The extended spatial autocorrelation (ESPAC)-based microtremor exploration(natural-source surface wave exploration) technology has been extensively used in shallow formation exploration owing to its simplicity,efficiency,and accuracy.However,the imaging effect of dispersion energy extracted based on the ESPAC method is unsatisfactory in practical applications.In particular,different observation array arrangements influence the extraction of dispersion curves from collected data.By investigating the imaging principle of the ESPAC method,this study conducted the simulation experiment of natural-source microtremor recording through ambient noise simulation.It compared the differences in dispersion energy under various dominant frequency distributions of wavelets.Moreover,it quantitatively analyzed the influence of different station arrangements and acquisition durations on the imaging quality of dispersion energy.The comparative study reveals the imaging patterns of the ESPAC method in shallow surface exploration.The ESPAC method can maximize the imaging quality of dispersion energy in the fundamental mode while considering both efficiency and exploration costs.The results of this study were applied to engineering application cases to further verify the simulation results.
杨浪邕航, 李红星. 浅地表环境下ESPAC微动成像方法影响因素分析[J]. 物探与化探, 2024, 48(5): 1322-1330.
YANG Lang-Yong-Hang, LI Hong-Xing. Factors influencing the application of ESPAC-based microtremor survey in shallow surface environments. Geophysical and Geochemical Exploration, 2024, 48(5): 1322-1330.
Chen S, Jin R J, Li Y Q, et al. Test and engineering application of acquisition parameters in natural source surface wave exploration[J]. Xinjiang Geology, 2017, 35(4):483-488.
Liu H Y, He H. The geophysical methods choice under the complicated site condition and case study[J]. Chinese Journal of Engineering Geophysics, 2014, 11(2):155-159.
[7]
赵雪然. 城市地下空间勘探中的微动技术研究[D]. 长春: 吉林大学, 2020.
[7]
Zhao X R. Research on microseismic technology in urban underground space exploration[D]. Changchun: Jilin University, 2020.
Wei Y H, Li J G, Yao Y S. Experimental study on detecting the subsurface structure using microtremor array survey method[J]. Journal of Geodesy and Geodynamics, 2015, 35(1):167-171.
[9]
Capon J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8):1408-1418.
Liu Y Q, Liao Y G, Li X Z, et al. Research on the application of micro-motion detection technology in rail transit engineering investigation[J]. Geotechnical Investigation & Surveying, 2010, 38(S1):1-11.
[12]
Aki K. Space and time spectra of stationary stochastic waves,with special reference to microtremors[J]. Bulletin of the Earthquake Research Institute, 1957,35:415-456.
[13]
Okada H. The microtremor survey method[C]// Tulsa: Society Exploration Geophysicists,2003:135.
[14]
Ling S, Okada H. An extended use of the spatial autocorrelation method for the estimation of geological structure using microtremors[C]// Proceedings of the 89th SEGJ Conference,1993:44-48.
[15]
Ohori M. A comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor arrays[J]. Bulletin of the Seismological Society of America, 2002, 92(6):2323-2332.
Wang J X. Inversion of shallow wave velocity structure based on microtremor exploration method[D]. Beijing: Institute of Crustal Stress,China Earthquake Administration, 2020.
[17]
甘棣元. 城市浅地表微动探测信号影响因素的研究[D]. 长春: 吉林大学, 2019.
[17]
Gan D Y. Study on the influencing factors of urban shallow surface micro-motion detection signal[D]. Changchun: Jilin University, 2019.
Jia H, Chen Y J, Wang T L, et al. Key factors of shallow stratum micro-tremor exploration[J]. Geotechnical Investigation & Surveying, 2018, 46(9):68-73.
Lu L Y. Revisiting the cross-correlation and SPatial AutoCorrelation (SPAC) of the seismic ambient noise based on the plane wave model[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(2):123-163.
[22]
徐宗博. 高频背景噪声波场模拟与面波成像[D]. 武汉: 中国地质大学, 2016.
[22]
Xu Z B. High-frequency background noise wave field simulation and surface wave imaging[D]. Wuhan: China University of Geosciences, 2016.
[23]
Park C B, Miller R D. Multichannel analysis of passive surface waves:Modeling and processing schemes[C]// Site Characterization and Modeling.Austin,Texas,USA.Reston, VA: American Society of Civil Engineers,2005:23-26.
[24]
Lawrence J F, Denolle M, Seats K J, et al. A numeric evaluation of attenuation from ambient noise correlation functions[J]. Journal of Geophysical Research:Solid Earth, 2013, 118(12):6134-6145.
Fan C L, Jia H T, Cai X Y. Study on the effect of microtremor exploration in Karst exploration in urban area[J]. Chinese Journal of Engineering Geophysics, 2020, 17(5):652-657.
Yu H, Liu C, Wang D, et al. Calculation method of surface wave dispersion energy spectrum[J]. Journal of Jilin University:Earth Science Edition, 2022, 52(2):602-612.
[27]
Ku T, Palanidoss S, Zhang Y H, et al. Practical configured microtremor array measurements(MAMs) for the geological investigation of underground space[J]. Underground Space, 2021, 6(3):240-251.
Fan Y H, Liu J Q, Xiao B X. Fast vector-transfer algorithm for computation of Rayleigh wave dispersion curves[J]. Journal of Hunan University:Natural Science, 2002, 29(5):25-30.
[29]
韩飞. 高频瑞雷波法正反演研究及其在工程场地勘查中的应用[D]. 长春: 吉林大学, 2017.
[29]
Han F. Forward and inversion research of high frequency Rayleigh wave method and its application in engineering site exploration[D]. Changchun: Jilin University, 2017.
Liu L, Wang B Z, Pei Y, et al. Application of SPAC method in urban geothermal exploration[J]. Resources Environment & Engineering, 2018, 32(3):447-452.
[34]
王梦迟. 基于SPAC法天然源面波勘探技术研究[D]. 长春: 吉林大学, 2018.
[34]
Wang M C. Research on natural source surface wave exploration technology based on SPAC method[D]. Changchun: Jilin University, 2018.