Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (5): 1313-1321    DOI: 10.11720/wtyht.2024.1418
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于构造导向滤波处理的断层提取技术及其应用
姚铭()
中石化石油物探技术研究院有限公司,江苏 南京 211103
A fault extraction technique based on structure-oriented filtering and its application
YAO Ming()
Geophysical Research Institute Co.,Ltd.,SINOPEC,Nanjing 211103,China
全文: PDF(7103 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

准确识别断层对于油气田的勘探和开发具有重要意义,在此基础上进一步进行断层提取对于后期综合研究意义重大。目前应用较多的断层提取技术主要包括断层自动追踪、断层切片解释以及手工解释3类。然而面向实际勘探开发的断层提取技术及应用通常存在以下问题:基于属性体的自动追踪方法所提取的断层往往精度较低且连续性较差,断层切片解释及传统手工解释方法周期又较长,耗时严重。针对以上问题,本文采用一种基于构造导向滤波处理的断层提取技术,首先对原始叠后地震数据进行构造导向滤波处理以提高基础数据质量同时增强断层边界特征,然后基于滤波数据体建立相对等时模型并提取能够刻画断层的敏感属性,最后在断层组合关系分析的基础上采用平面和剖面相结合的综合解释方法实现断层的提取。该技术成功应用于SB某区块,实际应用效果表明,相比断层自动追踪解释,该技术可靠性与准确性要更高,相比断层切片解释及手工解释又能大大节省时间,因此具有良好的适用性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚铭
关键词 构造导向滤波敏感属性组合关系分析断层提取综合解释    
Abstract

Accurately identifying faults is crucial for the exploration and exploitation of oil and gas fields,and further fault extraction based on this holds critical significance for later comprehensive research.At present,the commonly used fault extraction techniques primarily include automatic fault tracking,fault slice interpretation,and manual interpretation.However,these fault extraction techniques and their application in practical exploration and exploitation often face the following challenges.Automatic fault tracking based on an attribute volume often extracts faults with low accuracy and poor continuity,whereas fault slice interpretation and conventional manual interpretation require long work cycles.Hence,this study proposed a fault extraction technique based on structure-oriented filtering.First,the original poststack seismic data were processed through structure-oriented filtering to improve the quality of fundamental data and enhance the fault boundary features.Then,a relative isochronous model was established based on the filtered data volume,with sensitive attributes that can characterize faults extracted.Finally,based on the analysis of fault combination relationships,a comprehensive interpretation method combining plane and profile views was employed to extract faults.The technique proposed in this study has been successfully applied to a certain block of SB.As indicated by the application results,the proposed technique exhibits higher reliability,accuracy,and efficiency compared to the three commonly used fault extraction techniques, thus demonstrating high applicability.

Key wordsstructure-oriented filtering    sensitive attribute    combination relationship analysis    fault extraction    comprehensive interpretation
收稿日期: 2023-11-16      修回日期: 2024-06-27      出版日期: 2024-10-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金企业创新发展联合基金项目“海相深层油气富集机理与关键工程技术基础研究”(U19B6003);中国石化科技部重点项目“深层页岩气勘探开发工程一体化设计技术”(P20046)
作者简介: 姚铭(1994-),男,硕士研究生,主要从事随机反演及裂缝预测研究工作。Email:yaom.swty@sinopec.com
引用本文:   
姚铭. 基于构造导向滤波处理的断层提取技术及其应用[J]. 物探与化探, 2024, 48(5): 1313-1321.
YAO Ming. A fault extraction technique based on structure-oriented filtering and its application. Geophysical and Geochemical Exploration, 2024, 48(5): 1313-1321.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1418      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I5/1313
Fig.1  滤波处理前后地震数据对比
a—原始剖面;b—滤波剖面;c—原始时间切片;d—滤波时间切片
Fig.2  滤波处理前后地震频谱及信噪比对比
a—滤波前后地震频谱对比;b—滤波前后地震信噪比对比
Fig.3  滤波处理前后相干数据对比
a—原始相干;b—滤波相干;c—原始相干时间切片;d—滤波相干时间切片
Fig.4  断层提取技术流程
Fig.5  相对等时模型建立
a—滤波地震剖面;b—网格模型;c—相对等时模型
Fig.6  分频带数据体
a—低频带数据体剖面;b—中频带数据体剖面;c—高频带数据体剖面
Fig.7  RGB融合照明显示
a—低频带敏感属性体切片;b—中频带敏感属性体切片;c—高频带敏感属性体切片;d—RGB属性融合照明显示
Fig.8  地震测网旋转
a—原始地震测网;b—旋转地震测网
Fig.9  平面断层棍解释
a—原始测网L1剖面;b—旋转测网L2剖面;c—RGB融合切片1;d—RGB融合切片2
Fig.10  靶区全区断层提取结果
a—靶区断层展布特征;b—断层提取结果;c—断层自动追踪结果
Fig.11  靶区井周断层提取结果
a—过井轨迹地震剖面;b—过井轨迹敏感属性剖面;c—井周断层提取结果;d—井周断层自动追踪结果
[1] 付广, 陈建华. 断层圈闭油气成藏源—断—势控藏作用综合评价——以海塔盆地中部主要断陷带南一段为例[J]. 油气地质与采收率, 2015, 22(6):1-6.
[1] Fu G, Chen J H. Comprehensive evaluation for control of source rock,fault and potential on faults-enclosed oil/gas accumulation:A case study of K1n1 of main central depression zones in Haita Basin[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(6):1-6.
[2] 陈国飞, 石颖, 杨会东, 等. 基于优势低频带地震数据的属性融合断层识别方法[J]. 地球物理学报, 2023, 66(3):1232-1243.
[2] Chen G F, Shi Y, Yang H D, et al. Fault identification method of attribute fusion based on seismic optimized frequency of seismic data[J]. Chinese Journal of Geophysics, 2023, 66(3):1232-1243.
[3] 张进铎. 地震解释技术现状及发展趋势[J]. 地球物理学进展, 2006, 21(2):578-587.
[3] Zhang J D. Present status and future trend of seismic data interpretation techniques[J]. Progress in Geophysics, 2006, 21(2):578-587.
[4] Brown A R, Edwards G S, Howard R E. Fault slicing:A new approach to the interpretation of fault detail[J]. Geophysics, 1987, 52(10):1319-1327.
[5] 朱成宏, 黄国骞, 秦瞳. 断裂系统精细分析技术[J]. 石油物探, 2002, 41(1):42-48.
[5] Zhu C H, Huang G Q, Qin T. Methods for detailed fracture system description[J]. Geophysical Prospecting for Petroleum, 2002, 41(1):42-48.
[6] 陈光俊, 伊万顺, 许建明, 等. 断层自动拾取技术在大布苏地区地震资料解释中的应用[J]. 石油物探, 2009, 48(5):521-523,530,18.
[6] Chen G J, Yi W S, Xu J M, et al. Application of automatic fault extraction technique on seismic data interpretation in Dabusu area[J]. Geophysical Prospecting for Petroleum, 2009, 48(5):521-523,530,18.
[7] 杨彬, 林承焰. 三维地震构造精细解释技术的应用[J]. 西部探矿工程, 2005, 17(11):120-122.
[7] Yang B, Lin C Y. Application of fine interpretation technology of three-dimensional seismic structure[J]. West-China Exploration Engineering, 2005, 17(11):120-122.
[8] 杨培杰, 穆星, 张景涛. 方向性边界保持断层增强技术[J]. 地球物理学报, 2010, 53(12):2992-2997.
[8] Yang P J, Mu X, Zhang J T. Orientational edge preserving fault enhance[J]. Chinese Journal of Geophysics, 2010, 53(12):2992-2997.
[9] Hesthammer J. Improving seismic data for detailed structural interpretation[J]. The Leading Edge, 1999, 18(2):226-247.
[10] Yu Y W. Fault enhancement and visualization with 3D log-Gabor filter array[C]// Dallas:SEG Technical Program Expanded Abstracts 2016,Society of Exploration Geophysicists,2016.
[11] Gersztenkorn A, Marfurt K J. Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping[J]. Geophysics, 1999, 64(5):1468-1479.
[12] Admasu F, Back S, Toennies K. Autotracking of faults on 3D seismic data[J]. Geophysics, 2006, 71(6):A49-A53.
[13] Pedersen S I, Randen T, Sonneland L, et al. Automatic 3D fault interpretation by artificial ants[C]// Florence: 64th EAGE Conference & Exhibition,European Association of Geoscientists & Engineers, 2002.
[14] Wu X M, Hale D. 3D seismic image processing for faults[C]// New Orleans: SEG Technical Program Expanded Abstracts 2015,Society of Exploration Geophysicists,2015.
[15] Weickert J, Scharr H. A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance[J]. Journal of Visual Communication and Image Representation, 2002, 13(1-2):103-118.
[16] Fehmers G C, Höcker C F W. Fast structural interpretation with structure-oriented filtering[J]. Geophysics, 2003, 68(4):1286-1293.
[17] 崔正伟, 程冰洁, 徐天吉, 等. 基于构造导向滤波与梯度结构张量相干属性的储层裂缝预测方法及应用[J]. 石油地球物理勘探, 2021, 56(3):555-563,413-414.
[17] Cui Z W, Cheng B J, Xu T J, et al. Reservoir fracture prediction method and application based on structure-oriented filtering and coherent attributes of gradient structure tensor[J]. Oil Geophysical Prospecting, 2021, 56(3):555-563,413-414.
[18] 赵凤全, 崔德育, 康婷婷, 等. 构造导向滤波技术在断裂识别中的应用[J]. 石油地球物理勘探, 2018, 53(S1):214-218,227,15-16.
[18] Zhao F Q, Cui D Y, Kang T T, et al. Fault identification with structure-oriented filtering[J]. Oil Geophysical Prospecting, 2018, 53(S1):214-218,227,15-16.
[19] 尹川, 杜向东, 赵汝敏, 等. 基于倾角控制的构造导向滤波及其应用[J]. 地球物理学进展, 2014, 29(6):2818-2822.
[19] Yin C, Du X D, Zhao R M, et al. Dip steered structure oriented filter and its application[J]. Progress in Geophysics, 2014, 29(6):2818-2822.
[20] 侯俊韬, 刘军, 李伟, 等. 基于导向滤波的分频高精度相干断层自动提取技术及应用[J]. 工程地球物理学报, 2022, 19(1):88-94.
[20] Hou J T, Liu J, Li W, et al. Application of automatic fault extraction technology based on frequency division and high-precision coherence guided filtering[J]. Chinese Journal of Engineering Geophysics, 2022, 19(1):88-94.
[21] 陈更生, 谢清惠, 吴建发, 等. 地震多属性技术组合在泸州页岩气区块构造解释中的综合应用[J]. 物探与化探, 2022, 46(6):1349-1358.
[21] Chen G S, Xie Q H, Wu J F, et al. Comprehensive application of the seismic multi-attribute technique combination in the tectonic interpretation of the Luzhou shale gas block[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1349-1358.
[1] 谢清惠, 蒋立伟, 赵春段, 王仲达, 唐协华, 罗瑀峰. 提高蚂蚁追踪裂缝预测精度的应用研究[J]. 物探与化探, 2021, 45(5): 1295-1302.
[2] 陈靖, 王万银, 郭文波, 顾欣. 重磁软件架构设计及实现方案研究[J]. 物探与化探, 2020, 44(4): 905-913.
[3] 郑浩, 蔡杰雄, 王静波. 基于构造导向滤波的高斯束层析速度建模方法及其应用[J]. 物探与化探, 2020, 44(2): 372-380.
[4] 李双喜, 郭坤一, 陈国光, 宋世明, 张景, 鲁胜梅. 宁芜北部南门头地区深部找矿地质—地球物理综合研究[J]. 物探与化探, 2017, 41(5): 802-814.
[5] 韩翀, 陈明江, 赵辉, 曹博超, 李金玺, 尹晓贺. 现代体属性分析技术在风化壳气藏勘探中的应用——以苏里格气田桃7区块马五13段为例[J]. 物探与化探, 2016, 40(3): 445-451.
[6] 袁永真, 孟小红, 钟清, 方慧. 非地震方法在内蒙古地区乌兰盖盆地的应用[J]. 物探与化探, 2012, 36(1): 13-18.
[7] 崔大尉, 王一, 田庆路, 刘最亮, 齐振洪. 利用地震属性解释煤层冲刷带[J]. 物探与化探, 2011, 35(2): 234-237.
[8] 李继军, 汪启年. 重磁电综合解释方法 在天津城市三维地质结构调查中的应用[J]. 物探与化探, 2007, 31(5): 444-450.
[9] 石建胜, 金宜声. 综合物探方法在西安东郊地热勘测中的应用[J]. 物探与化探, 1999, 23(5): 339-346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com