Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1693-1701    DOI: 10.11720/wtyht.2024.1526
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于共偏移距GPR信号包络和三维速度谱分析的介质电磁波速度估计方法
周鑫(), 王洪华(), 王欲成, 吴祺铭, 王浩林, 刘洪瑞
桂林理工大学 地球科学学院,广西 桂林 541004
A method for estimating electromagnetic wave velocities in subsurface media based on common-offset GPR signal envelope and 3D velocity spectrum analysis
ZHOU Xin(), WANG Hong-Hua(), WANG Yu-Cheng, WU Qi-Ming, WANG Hao-Lin, LIU Hong-Rui
School of Geosciences,Guilin University of Technology,Guilin 541004,China
全文: PDF(4846 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

目前广泛应用于探地雷达(ground penetrating radar,GPR)信号的速度谱分析方法大都通过叠加相干信号的振幅能量来构建速度谱,并估计地下介质电磁波速度;当信号子波出现多个波峰和波谷时,基于振幅的方法所构建的速度谱会出现多个能量团,不利于后续能量峰值的判别、拾取和速度估计。为此,提出了一种基于共偏移距GPR信号包络和三维速度谱分析的地下介质电磁波速度估计方法。该方法通过扫描GPR剖面中的双曲线绕射波信号包络来构建叠加能量随零偏双程走时、试速度以及测点位置变化的三维速度谱,并根据三维速度谱中双曲线顶点出现位置,提取二维速度谱切片。在此基础上,拾取二维速度谱切片中能量峰值对应的试速度并作为地下介质的电磁波速度。数值试验结果表明:与基于信号振幅的三维速度谱分析方法相比,基于信号包络的三维速度谱分析方法计算的速度谱中连续能量团更少、能量更集中、速度估计误差更小,且可更有效地构建逆时偏移的速度模型。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周鑫
王洪华
王欲成
吴祺铭
王浩林
刘洪瑞
关键词 三维速度谱分析信号包络共偏移距探地雷达信号速度估计    
Abstract

Currently,velocity spectrum analysis methods widely used for ground-penetrating radar(GPR) signals mostly construct velocity spectra by superposing the amplitude energy of coherent signals to estimate electromagnetic wave velocities in subsurface media.In the case of multiple peaks and troughs in signal wavelets,velocity spectra constructed using these amplitude-based methods display multiple energy clusters,adversely affecting the identification,picking,and velocity estimation of subsequent energy peaks.Hence,this study proposed a method for estimating electromagnetic wave velocities in subsurface media based on common-offset GPR signal envelope and 3D velocity spectrum analysis.By scanning the signal envelope of hyperbolic diffracted waves in the GPR profile,the proposed method constructed the 3D velocity spectra of superimposed energy varying with zero-offset two-way travel time,test velocity,and measuring point position.Moreover,it extracted the slices of 2D velocity spectra according to the positions of hyperbolic vertices in the 3D velocity spectra.On this basis,the test velocities corresponding to the energy peaks in the slices of 2D velocity spectra were picked as the electromagnetic wave velocities in subsurface media.The numerical test results show that compared to the amplitude-based methods,the signal envelope-based 3D velocity spectrum analysis method obtained velocity spectra characterized by fewer continuous energy clusters,more concentrated energy,and minor velocity estimation errors,thus more effectively constructing the velocity model with inverse-time migration.

Key wordsthree dimensional velocity spectrum analysis    signal envelope    common offset ground penetrating radar signal    velocity estimation
收稿日期: 2024-02-22      修回日期: 2024-09-26      出版日期: 2024-12-20
ZTFLH:  P631.4  
基金资助:广西自然科学基金项目(2022GXNSFAA035595);广西自然科学基金项目(2020GXNSFAA159121)
通讯作者: 王洪华(1986-),男,博士,副教授,主要从事探地雷达理论方法及应用研究工作。Email:wanghonghua5@glut.edu.cn
引用本文:   
周鑫, 王洪华, 王欲成, 吴祺铭, 王浩林, 刘洪瑞. 基于共偏移距GPR信号包络和三维速度谱分析的介质电磁波速度估计方法[J]. 物探与化探, 2024, 48(6): 1693-1701.
ZHOU Xin, WANG Hong-Hua, WANG Yu-Cheng, WU Qi-Ming, WANG Hao-Lin, LIU Hong-Rui. A method for estimating electromagnetic wave velocities in subsurface media based on common-offset GPR signal envelope and 3D velocity spectrum analysis. Geophysical and Geochemical Exploration, 2024, 48(6): 1693-1701.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1526      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1693
Fig.1  Ricker子波及其包络
Fig.2  共偏移距GPR信号的三维速度谱分析示意
a—共偏移距测量示意;b—共偏移距GPR剖面;c—三维速度谱示意
Fig.3  空洞模型(a)及其GPR模拟剖面(b)
Fig.4  图3b去直达波后的GPR信号构建的三维速度谱
a—基于振幅的三维速度谱;b—基于振幅的速度谱切片;c—基于包络的三维速度谱;d—基于包络的速度谱切片
Fig.5  实测原始GPR剖面一(a)及常规处理后的GPR剖面(b)
Fig.6  图5b中的GPR信号构建的三维速度谱
a—基于振幅的三维速度谱; b—基于振幅的速度谱切片;c—基于包络的三维速度谱; d—基于包络的速度谱切片
Fig.7  实测GPR剖面二处理结果
双曲线
序号
顶点出现
时间/ns
顶点水平
位置/m
估计的速
度/(m·ns-1)
估计的
深度/m
1 4.64 0.8 0.091 0.21
2 11.58 0.8 0.085 0.49
3 34.69 2.9 0.075 1.30
4 16.92 6.4 0.080 0.67
5 23.72 6.6 0.082 0.97
6 38.30 6.5 0.072 1.37
7 32.91 8.2 0.068 1.12
8 28.55 10.7 0.072 1.03
9 19.17 12.7 0.088 0.84
10 22.36 14.1 0.085 0.95
Table 1  估计的速度值
Fig.8  图7中GPR信号所构建的基于振幅的速度谱切片
a—双曲线1和2;b—双曲线3;c—双曲线4、5和6;d—双曲线7;e—双曲线8;f—双曲线9;g—双曲线10
Fig.9  图7中GPR信号所构建的基于包络的速度谱切片
a—双曲线1和2;b—双曲线3;c—双曲线4、5和6;d—双曲线7;e—双曲线8;f—双曲线9;g—双曲线10
Fig.10  二维速度模型(a)及逆时偏移剖面(b)
[1] 韩佳明, 仲鑫, 景帅, 等. 探地雷达在黄土地区城市地质管线探测中的应用[J]. 物探与化探, 2020, 44(6):1476-1481.
[1] Han J M, Zhong X, Jing S, et al. The application of geological radar to urban geological pipeline detection in the loess area[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1476-1481.
[2] 戴前伟, 宁晓斌, 张彬. 基于共中心点道集约束的探地雷达波阻抗反演[J]. 煤田地质与勘探, 2020, 48(3):211-218.
[2] Dai Q W, Ning X B, Zhang B. Common midpoint gather constraint-based impedance inversion of ground penetrating radar[J]. Coal Geology & Exploration, 2020, 48(3):211-218.
[3] 宗鑫, 王心源, 刘传胜, 等. 探地雷达在地下考古遗存探测中的实验与应用[J]. 地球信息科学学报, 2016, 18(2):272-281.
doi: 10.3724/SP.J.1047.2016.00272
[3] Zong X, Wang X Y, Liu C S, et al. Experiments and applications of ground penetrating radar in the investigation of subsurface archaeological interest[J]. Journal of Geo-Information Science, 2016, 18(2):272-281.
[4] Lyu Y Z, Wang H H, Gong J B. Application of GPR reverse time migration in tunnel lining cavity imaging[J]. Applied Geophysics, 2020, 17(2):277-284.
[5] 江玉乐, 黄鑫, 张楠. 探地雷达在公路隧道衬砌检测中的应用[J]. 煤田地质与勘探, 2008, 36(2):76-78.
[5] Jiang Y L, Huang X, Zhang N. Application of ground penetrating radar in the inspection of highroad tunnel lining[J]. Coal Geology & Exploration, 2008, 36(2):76-78.
[6] 冯德山, 戴前伟, 余凯. 基于经验模态分解的低信噪比探地雷达数据处理[J]. 中南大学学报:自然科学版, 2012, 43(2):596-604.
[6] Feng D S, Dai Q W, Yu K. GPR signal processing under low SNR based on empirical mode decomposition[J]. Journal of Central South University:Science and Technology Edition, 2012, 43(2):596-604.
[7] 王敏玲, 梁值欢, 王洪华, 等. 探地雷达逆时偏移成像方法研究现状及进展[J]. 地球物理学进展, 2019, 34(5):2087-2096.
[7] Wang M L, Liang Z H, Wang H H, et al. Review of reverse time migration in ground penetrating radar[J]. Progress in Geophysics, 2019, 34(5):2087-2096.
[8] 王新静, 赵艳玲, 胡振琪, 等. 不同水分条件下探地雷达电磁波波速估算方法与对比分析[J]. 煤炭学报, 2013, 38(S1):174-179.
[8] Wang X J, Zhao Y L, Hu Z Q, et al. Estimation method and comparative analysis of electromagnetic wave velocity of ground penetrating radar under different moisture conditions[J]. Journal of China Coal Society, 2013, 38(S1):174-179.
[9] 牛富俊, 陈银城. 广州地区城市道路病害探测图谱与优化方法[J]. 应用科技, 2022, 49(2):133-139.
[9] Niu F J, Chen Y C. The atlas and optimization method of urban road disease detection in Guangzhou area[J]. Applied Science and Technology, 2022, 49(2):133-139.
[10] 孔令讲, 周正欧. 浅地层探地雷达波速测量方法的研究[J]. 电子学报, 2002, 30(9):1330-1332.
[10] Kong L J, Zhou Z O. Research on measurement of wave speed for sub-surface penetrating radar[J]. Acta Electronica Sinica, 2002, 30(9):1330-1332.
[11] Leng Z, Al-Qadi I L. An innovative method for measuring pavement dielectric constant using the extended CMP method with two air-coupled GPR systems[J]. NDT & E International, 2014, 66:90-98.
[12] 李廷军, 周正欧. 探地雷达中双曲线的提取及在波速估计中的应用[J]. 电波科学学报, 2008, 23(1):124-128.
[12] Li T J, Zhou Z O. Extraction of hyperbolic signatures and application for propagation velocity estimation in GPR[J]. Chinese Journal of Radio Science, 2008, 23(1):124-128.
[13] Guo X B, Liu H, Shi Y, et al. Improving waveform inversion using modified interferometric imaging condition[J]. Acta Geophysica, 2018, 66(1):71-80.
[14] Seol S J, Kim J H, Cho S J, et al. A radar survey at a granite quarry to delineate fractures and estimate fracture density[J]. Journal of Environmental and Engineering Geophysics, 2004, 9(2):53-62.
[15] Wang H H, Xi Y H, Lyu Y Z, et al. Attenuation-compensated reverse time migration of GPR data constrained by resistivity[J]. Applied Geophysics, 2022, 19(4):563-571.
[16] 席宇何, 王洪华, 王欲成, 等. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5):1250-1260.
[16] Xi Y H, Wang H H, Wang Y C, et al. Application of the minimum entropy method based on a velocity-controlled moving window to the reverse time migration of ground-penetrating radars[J]. Geophysical and Geochemical Exploration, 2023, 47(5):1250-1260.
[17] 张安学, 蒋延生, 汪文秉. 探地雷达频率波数域速度估计和成像方法的实验研究[J]. 电子学报, 2001, 29(3):315-317.
[17] Zhang A X, Jiang Y S, Wang W B. Experimental studies on GPR velocity estimation and imaging method using migration in frequency wavenumber domain[J]. Acta Electronica Sinica, 2001, 29(3):315-317.
[18] 崔凡, 李思远, 王丽冰. 基于互相关分析及最小二乘拟合的GPR偏移速度估计[J]. 地球物理学进展, 2018, 33(1):353-361.
[18] Cui F, Li S Y, Wang L B. Migration velocity estimation of GPR based on cross-correlation and least square fitting[J]. Progress in Geophysics, 2018, 33(1):353-361.
[19] 吕文敏, 张金海. 基于绕射波孤立和偏移聚焦分析的探地雷达速度建模[M]. 北京: 北京伯通电子出版社, 2021.
[19] Lyu W M, Zhang J H. Velocity modeling of ground-penetrating radar based on the analysis of isolated and offset focusing of wraparound waves[M]. Beijing: Beijing Botong Electronic Publishing House, 2021.
[20] 王天琪, 李静, 白利舸, 等. 基于速度分析的探地雷达阻抗介电常数反演[J]. 吉林大学学报:地球科学版, 2021, 51(2):561-570.
[20] Wang T Q, Li J, Bai L G, et al. GPR impedance inversion of permittivity based on velocity analysis[J]. Journal of Jilin University:Earth Science Edition, 2021, 51(2):561-570.
[21] Wang H H, Liu H, Cui J, et al. Velocity analysis of CMP gathers acquired by an array GPR system `Yakumo':Results from field application to tsunami deposits[J]. Exploration Geophysics, 2018, 49(5):669-674.
[22] 刘钰. 探地雷达数据波阻抗反演方法及其应用研究[D]. 杭州: 浙江大学, 2018.
[22] Liu Y. The study of ground penetrating radar impedance inversion method and its application[D]. Hangzhou: Zhejiang University, 2018.
[23] Dong Z J, Feng X, Zhou H Q, et al. Properties analysis of lunar regolith at Chang'E-4 landing site based on 3D velocity spectrum of lunar penetrating radar[J]. Remote Sensing, 2020, 12(4):629.
[24] 彭建, 杨泽帆, 白洁, 等. 基于探地雷达的地下管线埋深估计方法[J]. 雷达科学与技术, 2022, 20(1):79-86.
[24] Peng J, Yang Z F, Bai J, et al. Depth estimation of underground pipeline using ground penetrating radar[J]. Radar Science and Technology, 2022, 20(1):79-86.
[25] Liu H, Sato M. In situ measurement of pavement thickness and dielectric permittivity by GPR using an antenna array[J]. NDT & E International, 2014, 64:65-71.
[26] Liu H, Xie X Y, Cui J, et al. Groundwater level monitoring for hydraulic characterization of an unconfined aquifer by common mid-point measurements using GPR[J]. Journal of Environmental and Engineering Geophysics, 2014, 19(4):259-268.
[27] 程乾生. 信号数字处理的数学原理[M]. 北京: 石油工业出版社, 1979.
[27] Cheng Q S. Mathematical principle of signal digital processing[M]. Beijing: Petroleum Industry Press, 1979.
[28] Liu H, Takahashi K, Sato M. Measurement of dielectric permittivity and thickness of snow and ice on a brackish lagoon using GPR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(3):820-827.
[29] 陆基孟, 王永刚. 地震勘探原理(3版)[M]. 东营: 中国石油大学出版社, 2009.
[29] Lu J M, Wang Y G. Principle of seismic exploration(3rd edition)[M]. Dongying: China University of Petroleum Press, 2009.
[30] 龚俊波. 三维多偏移距探地雷达数据的逆时偏移成像方法研究[D]. 桂林: 桂林理工大学, 2021.
[30] Gong J B. Research on inverse time migration imaging method of 3D multi-offset ground penetrating radar data[D]. Guilin: Guilin University of Technology, 2021.
[1] 张珈畅, 李涛, 梁宏刚, 费娥, 孙致远, 岳彤. 塔里木盆地二八台地区走滑断裂体系研究[J]. 物探与化探, 2024, 48(6): 1588-1598.
[2] 王兴宇, 刘艳丽, 王通, 荣立新. 银额盆地西部地震勘探试验研究进展及效果[J]. 物探与化探, 2024, 48(6): 1599-1608.
[3] 张永升, 黄超, 刘军, 张永恒, 王兴建, 薛雅娟. 地震信号倒谱分解技术及其在超深层碳酸盐岩储层烃类检测中的应用[J]. 物探与化探, 2024, 48(6): 1618-1625.
[4] 许磊明, 李斐, 王建华, 李美, 曹永亮, 王浩坤. 分步振幅一致性处理技术在鄂尔多斯盆地拼接大剖面中的应用[J]. 物探与化探, 2024, 48(6): 1643-1652.
[5] 张永升, 张荣, 樊易, 张安家, 李英才. 基于稀疏约束频率域抛物线Radon变换的波场分解[J]. 物探与化探, 2024, 48(6): 1653-1663.
[6] 边会媛, 臧鑫, 张迪, 张程恩, 聂晓敏, 武银婷. 应力效应下页岩动静态弹性各向异性特征[J]. 物探与化探, 2024, 48(6): 1664-1673.
[7] 陈珂磷, 文冉, 杨扬, 吴俐辉, 杨高建, 严海滔, 张奎. 基于同步挤压广义S变换的多尺度断裂刻画研究[J]. 物探与化探, 2024, 48(6): 1674-1683.
[8] 赵朋朋. 基于MEMS的槽波地震仪的研制[J]. 物探与化探, 2024, 48(6): 1684-1692.
[9] 张建磊, 王鹏飞, 孙郧松, 李国发. 信号自适应识别多道反褶积方法[J]. 物探与化探, 2024, 48(6): 1702-1708.
[10] 杨浩, 邹杰, 程丹丹, 于景兰. 探地雷达在临海市古长城内部结构检测中的应用分析[J]. 物探与化探, 2024, 48(6): 1741-1746.
[11] 黄福强, 陈建文, 李斌, 张异彪, 杨佳佳, 李珂. 南黄海强屏蔽层下富低频强能量气枪震源设计及应用[J]. 物探与化探, 2024, 48(5): 1294-1301.
[12] 姚铭. 基于构造导向滤波处理的断层提取技术及其应用[J]. 物探与化探, 2024, 48(5): 1313-1321.
[13] 杨浪邕航, 李红星. 浅地表环境下ESPAC微动成像方法影响因素分析[J]. 物探与化探, 2024, 48(5): 1322-1330.
[14] 齐鹏, 杨金龙, 胡守旺. 一种改进的SRME方法在陆地表面多次波压制中的应用[J]. 物探与化探, 2024, 48(5): 1331-1336.
[15] 何小龙, 张兵, 杨凯, 何一帆, 李琢. 基于沉积微相特征挖掘的随机森林岩石相测井识别方法——以新场地区须家河组二段致密砂岩为例[J]. 物探与化探, 2024, 48(5): 1337-1347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com