
[48] 刘意章, 肖唐付, 熊燕, 等. 西南高镉地质背景区农田土壤与农作物的重金属富集特征[J]. 环境科学, 2019, 40(6):2877-2884.
[48] Liu Y Z, Xiao T F, Xiong Y, et al. Accumulation of heavy metals in agricultural soils and crops from an area with a high geochemical background of cadmium,southwestern China[J]. Environmental Science, 2019, 40(6):2877-2884.
doi: 10.1021/es048296m
[49] 杨连升, 周明忠, 熊康宁, 等. 贵州黑色页岩土壤地球化学特征[J]. 矿物岩石地球化学通报, 2020, 39(5):1023-1037.
[49] Yang L S, Zhou M Z, Xiong K N, et al. Geochemical characteristics of black-shale soils in Guizhou Province,China[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2020, 39(5):1023-1037.
[50] 张迪, 周明忠, 熊康宁, 等. 贵州遵义下寒武统黑色页岩区土壤重金属污染和人体健康风险评价[J]. 环境科学研究, 2021, 34(5):1247-1257.
[50] Zhang D, Zhou M Z, Xiong K N, et al. Assessment of pollution and human health risk from heavy metals in soils and crops in the lower Cambrian black shale area,Zunyi,Guizhou Province[J]. Research of Environmental Sciences, 2021, 34(5):1247-1257.
[1] 杨艳, 刘彬, 夏飞强, 陈平峰, 张祥. 皖南典型区耕地土壤重金属富集特征、来源识别及健康风险评估[J]. 物探与化探, 2024, 48(1): 255-263.
[2] 肖高强, 向龙洲, 代达龙, 高晓红, 宗庆霞. 花岗质岩浆岩土壤重金属地球化学特征及生态风险评价——以云南盈江旧城—姐冒地区为例[J]. 物探与化探, 2021, 45(5): 1135-1146.
[3] 赵秀芳, 张永帅, 冯爱平, 王艺璇, 夏立献, 王宏雷, 杜伟. 山东省安丘地区农业土壤重金属元素地球化学特征及环境评价[J]. 物探与化探, 2020, 44(6): 1446-1454.
[4] 吴雪芳, 岑况, 赵伦山, 刘秀丽, 史瑾瑾, 朱雪涛. 顺德地区土壤重金属污染生态地球化学调查与物源识别[J]. 物探与化探, 2015, 39(3): 595-601,605.
[5] 周国华. 土壤重金属生物有效性研究进展[J]. 物探与化探, 2014, 38(6): 1097-1106.
[6] 张建东 赖建清 范舟 王雄军 李德胜 王建武 周继华. 理想点法在太原盆地土壤重金属污染等级评价中的应用[J]. 物探与化探, 2009, 33(2): 161-164.
[7] 王志坤, 宁福政, 付巧玲, 王恒旭, 王文成. 洛阳城区土壤重金属污染现状评价[J]. 物探与化探, 2008, 32(4): 412-416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com