Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (3): 820-833    DOI: 10.11720/wtyht.2024.1153
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
北京市房山区土壤重金属元素分布、富集特征及来源解析
韩冰(), 黄勇(), 李欢, 安永龙
北京市生态地质研究所,北京 100120
Distributions, enrichment characteristics, and sources of heavy metals in soils in Fangshan District, Beijing
HAN Bing(), HUANG Yong(), LI Huan, AN Yong-Long
Beijing Institute of Ecological Geology, Beijing 100120, China
全文: PDF(9140 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

土壤重金属污染问题日益突出,为了探究北京市房山区土壤重金属含量分布情况,在房山区采集了152件表层土壤样品和240件深层土壤样品。本文对As、Cd、Cr、Cu、Hg、Ni和Pb这7种重金属元素在研究区土壤中的含量分布特征及其富集系数(EF)进行了统计分析,并利用主成因分析(PCA)和正定矩阵因子分解模型(PMF)对元素相关性、来源及贡献率进行了解析。结果表明:As、Cd、Cu、Ni和Pb在研究区的十渡、史家营、霞云岭、蒲洼等地的表层土壤中含量较高,且Cr、Ni和As在周口店、南窖和河北镇等地也有高值点分布,Hg在窦店、阎村、长阳等东部平原区含量较高;土壤中Hg和Cd 富集程度较强,As、Cr、Ni高度相关;土壤中As、Cr、Ni主要来源于自然源(土壤母质),贡献率为73.6% ~78.6%,Cd多数来自于人为混合源,贡献率为83.3%,混合源包括工矿活动、农业活动和交通排放等,Cu、Pb的自然源和混合源占比相近,均为50%左右,Hg主要来源于大气干湿沉降,源贡献率为72.4%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩冰
黄勇
李欢
安永龙
关键词 土壤重金属分布特征富集程度来源贡献率    
Abstract

Heavy metal pollution in soils has become increasingly prominent. To explore the distributions of heavy metals in soils in Fangshan District, Beijing, China, this study collected 152 topsoil samples and 240 deep soil samples from this district. Based on these samples, this study statistically analyzed the distributions and enrichment factors (EF) of seven heavy metal elements, namely As, Cd, Cr, Cu, Hg, Ni, and Pb. Furthermore, this study investigated the correlations, sources, and contribution rates of these elements through principal component analysis (PCA) and positive matrix factorization (PMF). The results show that: ① Elements As, Cd, Cu, Ni, and Pb exhibit high contents in the topsoil of the Shidu, Shijiaying, Xiayunling, and Puwa areas. Besides, elements Cr, Ni, and As manifest high contents locally in Zhoukoudian, Nanjiao, and Hebei Town. Element Hg displays high content in the eastern plain areas including Doudian, Yancun, and Changyang; ② Elements Hg and Cd are highly enriched, and there exist strong corrections among elements As, Cr, and Ni; ③ These elements primarily originate from natural sources (soil parent materials), which contribute to 73.6% to 78.6% of the elements. Element Cd is mostly sourced from an anthropogenic mixed source, which contributes 83.3% of Cd. The mixed source predominantly consists of industrial and mining activities, agricultural production, and traffic emissions. Elements Cu and Pb showed similar contribution rates of natural and mixed sources, both about 50%. Element Hg in soils primarily stems from dry and wet atmospheric deposition, which yields a contribution rate of 72.4%.

Key wordsheavy metals in soil    distribution characteristics    enrichment degree    source    contribution rate
收稿日期: 2023-04-06      修回日期: 2023-09-19      出版日期: 2024-06-20
ZTFLH:  X142  
  X825  
基金资助:北京市政府公益性项目“北京市土地质量生态地球化学监测网运行”(11000022T000000439575);“北京西部浅山区生态地质安全专项调查与评价”(11000023T000002075084)
通讯作者: 黄勇(1980-),男,正高级工程师,从事生态地球化学研究工作。Email:huangyongxyz@163.com
作者简介: 韩冰(1978-),男,高级工程师,从事水工环地质研究工作。Email:icoldice@126.com
引用本文:   
韩冰, 黄勇, 李欢, 安永龙. 北京市房山区土壤重金属元素分布、富集特征及来源解析[J]. 物探与化探, 2024, 48(3): 820-833.
HAN Bing, HUANG Yong, LI Huan, AN Yong-Long. Distributions, enrichment characteristics, and sources of heavy metals in soils in Fangshan District, Beijing. Geophysical and Geochemical Exploration, 2024, 48(3): 820-833.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1153      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I3/820
Fig.1  研究区矿产资源分布
Fig.2  研究区点位分布
指标 规范要求 检出限 测试方法
As 1 0.2 微波消解/
原子荧光法(AFS)
Hg 0.0005 0.0005
Cd 0.03 0.017 电感耦合等离
子质谱法(ICP-MS)
Cr 5 1.5 电感耦合等离子
质谱法(ICP-OES)
Cu 1 0.1
Ni 2 0. 2
Pb 2 1
Al2O3 0.05 0.03 X射线荧光
光谱(XRF)
Fe2O3 0.05 0.02
SiO2 0.1 0.05
pH 0.10 0.03 pH计(ISE)
Table 1  各指标的分析方法和检出限
含量范围 准确度
ΔlgC
精密度
λ
ΔlgC=
l g C i - - l g C s
λ= i = 1 n ( l g C i - l g C s ) 2 q - 1
检出限3倍以内 ≤0.12 0.17
检出限3倍以外 ≤0.10 0.15
1%~5% ≤0.07 0.10
>5% ≤0.05 0.08
Table 2  分析测试准确度和精密度控制要求
参数 As Cd Cr Cu Hg Ni Pb
表层 X ˉ/10-6 9.47 0.189 58.8 25.8 0.095 27.8 28.0
Xmed/10-6 9.45 0.156 58.0 21.9 0.055 26.8 25.2
S/10-6 2.72 0.148 9.3 14.8 0.144 7.0 13.0
CV/% 28.7% 78.2% 15.8% 57.6% 151.8% 25.2% 46.5%
Xmin/10-6 2.27 0.058 33.85 9.2 0.012 11.6 11.7
Xmax/10-6 20.33 1.395 99.97 125.4 1.093 66.1 123.5
深层 X ˉ/10-6 10.01 0.139 58.0 22.1 0.051 26.9 22.3
Xmed/10-6 10.16 0.103 59.6 21.8 0.034 26.9 20.4
S/10-6 4.34 0.108 12.3 8.9 0.081 7.7 10.7
Cv/% 43.3% 77.4% 21.3% 40.3% 159.3% 28.7% 48.0%
Xmin/10-6 2.46 0.040 12.51 6.2 0.008 8.5 6.5
Xmax/10-6 24.76 0.564 81.69 48.5 0.533 46.0 75.9
北京市表层土壤Xmed/10-6[16] 8.50 0.140 58.0 23.0 0.066 25.0 24.0
北京市深层土壤Xmed/10-6[16] 8.40 0.095 58.0 20.0 0.017 26.0 20.0
海河流域表层土壤Xmed/10-6[16] 9.70 0.140 66.0 23.0 0.035 28.0 22.0
海河流域深层土壤Xmed/10-6[16] 9.70 0.100 65.0 22.0 0.016 29.0 19.0
Table 3  重金属元素地球化学特征值统计
Fig.3  研究区土壤重金属元素中位值与北京市及海河流域土壤重金属元素中位值对比
Fig.4  表层土壤重金属元素地球化学分布
Fig.5  研究区垂向剖面元素分布特征
项目 EF<1 1≤EF<2 2≤EF<3 3≤EF<5 EF≥5
污染级别 0 1 2 3 4
富集程度 轻微 中度 偏重度 重度
Table 4  富集系数分级
Fig.6  元素富集程度占比统计
Fig.7  Cd(a)和Hg(b)富集系数空间分布
主成分 Cd Pb Cu Cr Ni As Hg
F1 0.900 0.649 0.595 0.067 0.579 0.468 0.110
F2 0.120 0.071 0.295 0.933 0.734 0.694 0.015
F3 0.073 0.540 0.366 0.113 0.049 0.005 0.909
Table 5  重金属元素旋转成分矩阵
Fig.8  旋转空间成分
Fig.9  自然源环境特征
元素 斜率 R2
As 0.65 0.82
Cd 0.90 0.94
Cr 0.89 0.81
Cu 0.57 0.65
Hg 1.01 1.00
Ni 0.79 0.86
Pb 0.71 0.82
Table 6  实测值与 PMF 模型预测值拟合结果
Fig.10  重金属 PMF 源解析贡献
Fig.11  重金属源因子占比
[1] Zhang X Y, Zhong T Y, Chen D M, et al. Assessment of arsenic (As) occurrence in arable soil and its related health risk in China[J]. Environmental Geochemistry and Health, 2016, 38(3):691-702.
doi: 10.1007/s10653-015-9751-7 pmid: 26209282
[2] Zhu Y G, Sun G X, Lei M, et al. High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice[J]. Environmental Science & Technology, 2008, 42(13):5008-5013.
[3] 黄勇, 段续川, 袁国礼, 等. 北京市延庆区土壤重金属元素地球化学特征及其来源分析[J]. 现代地质, 2022, 36(2):634-644.
[3] Huang Y, Duan X C, Yuan G L, et al. Geochemistry and source identification of heavy metals in the top and subsoil of Yanqing District in Beijing[J]. Geoscience, 2022, 36(2):634-644.
[4] 段续川, 李苹, 黄勇, 等. 北京市密云区农业土壤重金属元素地球化学特征及生态风险评价[J]. 现代地质, 2018, 32(1):95-104.
[4] Duan X C, Li P, Huang Y, et al. Geochemical characteristics and risk assessment of heavy metals in agricultural soils in Miyun District of Beijing[J]. Geoscience, 2018, 32(1):95-104.
[5] 辜敏, 赵靓, 陈倩, 等. 密云水库土壤重金属污染与生态风险评价[J]. 环境污染与防治, 2020, 42(11):1398-1404,1442.
[5] Gu M, Zhao L, Chen Q, et al. Heavy metal pollution and ecological risk assessment of soil in Miyun Reservoir[J]. Environmental Pollution & Control, 2020, 42(11):1398-1404,1442.
[6] 韩平, 王纪华, 冯晓元, 等. 北京顺义区土壤重金属污染生态风险评估研究[J]. 农业环境科学学报, 2015, 34(1):103-109.
[6] Han P, Wang J H, Feng X Y, et al. Ecological risk assessment of heavy metals in soils in Shunyi,Beijing[J]. Journal of Agro-Environment Science, 2015, 34(1):103-109.
[7] 李苹, 黄勇, 林赟, 等. 北京市怀柔区土壤重金属的分布特征、来源分析及风险评价[J]. 现代地质, 2018, 32(1):86-94.
[7] Li P, Huang Y, Lin Y, et al. Distribution,source identification and risk assessment of heavy metals in topsoil of Huairou District in Beijing[J]. Geoscience, 2018, 32(1):86-94.
[8] 姚世厅, 李玉倩, 王德利, 等. 北京万庄金矿区土壤重金属分布特征及污染评价[J]. 中国矿业, 2018, 27(S2):59-65.
[8] Yao S T, Li Y Q, Wang D L, et al. Distribution characteristics and pollution assessment of soil heavy metals in Wanzhuang gold mining area,Beijing[J]. China Mining Magazine, 2018, 27(S2):59-65.
[9] 胡克林, 张凤荣, 吕贻忠, 等. 北京市大兴区土壤重金属含量的空间分布特征[J]. 北京市大兴区土壤重金属含量的空间分布特征[J]. 环境科学学报, 2004, 24(3):463-468.
[9] Hu K L, Zhang F R, Lyu D Z, et al. Spatial distribution of concentrations of soil heavy metals in Daxing County,Beijing[J]. Acta Scientiae Circumstantiae, 2004, 24(3):463-468.
[10] 唐莹, 武相林, 孙敏, 等. 北京市门头沟风化煤矸石中汞的赋存形态与溶出特征分析[J]. 环境化学, 2022, 41(3):962-976.
[10] Tang Y, Wu X L, Sun M, et al. Analysis on the occurrence and dissolution characteristics of mercury in weathered coal gangue in Mentougou,Beijing[J]. Environmental Chemistry, 2022, 41(3):962-976.
[11] 董騄睿, 胡文友, 黄标, 等. 南京沿江典型蔬菜生产系统土壤重金属异常的源解析[J]. 土壤学报, 2014, 51(6):1251-1261.
[11] Dong L R, Hu W Y, Huang B, et al. Sources of heavy metals in soils of a typical vegetable production system along Yangtze River in Nanjing[J]. Acta Pedologica Sinica, 2014, 51(6):1251-1261.
[12] 北京市地质志编纂委员会. 北京志·地质矿产水利气象卷·地质矿产志[M]. 北京: 北京出版社, 2001.
[12] Beijing Geological Records Compilation Committee. Beijing Records·Geological and mineral water conservancy meteorological volume·Geological and mineral records[M]. Beijing: Beijing Press, 2001.
[13] 钱静. 北京山区开发建设的路径依赖及其对策——以北京市房山区为例[J]. 北京农业职业学院学报, 2014, 28(2):44-48.
[13] Qian J. Path dependence of development and construction in mountainous areas of Beijing and its countermeasures—Taking Fangshan district of Beijing as an example[J]. Journal of Beijing Agricultural Vocation College, 2014, 28(2):44-48.
[14] DZ/T 0258—2014多目标区域地球化学调查规范(1∶250 000)[S].
[14] DZ/T 0258—2014 Specification for multi-target regional geochemical survey(1∶250,000)[S].
[15] DD2005-03 生态地球化学评价样品分析技术要求[S].
[15] DD2005- 03 Technical requirements for analysis of ecological geo- chemical evalution samples[S].
[16] 侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020.
[16] Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical dataset of China[M]. Beijing: Geological Publishing House, 2020.
[17] 李廷芳. 北京土壤的地球化学过程与元素背景含量的关系[J]. 环境科学, 1987, 8(4):57-61.
[17] Li T F. Relationship between geochemical process of soil and background content of elements in Beijing[J]. Environmental Science, 1987, 8(4):57-61.
[18] 叶盼青, 阿不都艾尼·阿不里, 孙小丽, 等. 天山北坡经济带土壤重金属来源及污染评价[J]. China Environmental Science, 2022, 42(10):4704-4712.
[18] Ye P Q, Abdugheni Abliz, Sun X L, et al. Source analysis and pollution assessment of soil heavy metals in the economic belt on the northern slope of Tianshan Mountains[J]. China Environmental Science, 2022, 42(10):4704-4712.
[19] Lin Y, Han P, Huang Y, et al. Source identification of potentially hazardous elements and their relationships with soil properties in agricultural soil of the Pinggu district of Beijing,China:Multivariate statistical analysis and redundancy analysis[J]. Journal of Geochemical Exploration, 2017,173:110-118.
[20] Shen G H, Ru X, Gu Y T, et al. Pollution characteristics,spatial distribution,and evaluation of heavy metal(loid)s in farmland soils in a typical mountainous hilly area in China[J]. Foods, 2023, 12(3):681.
[21] 苏海民, 孙朋, 张勇. 宿州市煤矿区土壤重金属地球化学基线及污染评价研究[J]. 环境污染与防治, 2021, 43(12):1568-1572,1601.
[21] Su H M, Sun P, Zhang Y. Study on geochemical baseline and contamination evaluation of soil heavy metals in Suzhou coal mining area[J]. Environmental Pollution & Control, 2021, 43(12):1568-1572,1601.
[22] 张沁瑞, 李欢, 邓宇飞, 等. 北京东南郊土壤重金属元素分布及其在表层土壤中的富集特征[J]. 物探与化探, 2022, 46(2):490-501.
[22] Zhang Q R, Li H, Deng Y F, et al. Distribution of heavy metal elements in soil of the Southeastern suburbs of Beijing and their enrichment characteristics in surface soil[J]. Geophysical and Geochemical Exploration, 2022, 46(2):490-501.
[23] 李霞, 张慧鸣, 徐震, 等. 农田Cd和Hg污染的来源解析与风险评价研究[J]. 农业环境科学学报, 2016, 35(7):1314-1320.
[23] Li X, Zhang H M, Xu Z, et al. Source apportionment and risk assessment of Cd and Hg pollution in farmland[J]. Journal of Agro-Environment Science, 2016, 35(7):1314-1320.
[24] 李晓岚, 高秉博, 周艳兵, 等. 基于时空不确定性分析的北京市农田土壤重金属镉含量等级划分[J]. 农业环境科学学报, 2019, 38(2):307-316.
[24] Li X L, Gao B B, Zhou Y B, et al. Classification of soil heavy metal cadmium content grade in Beijing farmland based on spatio-temporal uncertainty analysis[J]. Journal of Agro-Environment Science, 2019, 38(2):307-316.
[25] 李欢, 张沁瑞, 闫广新, 等. 2005-2018年北京市平原区土壤汞时空特征及影响因素[J]. 地球科学与环境学报, 2023, 45(1):93-100.
[25] Li H, Zhang Q R, Yan G X, et al. Tempo-spatial characteristics of soil mercury in Beijing plain,China from 2005 to 2018 and their influence factors[J]. Journal of Earth Sciences and Environ-ment, 2023, 45(1):93-103.
[26] 李科, 刘清伟. 煤中汞的来源分布与燃煤烟气中汞的形态及脱除技术[J]. 中国资源综合利用, 2019, 37(10):104-106.
[26] Li K, Liu Q W. Source distribution of mercury in coal and form and removal technology of mercury in flue gas of coal burning[J]. China Resources Comprehensive Utilization, 2019, 37(10):104-106.
[27] 成杭新, 庄广民, 赵传冬, 等. 北京市土壤Hg污染的区域生态地球化学评价[J]. 地学前缘, 2008, 15(5):126-145.
[27] Cheng H X, Zhuang G M, Zhao C D, et al. Regional eco-geochemical assessment of mercury in soils in Beijing[J]. Earth Science Frontiers, 2008, 15(5):126-145.
[28] 朱琳, 王雅南, 韩美, 等. 武水河水质时空分布特征及污染成因的解析[J]. 环境科学学报, 2018, 38(6):2150-2156.
[28] Zhu L, Wang Y N, Han M, et al. Spatio-temporal distribution of water quality and source identification of pollution in Wushui River Basin[J]. Acta Scientiae Circumstantiae, 2018, 38(6):2150-2156.
[29] 韩存亮, 罗炳圣, 常春英, 等. 基于多种方法的区域农业土壤重金属污染成因分析研究[J]. 生态与农村环境学报, 2022, 38(2):176-183.
[29] Han C L, Luo B S, Chang C Y, et al. Identifying the source of soil heavy metal pollution in regional agricultural area based on multiple methods[J]. Journal of Ecology and Rural Environment, 2022, 38(2):176-183.
[30] 崔慧敏. 拒马河悬浮沉积物对重金属的吸附—解吸研究[J]. 水资源保护, 2000, 16(1):25-28,46.
[30] Cui H M. Study on adsorption of heavy metals by suspended sediment of Juma River[J]. Water Resources Protection, 2000, 16(1):25-28,46.
[31] Gao J W, Gong J J, Yang J Z, et al. Spatial distribution and ecological risk assessment of soil heavy metals in a typical volcanic area:Influence of parent materials[J]. Heliyon, 2023, 9(1):e12993.
[32] Qin Y L, Zhang F G, Xue S D, et al. Heavy metal pollution and source contributions in agricultural soils developed from Karst landform in the southwestern region of China[J]. Toxics, 2022, 10(10):568.
[33] Chen L, Ma K, Ma J, et al. Risk assessment and sources of heavy metals in farmland soils of Yellow River irrigation area of Ningxia[J]. Huan Jing Ke Xue, 2023, 44(1):356-366.
[34] 陈林, 马琨, 马建军, 等. 宁夏引黄灌区农田土壤重金属生态风险评价及来源解析[J]. 环境科学, 2023, 44(1):356-366.
[34] Chen L, Ma K, Ma J J, et al. Risk assessment and sources of heavy metals in farmland soils of Yellow River irrigation area of Ningxia[J]. Environmental Science, 2023, 44(1):356-366.
[35] Smolík J, Hartman M, Sýkorová I, et al. Emission fluxes of heavy metals from the fluidized bed combustion of fossil fuels[J]. Journal of Aerosol Science,1995,26:S655-S656.
[36] Jacobsen A P, Blumenthal R S. Cardiovascular disease is the condition,air pollution the risk factor,fossil fuel combustion the cause[J]. Journal of the American College of Cardiology, 2022, 79(2):e131.
doi: 10.1016/j.jacc.2021.09.1386 pmid: 35027115
[37] Xu J, Niehoff N M, White A J, et al. Fossil-fuel and combustion-related air pollution and hypertension in the Sister Study[J]. Environmental Pollution, 2022,315:120401.
[38] Guan Q Y, Wang F F, Xu C Q, et al. Source apportionment of heavy metals in agricultural soil based on PMF:A case study in Hexi Corridor,Northwest China[J]. Chemosphere, 2018,193:189-197.
[39] 付昱萌. 基于PMF模型鄂州市大气挥发性有机物污染特征及来源解析[D]. 武汉: 武汉理工大学, 2020.
[39] Fu Y M. Analysis of pollution characteristics and sources of vocs in Ezhou City based on PMF[D]. Wuhan: Wuhan University of Technology, 2020.
[40] 邹长伟, 江玉洁, 黄虹. 重金属镉的分布、暴露与健康风险评价研究进展[J]. 生态毒理学报, 2022, 17(6):225-243.
[40] Zou C W, Jiang Y J, Huang H. Distribution,exposure and health risk assessment of heavy metal cadmium:A review[J]. Asian Journal of Ecotoxicology, 2022, 17(6):225-243.
[41] 石文静, 周翰鹏, 孙涛, 等. 矿区周边土壤重金属污染优先控制因子及健康风险评价研究[J]. 生态环境学报, 2022, 31(8):1616-1628.
doi: 10.16258/j.cnki.1674-5906.2022.08.014
[41] Shi W J, Zhou H P, Sun T, et al. Research on priority control factors and health risk assessment of heavy metal pollution in soil around mining areas[J]. Ecology and Environmental Sciences, 2022, 31(8):1616-1628.
[42] Giersz J, Bartosiak M, Jankowski K. Sensitive determination of Hg together with Mn,Fe,Cu by combined photochemical vapor generation and pneumatic nebulization in the programmable temperature spray chamber and inductively coupled plasma optical emission spectrometry[J]. Talanta, 2017,167:279-285.
[43] 董丽君, 张展华, 张彤. 土壤环境汞污染现状及其影响因素研究进展[J]. 地球与环境, 2022, 50(3):397-414,319.
[43] Dong L J, Zhang Z H, Zhang T. Mercury pollution in soil environment:Current status and its influencing factors[J]. Earth and Environment, 2022, 50(3):397-414,319.
[44] 王鑫, 刘冬跃, 钱松山, 等. 大气沉降对环境污染研究现状及进展[J]. 北京水务, 2021(2):16-20.
[44] Wang X, Liu D Y, Qian S S, et al. Research progress of atmospheric deposition on environmental pollution[J]. Beijing Water, 2021(2):16-20.
[45] 王林江, 刘廷吉, 林则鑫, 等. 土壤—作物系统重金属迁移转化研究进展[J]. 安徽农学通报, 2021, 27(22):147-154.
[45] Wang L J, Liu T J, Lin Z X, et al. Research progress on the migration and transformation of heavy metals in soil-crop system[J]. Anhui Agricultural Science Bulletin, 2021, 27(22):147-154.
[1] 史敬涛, 刘俊建, 张军超, 王江玉龙, 姜禹戈, 王末, 李横飞, 杨文号, 颜翔锦. 浅山区典型小流域土壤重金属影响因素及来源分析[J]. 物探与化探, 2024, 48(3): 834-846.
[2] 余飞, 王锐, 周皎, 张风雷, 蒋玉莲, 张云逸, 朱世林. 典型汞矿区周边耕地土壤重金属来源解析与农作物健康风险评价[J]. 物探与化探, 2024, 48(3): 847-857.
[3] 庞国涛, 杨源祯, 谢磊, 李伟, 张晓磊, 闫兴国. 防城港海域沉积物中正构烷烃分布和来源解析[J]. 物探与化探, 2024, 48(2): 527-533.
[4] 肖高强, 赵娟, 陈子万, 宋旭锋, 朱能刚. 基于地质大数据技术对云南土壤重金属地质高背景区的划定[J]. 物探与化探, 2024, 48(1): 216-227.
[5] 蔡柯柯, 赵志强, 蒙丽, 王孝萌, 刘键, 罗仁凤. 重庆市秀山县北部大气干湿沉降重金属元素分布特征及来源分析[J]. 物探与化探, 2024, 48(1): 237-244.
[6] 杨艳, 刘彬, 夏飞强, 陈平峰, 张祥. 皖南典型区耕地土壤重金属富集特征、来源识别及健康风险评估[J]. 物探与化探, 2024, 48(1): 255-263.
[7] 徐磊, 李俊, 瞿镪, 文方平, 赵萌生, 程琰勋, 徐杰, 王浩宇. 滇中中高山丘陵区大气干湿沉降元素地球化学特征及来源解析[J]. 物探与化探, 2023, 47(6): 1602-1610.
[8] 李开富, 马欢, 张艳, 李威龙, 姜纪沂, 黄斌, 章龙管, 秦孟博. 基于时移电阻率法的平谷局部地区地下水时空特征研究[J]. 物探与化探, 2023, 47(4): 1002-1009.
[9] 刘庆宇, 马瑛, 程莉, 沈骁, 张亚峰, 苗国文, 黄强, 韩思琪. 青海东部表层土壤有机碳密度及其空间分布特征[J]. 物探与化探, 2023, 47(4): 1098-1108.
[10] 赵玉岩, 姜涛, 杨秉翰, 张泽宇, 李政赫, 李兵, 汤肖丹. 农田土壤—植物系统中钒的迁移富集规律[J]. 物探与化探, 2023, 47(3): 835-844.
[11] 宋运红, 杨凤超, 刘凯, 戴慧敏, 许江, 韩晓萌. 黑龙江省海伦地区黑土剖面常量元素地球化学特征及其对物源的指示意义[J]. 物探与化探, 2022, 46(5): 1105-1113.
[12] 张凯涛, 白德胜, 李俊生, 刘纪峰, 许栋, 苏阳艳, 樊康. 豫西合峪—车村地区萤石矿床地质特征及物质来源研究进展[J]. 物探与化探, 2022, 46(4): 787-797.
[13] 居字龙, 秦志军, 万翔, 袁航, 张小波, 王登. 湖北红安县生态地质调查土壤重金属分布特征及生态风险评价[J]. 物探与化探, 2022, 46(4): 988-998.
[14] 邢润华. 安徽省宣城市土壤硒地球化学特征及成因分析[J]. 物探与化探, 2022, 46(3): 750-760.
[15] 李生清. 海河流域沉积物重金属形态分布特征及生态风险评估[J]. 物探与化探, 2022, 46(3): 781-786.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com