Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (3): 834-846    DOI: 10.11720/wtyht.2024.1270
  生态地质调查 本期目录 | 过刊浏览 | 高级检索 |
浅山区典型小流域土壤重金属影响因素及来源分析
史敬涛1(), 刘俊建1(), 张军超2, 王江玉龙1, 姜禹戈1, 王末1, 李横飞1, 杨文号1, 颜翔锦3
1.中国地质调查局 廊坊自然资源综合调查中心,河北 廊坊 065000
2.平泉市水土保持建设服务中心,河北 平泉 067500
3.中国地质调查局 牡丹江自然资源综合调查中心,黑龙江 牡丹江 157000
Analysis of soil heavy metal influencing factors and sources in typical small watersheds in shallow mountainous area
SHI Jing-Tao1(), LIU Jun-Jian1(), ZHANG Jun-Chao2, WANG Jiang-Yu-Long1, JIANG Yu-Ge1, WANG Mo1, LI Heng-Fei1, YANG Wen-Hao1, YAN Xiang-Jin3
1. Langfang Natural Resources Comprehensive Survey Center,China Geological Survey,Langfang 065000,China
2. Pingquan Soil and Water Conservation Construction Service Center,Pingquan 067500,China
3. Mudanjiang Natural Resources Comprehensive Survey Center,China Geological Survey,Mudanjiang 157000,China
全文: PDF(6471 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

本次研究调查了平泉市瀑河流域不同岩性岩石及所形成的土壤中8种重金属元素及相关氧化物的含量,分析了浅山区典型小流域土壤重金属元素影响因素及来源,以期为京津冀水源涵养生态修复提供理论支撑。通过选取表层、深层土壤和成土母岩中的重金属元素为研究对象,以土壤重金属含量为基础,以空间分布为依据,并结合区域地质背景,采用多项统计方法深入分析其影响因素及来源。结果显示,研究区表层与深层的土壤重金属元素含量较为相近,且其空间分布具有耦合性,在垂向分布上,重金属元素在表层土壤和成土母岩中的相关系数为负值,而在深层土壤和成土母岩中的相关系数为正值。该结果表明,在表层土壤中,Cr、Ni、Cu、Zn和Pb等主要来源于成土母岩,而Cd、Hg和As等则受控于矿业开采的影响;在深层土壤中,8种重金属元素的主要来源是成土母岩,而Cd和As则受成土母岩和人为因素的共同影响。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史敬涛
刘俊建
张军超
王江玉龙
姜禹戈
王末
李横飞
杨文号
颜翔锦
关键词 浅山区小流域土壤重金属影响因素矿业开采来源    
Abstract

This study investigated the contents of eight heavy metals and related oxides in rocks with different lithologies and the soils formed in the Puhe river basin of Pingquan City. Based on the above investigation, this study analyzed the influencing factors and sources of soil heavy metals in the typical small watershed of the shallow mountainous area, aiming to provide theoretical support for water conservation and ecological restoration in the Beijing-Tianjin-Hebei region. Based on the contents and spatial distributions of soil heavy metals and combined with regional geological setting, this study delved into the influencing factors and sources of heavy metal elements in topsoil, deep soil, and soil parent materials using multiple statistical methods. The results show that heavy metals in topsoil and deep soil exhibited relatively similar contents and coupled spatial distributions. In terms of vertical distributions, the correlation coefficients of heavy metals were negative between topsoil and soil parent materials but positive between deep soil and soil parent materials. As indicated by the results, in the topsoil, elements Cr, Ni, Cu, Zn, and Pb are primarily derived from soil parent materials, while elements Cd, Hg, and As are subjected to the influence of mining. In contrast, the eight heavy metals in the deep soil predominantly stem from soil parent materials, with anthropogenic factors contributing to Cd and As.

Key wordssmall watershed in the shallow mountainous area    soil heavy metal    influencing factor    mining    source
收稿日期: 2023-06-19      修回日期: 2023-10-20      出版日期: 2024-06-20
ZTFLH:  X825  
  X142  
基金资助:中国地质调查局项目“滦河流域中上游生态修复支撑调查”(DD20220954);自然资源部自然资源要素耦合过程与效应重点实验室项目“滦河中游植被组成与土壤水分和养分相互作用机理”(2022KFKTC009)
通讯作者: 刘俊建(1978-),男,博士,副研究员,主要从事生态环境与资源评价及地下水土污染防控工作。Email:liujunjian@mail.cgs.gov.cn
作者简介: 史敬涛(1995-),男,本科,助理工程师,主要从事生态修复与地球化学方面的科研工作。Email:1083231319@qq.com
引用本文:   
史敬涛, 刘俊建, 张军超, 王江玉龙, 姜禹戈, 王末, 李横飞, 杨文号, 颜翔锦. 浅山区典型小流域土壤重金属影响因素及来源分析[J]. 物探与化探, 2024, 48(3): 834-846.
SHI Jing-Tao, LIU Jun-Jian, ZHANG Jun-Chao, WANG Jiang-Yu-Long, JIANG Yu-Ge, WANG Mo, LI Heng-Fei, YANG Wen-Hao, YAN Xiang-Jin. Analysis of soil heavy metal influencing factors and sources in typical small watersheds in shallow mountainous area. Geophysical and Geochemical Exploration, 2024, 48(3): 834-846.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1270      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I3/834
Fig.1  研究区地质简图与采样位置
项目 统计参数 Cr Ni Cu Zn Cd Pb Hg As
表层土壤 最大值 1374.0 369.0 192.0 172.0 2.070 57.2 0.221 33.7
最小值 14.6 11.6 4.9 11.2 0.050 9.3 0.011 2.1
平均值 86.1 37.3 30.9 82.3 0.199 26.5 0.040 9.9
标准差 159.1 44.1 26.3 26.1 0.280 7.4 0.034 5.5
变异系数/% 184.7 118.1 85.0 31.7 140.4 27.9 87.0 55.2
深层土壤 最大值 1975.0 443.0 234.0 219.0 3.190 53.2 0.290 30.5
最小值 8.8 3.4 1.1 4.5 0.018 6.0 0.005 1.0
平均值 96.5 39.4 33.1 84.8 0.207 25.1 0.033 9.0
标准差 238.6 53.2 35.6 29.3 0.453 5.9 0.045 5.5
变异系数/% 247.4 134.8 107.6 34.6 218.8 23.6 138.2 61.2
成土母岩 最大值 2542.0 652.0 307.0 350.0 3.250 59.7 4.124 116.7
最小值 6.5 2.2 1.0 2.9 0.028 5.2 0.004 0.4
平均值 85.1 34.6 27.5 72.4 0.229 21.6 0.101 6.3
标准差 320.7 84.0 52.3 64.1 0.530 10.2 0.528 17.0
变异系数/% 376.7 242.6 190.2 88.4 231.7 47.3 520.9 269.0
背景值[16] 河北省表层 68,3 30.8 21.8 78.4 0.094 21.5 0.036 13.6
河北省深层 72.6 34.1 23.0 78.4 0.097 25.1 0.022 14.2
Table 1  表层、深层土壤及成土母岩中重金属元素的含量及相应统计参数
Fig.2  表层土壤重金属元素含量空间分布
岩性单元 采样位置 Cr Ni Cu Zn Cd Pb Hg As
第四系 表层土壤 77.57 33.73 33.21 78.87 0.180 29.80 0.033 8.15
深层土壤 61.90 27.15 23.45 74.45 0.145 27.80 0.022 6.46
成土母岩 61.10 27.00 18.60 75.40 0.065 17.20 0.008 0.59
中生代
碎屑岩
表层土壤 63.07 29.94 23.66 75.09 0.124 27.03 0.039 9.94
深层土壤 60.67 29.96 22.64 75.05 0.096 25.43 0.018 7.37
成土母岩 28.85 16.44 14.97 54.16 0.144 20.40 0.001 3.34
中生代中
酸性岩
表层土壤 52.53 23.54 29.33 82.56 0.156 28.07 0.032 6.87
深层土壤 57.06 26.34 27.13 84.80 0.152 27.90 0.024 7.72
成土母岩 21.99 11.48 23.06 69.76 0.246 26.91 0.015 3.38
中生代
火山碎屑岩
表层土壤 63.50 29.97 21.50 66.93 0.105 25.27 0.025 9.28
深层土壤 69.50 34.13 26.37 76.17 0.120 26.27 0.016 9.30
成土母岩 26.97 19.05 11.42 51.40 0.054 25.63 0.034 1.40
震旦纪—二叠
纪碳酸盐岩
表层土壤 56.19 29.28 23.88 72.44 0.230 23.74 0.043 12.11
深层土壤 56.30 29.74 22.78 71.96 0.112 22.54 0.020 9.77
成土母岩 24.60 18.53 7.00 38.08 0.071 10.99 0.022 3.45
震旦纪—石
炭纪泥质
碎屑岩
表层土壤 66.94 47.72 44.30 106.6 0.608 27.00 0.097 19.23
深层土壤 69.07 43.88 45.30 93.37 0.473 26.62 0.119 19.17
成土母岩 130.80 94.84 93.22 194.60 0.916 31.82 0.112 255.50
前寒武纪
基性岩
表层土壤 141.7 73.10 52.18 110.2 0.380 22.70 0.026 14.21
深层土壤 95.28 56.98 85.63 113.9 0.872 18.12 0.024 10.41
成土母岩 35.45 42.38 101.7 116.5 0.505 14.52 0.023 4.17
前寒武纪
变质岩
表层土壤 80.81 32.89 37.49 79.80 0.107 23.67 0.025 7.71
深层土壤 94.36 38.21 44.51 91.92 0.142 22.30 0.032 6.33
成土母岩 119.20 30.66 18.42 59.74 0.091 20.42 0.026 1.41
Table 2  研究区不同成土母岩单元中土壤及成土母岩重金属均值
Fig.3  表层、深层土壤及成土母岩中重金属分布特征
Q—第四系;Mzc—中生代碎屑岩;Mzm—中生代中酸性岩;Mzp—中生代火山碎屑岩;Z-Pc—震旦纪-二叠纪碳酸盐岩;Z-Ca—震旦纪-石炭纪泥质碎屑岩;Ptn—前寒武纪基性岩;Ptr—前寒武纪变质岩
Fig.4  研究区原岩及表、深层土壤Al2O3与Ti散点图
Fig.5  表层、深层土壤重金属元素迁移系数
Mzc—中生代碎屑岩;Mzm—中生代中酸性岩;Mzp—中生代火山碎屑岩;Z-Pc—震旦纪-二叠纪碳酸盐岩;Z-Ca—震旦纪-石炭纪泥质碎屑岩;Ptn—前寒武纪基性岩;Ptr—前寒武纪变质岩
指标 SiO2 CaO MgO Al2O3 Fe2O3 K2O Na2O Cr Ni Cu Zn Cd Pb Hg As
SiO2 1 -0.941** -0.958** 0.629** 0.391 0.565** 0.316 0.321 0.116 0.297 0.395 0.033 0.693** 0.163 0.218
CaO -0.969** 1 0.940** -0.837** -0.652** -0.757** -0.479* -0.516* -0.334 -0.501* -0.604** -0.146 -0.822** -0.213 -0.305
MgO -0.688** 0.573** 1 -0.729** -0.494* -0.686** -0.480* -0.363 -0.153 -0.376 -0.456* -0.066 -0.750** -0.194 -0.239
Al2O3 0.879** -0.929** -0.581** 1 0.895** 0.931** 0.723** 0.707** 0.573** 0.702** 0.799** 0.270 0.862** 0.234 0.391
Fe2O3 0.792** -0.856** -0.540** 0.962** 1 0.866** 0.652** 0.777** 0.710** 0.822** 0.869** 0.409 0.767** 0.331 0.474*
K2O 0.692** -0.706** -0.480* 0.819** 0.827** 1 0.763** 0.564** 0.406 0.573** 0.721** 0.105 0.740** 0.100 0.185
Na2O 0.743** -0.717** -0.518* 0.650** 0.539** 0.455* 1 0.316 0.183 0.378 0.468* 0.161 0.425* 0.256 0.322
Cr 0.716** -0.774** -0.483* 0.900** 0.932** 0.773** 0.411 1 0.949** 0.907** 0.771** 0.516* 0.785** 0.488* 0.709**
Ni 0.491* -0.529** -0.307 0.703** 0.722** 0.617** 0.166 0.878** 1 0.892** 0.730** 0.588** 0.686** 0.451* 0.728**
Cu 0.476* -0.533** -0.187 0.700** 0.713** 0.659** 0.147 0.787** 0.871** 1 0.765** 0.698** 0.772** 0.558** 0.704**
Zn 0.561** -0.582** -0.329 0.670** 0.676** 0.611** 0.170 0.817** 0.928** 0.856** 1 0.516* 0.843** 0.370 0.468*
Cd -0.178 0.171 0.320 -0.159 -0.227 -0.049 -0.352 -0.066 0.311 0.394 0.434* 1 0.470* 0.790** 0.565**
Pb 0.662** -0.672** -0.462* 0.681** 0.691** 0.578** 0.303 0.698** 0.626** 0.614** 0.750** 0.070 1 0.371 0.486*
Hg -0.402 0.402 0.152 -0.356 -0.366 -0.326 -0.180 -0.326 -0.263 -0.230 -0.303 0.061 -0.254 1 0.598**
As -0.291 0.305 0.100 -0.213 -0.219 -0.208 -0.271 -0.047 0.290 0.234 0.323 0.663** 0.115 0.332 1
Table 3  表层土壤样品(无底色)和深层土壤样品(底色为灰色)中8种重金属元素与氧化物的Pearson相关系数
项目 TCr TNi TCu TZn TCd TPb THg TAs
粉粒 0.224 0.262* 0.199 0.215 0.030 0.094 0.330* 0.136
细砂 0.328* 0.324* 0.140 0.291* 0.084 0.076 0.219 0.115
中砂 -0.036 -0.094 -0.110 -0.097 -0.128 -0.093 -0.256 -0.192
粗砂 -0.319* -0.290* -0.118 -0.254 -0.100 -0.098 -0.241 -0.071
pH -0.314* -0.248 -0.246 -0.269* -0.025 0.156 0.099 0.096
Table 4  土壤pH和质地与重金属元素迁移系数的相关性
参数 粉粒
(0.002~
0.05mm)
细砂
(0.05~
0.25mm)
中砂
(0.25~
0.5mm)
粗砂
(0.5~
1mm)
pH
最小值 4.87 14.35 6.96 5.92 5.96
最大值 36.08 52.79 34.46 43.08 8.87
平均值 14.66 38.59 22.70 21.06 7.71
标准差 4.93 6.93 5.22 7.29 0.73
变异系数 33.61 17.95 23.00 34.64 9.46
Table 5  各土壤质地占比及pH值统计
指标 表层土壤 深层土壤
F1 F2 F1 F2
Cr 0.873 -0.367 0.931 -0.222
Ni 0.954 0.008 0.916 -0.156
Cu 0.917 0.046 0.952 -0.068
Zn 0.977 0.064 0.828 -0.352
Cd 0.368 0.785 0.754 0.510
Pb 0.778 -0.191 0.820 -0.369
Hg -0.330 0.555 0.668 0.661
As 0.291 0.864 0.784 0.233
特征值 4.401 1.849 5.602 1.089
方差/% 55.018 23.108 70.019 13.611
Table 6  研究区土壤重金属元素因子载荷
[1] Aelion C M, Davis H T, McDermott S, et al. Soil metal concentrations and toxicity:Associations with distances to industrial facilities and implications for human health[J]. The Science of the Total Environment, 2009, 407(7):2216-2223.
[2] Wang Y Z, Duan X J, Wang L. Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution:Case study in Jiangsu Province[J]. The Science of the Total Environment, 2020,710:134953.
[3] 韩志轩, 王学求, 迟清华, 等. 珠江三角洲冲积平原土壤重金属元素含量和来源解析[J]. 中国环境科学, 2018, 38(9):3455-3463.
[3] Han Z X, Wang X Q, Chi Q H, et al. Occurrence and source identification of heavy metals in the alluvial soils of Pearl River Delta region,South China[J]. China Environmental Science, 2018, 38(9):3455-3463.
[4] Manta D S, Angelone M, Bellanca A, et al. Heavy metals in urban soils:A case study from the city of Palermo (Sicily),Italy[J]. The Science of the Total Environment, 2002, 300(1-3):229-243.
[5] 汪春鹏, 尤建功, 孙浩, 等. 辽阳市土壤重金属含量特征及潜在风险评价[J]. 地质通报, 2021, 40(10):1680-1687.
[5] Wang C P, You J G, Sun H, et al. Characteristics and potential risk assessment of heavy metal contents in urban soil,Liaoyang City[J]. Geological Bulletin of China, 2021, 40(10):1680-1687.
[6] Rastegari M M, Keshavarzi B, Moore F, et al. Distribution,source identification and health risk assessment of soil heavy metals in urban areas of Isfahan Province,Iran[J]. Journal of African Earth Sciences, 2017,132:16-26.
[7] 孙厚云, 卫晓锋, 甘凤伟, 等. 承德市滦河流域土壤重金属地球化学基线厘定及其累积特征[J]. 环境科学, 2019, 40(8):3753-3763.
[7] Sun H Y, Wei X F, Gan F W, et al. Determination of heavy metal geochemical baseline values and its accumulation in soils of the Luanhe River Basin,Chengde[J]. Environmental Science, 2019, 40(8):3753-3763.
[8] 李甫, 刘俊建, 葛建平, 等. 典型水源涵养区废弃矿山生态修复效益评价指标体系研究[J]. 中国矿业, 2023, 32(5):44-52.
[8] Li F, Liu J J, Ge J P, et al. Study on benefit evaluation index system of abandoned mine ecological restoration in typical water conservation area[J]. China Mining Magazine, 2023, 32(5):44-52.
[9] 刘瑞平, 徐友宁, 张江华, 等. 青藏高原典型金属矿山河流重金属污染对比[J]. 地质通报, 2018, 37(12):2154-2168.
[9] Liu R P, Xu Y N, Zhang J H, et al. A comparative study of the content of heavy metals in typical metallic mine rivers of the Tibetan Plateau[J]. Geological Bulletin of China, 2018, 37(12):2154-2168.
[10] Liao G L, Liao D X, Li Q M. Heavy metals contamination characteristics in soil of different mining activity zones[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(1):207-211.
[11] 郝红, 高博, 王健康, 等. 滦河流域沉积物中重金属分布特征及风险评价[J]. 岩矿测试, 2012, 31(6):1000-1005.
[11] Hao H, Gao B, Wang J K, et al. Distribution characteristic and potential ecological risk assessment of heavy metals in sediments of the Luanhe River[J]. Rock and Mineral Analysis, 2012, 31(6):1000-1005.
[12] 王关玉, 潘懋, 刘锡大, 等. 山东省土壤中元素含量与母质的关系[J]. 北京大学学报:自然科学版, 1992, 28(4):475-485.
[12] Wang G Y, Pan M, Liu X D, et al. On the relationship between the concentrations of elements in soil and the types of soil-forming parent material in Shandong Province,China[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 1992, 28(4):475-485.
[13] 朱自娟, 左丽君, 张增祥, 等. 1987-2015年京津冀西北水源涵养区生态格局时空变化[J]. 草业科学, 2020, 37(7):1325-1336.
[13] Zhu Z J, Zuo L J, Zhang Z X, et al. Analysis of spatial and temporal changes of regional ecological pattern in the northwest of Jingjinji as water conservation area during the past 30 years[J]. Pratacultural Science, 2020, 37(7):1325-1336.
[14] 宋运红, 杨凤超, 刘凯, 等. 三江平原耕地土壤重金属元素分布特征及影响因素的多元统计分析[J]. 物探与化探, 2022, 46(5):1064-1075.
[14] Song Y H, Yang F C, Liu K, et al. A multivariate statistical analysis of the distribution and influencing factors of heavy metal elements in the cultivated land of the Sanjiang Plain[J]. Geophysical and Geochemical Exploration, 2022, 46(5):1064-1075.
[15] 周墨, 唐志敏, 张明, 等. 江西赣州地区土壤—水稻系统重金属含量特征及健康风险评价[J]. 地质通报, 2021, 40(12):2149-2158.
[15] Zhou M, Tang Z M, Zhang M, et al. Characteristics and health risk assessment of heavy metals in soil-rice system in the Ganzhou area,Jiangxi Province[J]. Geological Bulletin of China, 2021, 40(12):2149-2158.
[16] 中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社,1990.
[16] China Environmental Monitoring Station. Background values of soil elements in China[M]. Beijing: China Environmental Science Press,1990.
[17] 马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤—作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1):449-459.
[17] Ma H H, Peng M, Liu F, et al. Bioavailability,translocation,and accumulation characteristic of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi,China[J]. Environmental Science, 2020, 41(1):449-459.
[18] 冯志刚, 刘威, 张兰英, 等. 贫Cd碳酸盐岩发育土壤Cd的富集与超常富集现象——以贵州岩溶区为例[J]. 地质通报, 2022, 41(4):533-544.
[18] Feng Z G, Liu W, Zhang L Y, et al. Enrichment and supernormal enrichment phenomenon of Cd in soils developed on Cd-poor carbonate rocks:A case study of Karst areas in Guizhou,China[J]. Geological Bulletin of China, 2022, 41(4):533-544.
[19] Zhong X, Chen Z W, Li Y Y, et al. Factors influencing heavy metal availability and risk assessment of soils at typical metal mines in Eastern China[J]. Journal of Hazardous Materials, 2020,400:123289.
[20] 高云峰, 徐友宁, 张江华. 秦岭某钼矿区开发对东川河流域Cd的影响[J]. 地质通报, 2018, 37(12):2241-2250.
[20] Gao Y F, Xu Y N, Zhang J H. Evaluation of Cd pollution of a molybdenum ore area in Dongchuan River Basin of the Qinling Mountain[J]. Geological Bulletin of China, 2018, 37(12):2241-2250.
[21] 郑国东. 广西北部湾地区表层土壤重金属分布特征及其影响因素研究[D]. 北京: 中国地质大学(北京), 2016.
[21] Zheng G D. Factors influencing the distribution and accumulation of heavy metals in topsoil acrossBeibu gulf of guangxi[D]. Beijing: China University of Geosciences, 2016.
[22] Zeng F R, Ali S, Zhang H T, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J]. Environmental Pollution, 2011, 159(1):84-91.
doi: S0269-7491(10)00424-0 pmid: 20952112
[23] Young G M, Nesbitt H W. Processes controlling the distribution of Ti and Al in weathering profiles,siliciclastic sediments and sedimentary rocks[J]. Journal of Sedimentary Research, 1998, 68(3):448-455.
[24] 张坤, 季宏兵, 褚华硕, 等. 黔西南喀斯特地区红色风化壳的物源及元素迁移特征[J]. 地球与环境, 2018, 46(3):257-266.
[24] Zhang K, Ji H B, Chu H S, et al. Material sources and element migration characteristics of red weathering crusts in southwestern Guizhou[J]. Earth and Environment, 2018, 46(3):257-266.
[25] 王秋艳, 文雪峰, 魏晓, 等. 碳酸盐岩风化和成土过程的重金属迁移富集机理初探及环境风险评价[J]. 地球与环境, 2022, 50(1):119-130.
[25] Wang Q Y, Wen X F, Wei X, et al. Heavy metal migration and enrichment mechanism and the environmental risks during the weathering and soil formation of carbonate rocks[J]. Earth and Environment, 2022, 50(1):119-130.
[26] 蒋玉莲. 贵州六盘水碳酸盐岩成壤过程中重金属的迁移富集机制[D]. 北京: 中国地质大学(北京), 2021.
[26] Jiang Y L. The migration and enrichment mechanism of heavy metals in the process of carbonate pedogenesis in Liupanshui,Guizhou[D]. Beijing: China University of Geosciences, 2021.
[27] Huang P M. Feldspars,olivines,pyroxenes,and amphiboles[G]//SSSA book series.Madison,WI, USA:Soil Science Society of America,2018:975-1050.
[28] 陈静生, 王飞越, 宋吉杰, 等. 中国东部河流沉积物中重金属含量与沉积物主要性质的关系[J]. 环境化学, 1996, 15(1):8-14.
[28] Chen J S, Wang F Y, Song J J, et al. Relation of geochemical and surface properties to heavy metal concentrations of sediments from eastern Chinese Rivers[J]. Environmental Chemistry, 1996, 15(1):8-14.
[29] 谭文峰, 刘凡, 李永华, 等. 土壤铁锰结核中锰矿物类型鉴定的探讨[J]. 矿物学报, 2000, 20(1):63-67.
[29] Tan W F, Liu F, Li Y H, et al. Methodological study of identifying mangnese minerals in fe-mn nodules of soils[J]. Acta Mineralogica Sinica, 2000, 20(1):63-67.
[30] Nachtegaal M, Sparks D L. Effect of iron oxide coatings on zinc sorption mechanisms at the clay-mineral/water interface[J]. Journal of Colloid and Interface Science, 2004, 276(1):13-23.
pmid: 15219425
[31] Otunola B O, Ololade O O. A review on the application of clay minerals as heavy metal adsorbents for remediation purposes[J]. Environmental Technology & Innovation, 2020,18:100692.
[32] Hardy M, Cornu S. Location of natural trace elements in silty soils using particle-size fractionation[J]. Geoderma, 2006, 133(3/4):295-308.
[33] Dixon J B, Schulze D G. Soil mineralogy with environmental applications[R]. Soil Science Society of America Inc, 2002.
[34] Hou S N, Zheng N, Tang L, et al. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays L.) rhizospheric soil of non-ferrous metals smelting area[J]. Environmental Monitoring and Assessment, 2019, 191(10):634.
doi: 10.1007/s10661-019-7793-5 pmid: 31522295
[35] 匡荟芬, 胡春华, 吴根林, 等. 结合主成分分析法(PCA)和正定矩阵因子分解法(PMF)的鄱阳湖丰水期表层沉积物重金属源解析[J]. 湖泊科学, 2020, 32(4):964-976.
[35] Kuang H F, Hu C H, Wu G L, et al. Combination of PCA and PMF to apportion the sources of heavy metals in surface sediments from Lake Poyang during the wet season[J]. Journal of Lake Sciences, 2020, 32(4):964-976.
[36] Boruvka L, Vacek O, Jehlička J. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils[J]. Geoderma, 2005, 128(3/4):289-300.
[37] Nanos N, Rodríguez Martín J A. Multiscale analysis of heavy metal contents in soils:Spatial variability in the Duero River Basin (Spain)[J]. Geoderma, 2012,189-190:554-562.
[38] Zhang P, Hu R J, Zhu L H, et al. Distributions and contamination assessment of heavy metals in the surface sediments of western Laizhou Bay:Implications for the sources and influencing factors[J]. Marine Pollution Bulletin, 2017, 119(1):429-438.
doi: S0025-326X(17)30266-7 pmid: 28365020
[39] 曾咏梅, 毛昆明, 李永梅. 土壤中镉污染的危害及其防治对策[J]. 云南农业大学学报, 2005, 20(3):360-365.
[39] Zeng Y M, Mao K M, Li Y M. Damage of the cadmium(Cd) pollution in soil and its control[J]. Journal of Yunnan Agricultural University, 2005, 20(3):360-365.
[40] Han F X, Banin A, Su Y, et al. Industrial age anthropogenic inputs of heavy metals into the pedosphere[J]. Naturwissenschaften, 2002, 89(11):497-504.
[41] Abedin M J, Cotter-Howells J, Meharg A A. Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water[J]. Plant and Soil, 2002, 240(2):311-319.
[42] 吕建树, 张祖陆, 刘洋, 等. 日照市土壤重金属来源解析及环境风险评价[J]. 地理学报, 2012, 67(7):971-984.
[42] Lyu J S, Zhang Z L, Liu Y, et al. Sources identification and hazardous risk delineation of heavy metals contamination in Rizhao city[J]. Acta Geographica Sinica, 2012, 67(7):971-984.
doi: 10.11821/xb201207010
[1] 齐娟娟. 基于微动的千米深度勘探关键影响因素[J]. 物探与化探, 2024, 48(3): 777-785.
[2] 韩冰, 黄勇, 李欢, 安永龙. 北京市房山区土壤重金属元素分布、富集特征及来源解析[J]. 物探与化探, 2024, 48(3): 820-833.
[3] 余飞, 王锐, 周皎, 张风雷, 蒋玉莲, 张云逸, 朱世林. 典型汞矿区周边耕地土壤重金属来源解析与农作物健康风险评价[J]. 物探与化探, 2024, 48(3): 847-857.
[4] 庞国涛, 杨源祯, 谢磊, 李伟, 张晓磊, 闫兴国. 防城港海域沉积物中正构烷烃分布和来源解析[J]. 物探与化探, 2024, 48(2): 527-533.
[5] 彭学锐, 陈翔, 周思裕. 广西梧州六堡茶茶叶及根系土中硒含量影响因素[J]. 物探与化探, 2024, 48(2): 545-554.
[6] 肖高强, 赵娟, 陈子万, 宋旭锋, 朱能刚. 基于地质大数据技术对云南土壤重金属地质高背景区的划定[J]. 物探与化探, 2024, 48(1): 216-227.
[7] 蔡柯柯, 赵志强, 蒙丽, 王孝萌, 刘键, 罗仁凤. 重庆市秀山县北部大气干湿沉降重金属元素分布特征及来源分析[J]. 物探与化探, 2024, 48(1): 237-244.
[8] 杨艳, 刘彬, 夏飞强, 陈平峰, 张祥. 皖南典型区耕地土壤重金属富集特征、来源识别及健康风险评估[J]. 物探与化探, 2024, 48(1): 255-263.
[9] 徐磊, 李俊, 瞿镪, 文方平, 赵萌生, 程琰勋, 徐杰, 王浩宇. 滇中中高山丘陵区大气干湿沉降元素地球化学特征及来源解析[J]. 物探与化探, 2023, 47(6): 1602-1610.
[10] 多吉卫色, 次仁旺堆, 尼玛洛卓, 周鹏, 尼玛次仁. 西藏白朗县农田系统硒含量特征及影响因素[J]. 物探与化探, 2023, 47(4): 1118-1126.
[11] 黄平安, 王夏青, 唐湘玲, 王玉堂, 李玮, 罗增, 吕飞亚. X射线荧光光谱岩心扫描影响因素及校正方法的研究进展[J]. 物探与化探, 2023, 47(3): 726-738.
[12] 李世宝, 杨立国, 熊万里, 马志超, 袁宏伟, 段吉学. 内蒙古巴彦淖尔市临河区富硒耕地硒形态特征及其影响因素[J]. 物探与化探, 2023, 47(2): 477-486.
[13] 赵军, 孟欣佳, 李冰, 刘志民. 坑道聚焦直流激电法电流场分布特性及探测影响因素分析[J]. 物探与化探, 2023, 47(1): 120-128.
[14] 邹山进洪. 闽侯县表层土壤及农产品硒含量特征[J]. 物探与化探, 2023, 47(1): 247-256.
[15] 宋运红, 杨凤超, 刘凯, 戴慧敏, 许江, 韩晓萌. 黑龙江省海伦地区黑土剖面常量元素地球化学特征及其对物源的指示意义[J]. 物探与化探, 2022, 46(5): 1105-1113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com