Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1702-1708    DOI: 10.11720/wtyht.2024.1497
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
信号自适应识别多道反褶积方法
张建磊1,2(), 王鹏飞1(), 孙郧松1,2, 李国发1
1.中国石油大学(北京) 油气资源与探测国家重点实验室,北京 102249
2.东方地球物理勘探有限责任公司 物探技术研究中心,河北 涿州 072751
A multi-channel deconvolution method for self-adaptive signal recognition
ZHANG Jian-Lei1,2(), WANG Peng-Fei1(), SUN Yun-Song1,2, LI Guo-Fa1
1. State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing 102249,China
2. Research & Development Center of BGP,CNPC,Zhuozhou 072751,China
全文: PDF(7987 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

反褶积是提高地震数据分辨率的重要方法。然而,传统的反褶积方法在增强地震信号高频成分的同时,也放大了高频噪声的能量,降低了反褶积之后地震记录的信噪比。分辨率和信噪比的矛盾制约了现有反褶积方法表征薄层结构的能力。为此,本文提出了一种信号自适应识别多道反褶积算法。该方法从原始地震数据中提取了地震信号识别算子,并将其作为空间正则化约束引入多道反褶积的目标函数,在一定程度上实现了具有信号自适应识别能力的高分辨率处理技术。基于地震信号的空间可预测性,地震信号识别算子从地震数据本身进行估算和提取,对地震记录具有较强的自适应性能力。模型数据与实际数据的测试分析表明,本文方法能够有效地抑制高频噪声在反褶积过程中的放大效应,在提高了分辨率的同时,较好地保持了地震记录信噪比。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张建磊
王鹏飞
孙郧松
李国发
关键词 反褶积信号识别高分辨率地震数据    
Abstract

Deconvolution plays a critical role in enhancing the resolution of seismic data.However,conventional deconvolution methods, though boosting the high-frequency components of seismic signals,amplify the energy of high-frequency noise,thereby reducing the signal-to-noise ratios(SNRs) of seismic records after deconvolution.The contradiction between resolution and SNRs restricts the ability of existing deconvolution methods to characterize thin-layer structures.Hence,this study proposed a multi-channel deconvolution method for self-adaptive signal recognition.The method extracted seismic signal recognition operators from raw seismic data.It introduced them as spatial regularization constraints into the objective function of multi-channel deconvolution,somewhat achieving high-resolution processing with self-adaptive signal recognition capabilities.Based on the spatial predictability of seismic signals,their recognition operators were estimated and extracted directly from seismic data,demonstrating high adaptability to seismic records.As indicated by the test analysis of the model and actual data,the proposed method can effectively suppress the amplification effect of high-frequency noise during deconvolution,thus improving resolution and maintaining the SNRs of seismic records.

Key wordsdeconvolution    signal recognition    high resolution    seismic data
收稿日期: 2024-01-25      修回日期: 2024-08-23      出版日期: 2024-12-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金面上项目(42074141);中国石油天然气集团有限公司科学研究与技术开发项目(2021ZG03)
通讯作者: 王鹏飞(1998-),男,博士研究生,主要从事高分辨率处理方面的研究工作。Email:2209172337@qq.com
引用本文:   
张建磊, 王鹏飞, 孙郧松, 李国发. 信号自适应识别多道反褶积方法[J]. 物探与化探, 2024, 48(6): 1702-1708.
ZHANG Jian-Lei, WANG Peng-Fei, SUN Yun-Song, LI Guo-Fa. A multi-channel deconvolution method for self-adaptive signal recognition. Geophysical and Geochemical Exploration, 2024, 48(6): 1702-1708.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1497      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1702
Fig.1  褶积过程示意
Fig.2  多道褶积模型
Fig.3  合成地震数据反褶积结果
a—无噪声合成地震数据;b—无噪声单道反褶积结果;c—信噪比为-1 dB合成地震数据;d—受噪声影响单道反褶积结果;e—去噪之后地震数据;f—对去噪之后的数据进行反褶积;g—对反褶积结果进行去噪;h—信号自适应识别多道反褶积结果
Fig.4  实际地震数据反褶积结果
a—原始地震数据;b—单道反褶积结果;c—信号自适应识别多道反褶积结果
Fig.5  不同方法处理结果的局部对比
a—单道反褶积局部处理结果; b—信号自适应识别多道反褶积局部处理结果
Fig.6  不同方法结果的振幅谱
[1] Lines L R, Ulrych T J. The old and the new in seismic deconvolution and wavelet estimation[J]. Geophysical Prospecting, 1977, 25(3):512-540.
[2] Oldenburg D W, Scheuer T, Levy S. Recovery of the acoustic impedance from reflection seismograms[J]. Geophysics, 1983, 48(10):1318-1337.
[3] Yuan S Y, Wang S X. Influence of inaccurate wavelet phase estimation on seismic inversion[J]. Applied Geophysics, 2011, 8(1):48-59.
[4] Berkhout A J. Least-squares inverse filtering and wavelet deconvolution[J]. Geophysics, 1977, 42(7):1369-1383.
[5] Cooke D A, Schneider W A. Generalized linear inversion of reflection seismic data[J]. Geophysics, 1983, 48(6):665-676.
[6] Zhang R, Sen M K, Srinivasan S. Multi-trace basis pursuit inversion with spatial regularization[J]. Journal of Geophysics and Engineering, 2013, 10(3):035012.
[7] Ma M, Wang S X, Yuan S Y, et al. Multichannel spatially correlated reflectivity inversion using block sparse Bayesian learning[J]. Geophysics, 2017, 82(4):V191-V199.
[8] Lan T, Liu H, Liu N, et al. Joint inversion of electromagnetic and seismic data based on structural constraints using variational born iteration method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(1):436-445.
[9] Hamid H, Pidlisecky A. Multitrace impedance inversion with lateral constraints[J]. Geophysics, 2015, 80(6):M101-M111.
[10] Anagaw A Y, Sacchi M D. Edge-preserving seismic imaging using the total variation method[J]. Journal of Geophysics and Engineering, 2012, 9(2):138-146.
[11] Gholami A. Nonlinear multichannel impedance inversion by total-variation regularization[J]. Geophysics, 2015, 80(5):R217-R224.
[12] Wang D H, Gao J H. Multichannel seismic impedance inversion with anisotropic total variation regularization[C]// Qingdao:International Geophysical Conference,Society of Exploration Geophysicists and Chinese Petroleum Society, 2017:128.
[13] Hamid H, Pidlisecky A. Structurally constrained impedance inversion[J]. Interpretation, 2016, 4(4):T577-T589.
[14] Clapp R G, Biondi B L, Claerbout J F. Incorporating geologic information into reflection tomography[J]. Geophysics, 2004, 69(2):533-546.
[15] Lelièvre P G, Oldenburg D W. A comprehensive study of including structural orientation information in geophysical inversions[J]. Geophysical Journal International, 2009, 178(2):623-637.
[16] Zhang Y P, Zhou H, Wang Y F, et al. A novel multichannel seismic deconvolution method via structure-oriented regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:5910410.
[17] Pereg D, Cohen I, Vassiliou A A. Multichannel sparse spike inversion[J]. Journal of Geophysics and Engineering, 2017, 14(5):1290-1299.
[18] McNamara D E. Ambient noise levels in the continental United States[J]. Bulletin of the Seismological Society of America, 2004, 94(4):1517-1527.
[19] Anvari R, Nazari Siahsar M A, Gholtashi S, et al. Seismic random noise attenuation using synchrosqueezed wavelet transform and low-rank signal matrix approximation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11):6574-6581.
[20] Fomel S. Applications of plane-wave destruction filters[J]. Geophysics, 2002, 67(6):1946-1960.
[21] Canales L L. Random noise reduction[C]// SEG Technical Program Expanded Abstracts,Society of Exploration Geophysicists, 1984:329.
[22] Claerbout J F, Robinson E A. The error in least-squares inverse filtering[J]. Geophysics, 1964, 29(1):118-120.
[23] Abma R, Claerbout J. Lateral prediction for noise attenuation by t-x and f-x techniques[J]. Geophysics, 1997, 60(6):1887-1896.
[24] Claerbout J. Multidimensional recursive filters via a helix[J]. Geophysics, 1998, 63(5):1532-1541.
[1] 赵泽茜, 成丽芳, 范殿佐. 时变分频反褶积在提高薄砂体预测精度方面的应用[J]. 物探与化探, 2023, 47(6): 1588-1594.
[2] 陈超群, 戴海涛, 高秦, 陈俊杰, 雒文丽, 王智茹. 复杂地表条件下地震资料一致性处理方法研究与应用[J]. 物探与化探, 2023, 47(4): 954-964.
[3] 陈子龙, 王海燕, 郭华, 王光文, 赵玉莲. 地震全波形反演研究进展与应用现状综述[J]. 物探与化探, 2023, 47(3): 628-637.
[4] 岳航羽, 王小江, 王磊, 陈孝强, 姜春香, 李培, 张保卫. 深部金属矿地震数据处理关键技术研究——以内蒙古查干花钼矿区为例[J]. 物探与化探, 2022, 46(6): 1315-1326.
[5] 孙伯轩, 侯振隆, 周文月, 巩恩普, 郑玉君, 程浩. 多分量重力梯度数据联合欧拉反褶积与软件系统设计[J]. 物探与化探, 2022, 46(5): 1241-1250.
[6] 岳航羽, 张明栋, 张保卫, 王广科, 王小江, 刘东明. 高分辨率单道地震探测技术在内陆浅水区的试验研究[J]. 物探与化探, 2022, 46(4): 914-924.
[7] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[8] 陈青, 孙帅, 丁成艺, 黄小宇, 陈浩, 申鹏, 罗港, 魏耀聪. iTilt-Euler法在重力数据处理及断裂解释中的应用[J]. 物探与化探, 2021, 45(6): 1578-1587.
[9] 邓儒炳, 阎建国, 陈琪, 宋鑫磊. 一种基于连续补偿函数的时变增益限反Q滤波方法[J]. 物探与化探, 2021, 45(3): 702-711.
[10] 马继涛, 廖震, 齐娇, 迟麟. 基于迭代阈值收缩的高分辨率Radon变换方法效果对比[J]. 物探与化探, 2021, 45(2): 413-422.
[11] 黄苇, 周捷, 高利君, 王胜利, 严海滔. 基于同步挤压改进短时傅立叶变换的分频蚂蚁追踪在断裂识别中的应用[J]. 物探与化探, 2021, 45(2): 432-439.
[12] 刘剑, 秦飞龙. 改进的小波阈值法及其在地震数据降噪处理中的应用[J]. 物探与化探, 2020, 44(4): 784-789.
[13] 刁瑞. 提高地震分辨率处理效果定量评价方法研究[J]. 物探与化探, 2020, 44(2): 381-387.
[14] 宁媛丽, 周子阳, 孙栋华. 重磁资料在鄂尔多斯盆地西南缘基底研究中的应用[J]. 物探与化探, 2020, 44(1): 34-41.
[15] 程一鸣, 李怀良, 庹先国, 王耀彬, 王亚娟, 沈统. 一种可靠的强噪声三分量微地震数据初至拾取方法[J]. 物探与化探, 2019, 43(2): 367-372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com