Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1653-1663    DOI: 10.11720/wtyht.2024.0059
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于稀疏约束频率域抛物线Radon变换的波场分解
张永升1(), 张荣1, 樊易2, 张安家2, 李英才2
1.中石化西北油田分公司,新疆 乌鲁木齐 830011
2.北京软岛科技有限公司,北京 100083
Wavefield decomposition based on sparse-constrained parabolic Radon transform in the frequency domain
ZHANG Yong-Sheng1(), ZHANG Rong1, FAN Yi2, ZHANG An-Jia2, LI Ying-Cai2
1. Northwest Oil Field Company, SINOPEC, Urumqi 830011, China
2. Beijing Softland Scientific & Technology Co. Ltd., Beijing 100083, China
全文: PDF(9451 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

在塔里木盆地深部碳酸盐岩地层中发现了多种类型的非层状、非规则油气储集体,这些储集体不同于层状储层,是横向尺度至少在一个方向为有限的地质体。实际观测到的地震反射波场,是由层状地层与非层状、非规则地质体形成的反射波、绕射波(散射波)组成的复合波场,在不同的数据集中此三类波场呈现不同的形态特征。本文以波场形态特征差异为基础,采用基于图形引导的稀疏约束频率域抛物线Radon变换的层状波场与随机波场的分离技术,将高信噪比的、未经偏移处理或经偏移处理的复合反射波场数据分解为横向尺度“无限”延伸的反射波场和横向尺度有限的非规则地质体的绕射(散射)波场,为直接对非规则储集体进行预测和研究奠定基础。该技术在塔里木盆地和鄂尔多斯盆地应用取得了很好的效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张永升
张荣
樊易
张安家
李英才
关键词 波场分解非规则储集体缝洞体储层预测拉东变换    
Abstract

Multiple types of non-layered and irregular hydrocarbon reservoirs have been found in the deep carbonate strata within the Tarim Basin. These carbonate reservoirs, different from layered reservoirs, are geological bodies with limited lateral bodies in at least one direction. The observed seismic reflected wavefield is a composite field composed of reflected and diffracted (scattered) waves formed by layered strata and non-layered and irregular geological bodies. The three types of wavefields exhibit different morphological characteristics in different datasets. Based on the differences in wavefield morphology, this study, using a technique for separating layered and random wavefields based on an image-guided, sparse-constrained parabolic Radon transform in the frequency domain, decomposed high signal-to-noise-ratio data of complex reflected wavefields, which had undergone migration processing or not, into a reflected wavefield with infinite lateral extent and a diffracted (scattered) wavefield of irregular geological bodies with limited lateral extent. This technique provides a foundation for the direct prediction and investigation of irregular reservoirs and has been successfully applied in both the Tarim and Ordos basins.

Key wordswave field decomposition    irregular reservoir    vuggy-fractured body    reservoir prediction    Radon transform
收稿日期: 2024-02-20      修回日期: 2024-08-13      出版日期: 2024-12-20
ZTFLH:  P631.4  
基金资助:中石化科技部项目“超深碳酸盐岩断控储集体地震波场特征及反演研究”(P22147)
引用本文:   
张永升, 张荣, 樊易, 张安家, 李英才. 基于稀疏约束频率域抛物线Radon变换的波场分解[J]. 物探与化探, 2024, 48(6): 1653-1663.
ZHANG Yong-Sheng, ZHANG Rong, FAN Yi, ZHANG An-Jia, LI Ying-Cai. Wavefield decomposition based on sparse-constrained parabolic Radon transform in the frequency domain. Geophysical and Geochemical Exploration, 2024, 48(6): 1653-1663.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.0059      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1653
Fig.1  塔里木盆地含有非规则地质异常体地震波场特征典型剖面
Fig.2  三层地质+非规则异常体(溶洞)模型正演
Fig.3  起伏风化面+非规则异常体(溶洞)模型正演
Fig.4  溶洞高度和宽度对串珠形态影响的正演模拟
Fig.5  高度15 m、宽度10~600 m溶洞的绕射波振幅曲线
Fig.6  溶洞绕射波偏移后短轴反射波的宽度与溶洞宽度相关性分析
Fig.7  从共成像点道集数据中分解出的层状反射和噪声
Fig.8  基于波形差异的波场分离实现步骤
Fig.9  波场分解消去层状反射后凸显了非规则异常体
Fig.10  波场分解在塔里木盆地奥陶系碳酸盐岩地层中缝洞地震反射串珠特征应用
Fig.11  波场分解在塔里木盆地顺托果勒地区断控缝洞体的应用
[1] 朱大绶. 朱大绶石油物探文选[M]. 北京: 地质出版社, 1997.
[1] Zhu D S. Selected works of petroleum geophysical exploration by Zhu Dashou[M]. Beijing: Geological Publishing House, 1997.
[2] 唐文榜, 刘来祥, 樊佳芳, 等. 溶洞充填物判识的频率差异分析技术[J]. 石油与天然气地质, 2002, 23(1):41-44.
[2] Tang W B, Liu L X, Fan J F, et al. Analytic technique of frequency difference for discrimination of cavity fillers[J]. Oil & Gas Geology, 2002, 23(1):41-44.
[3] 姚姚, 唐文榜. 深层碳酸盐岩岩溶风化壳洞缝型油气藏可检测性的理论研究[J]. 石油地球物理勘探, 2003, 38(6):623-629,708-579.
[3] Yao Y, Tang W B. Theoretical study of detectable cavern-fractured reservoir in weathered Karst of deep carbonatite[J]. Oil Geophysical Prospecting, 2003, 38(6):623-629,708-579.
[4] 漆立新, 顾汉明, 李宗杰, 等. 基于地震波振幅分辨塔河油田溶洞最小高度的理论探讨[J]. 地球物理学进展, 2008, 23(5):1499-1506.
[4] Qi L X, Gu H M, Li Z J, et al. Theoretical discussion on resolution of maximum height of cavity in the Tahe oilfield based on seismic amplitude[J]. Progress in Geophysics, 2008, 23(5):1499-1506.
[5] 王士敏. 塔河油田奥陶系储层地震响应特征研究[J]. 新疆地质, 2003, 21(2):214-216.
[5] Wang S M. The study on seismics response characteristics of Karst fissure-cave-typed carbonate reservoir in ordivician of Tahe oilfield[J]. Xinjiang Geology, 2003, 21(2):214-216.
[6] 李凡异, 魏建新, 狄帮让. 碳酸盐岩溶洞横向尺度变化的地震响应正演模拟[J]. 石油物探, 2009, 48(6):557-562,15.
[6] Li F Y, Wei J X, Di B R. Forward simulation of seismic response in carbonate Caverns with varied lateral scale[J]. Geophysical Prospecting for Petroleum, 2009, 48(6):557-562,15.
[7] 李剑峰, 赵群, 郝守玲, 等. 塔河油田碳酸盐岩储层缝洞系统的物理模拟研究[J]. 石油物探, 2005, 44(5):428-432,15.
[7] Li J F, Zhao Q, Hao S L, et al. Physical modeling of the fracture-cave systems of carbonate reservoirs in Tahe oilfield[J]. Geophysical Prospecting for Petrole, 2005, 44(5):428-432,15.
[8] 赵群, 曲寿利, 薛诗桂, 等. 碳酸盐岩溶洞物理模型地震响应特征研究[J]. 石油物探, 2010, 49(4):351-358,400,17-18.
[8] Zhao Q, Qu S L, Xue S G, et al. Study on the seismic response characteristics on the physical model of carbonate cave[J]. Geophysical Prospecting for Petroleum, 2010, 49(4):351-358,400,17-18.
[9] 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用——研究历史与研究现状概述以及若干新进展[J]. 吉林大学学报:地球科学版, 2016, 46(4):1231-1259.
[9] Sun J G. High-frequency asymptotic scattering theories and their applications in numerical modeling and imaging of geophysical fields:An overview of the research history and the state-of-the-art,and some new developments[J]. Journal of Jilin University:Earth Science Edition, 2016, 46(4):1231-1259.
[10] 李东安, 漆立新. 全波场地震勘探技术[J]. 石油勘探与开发, 2022, 49(3):513-521.
doi: 10.11698/PED.20220001
[10] Li D A, Qi L X. Full wave seismic exploration technology[J]. Petroleum Exploration and Development, 2022, 49(3):513-521.
[11] 李东安, 王梅生. 全波场地震采集[J]. 石油物探, 2023, 62(4):592-604,644.
doi: 10.12431/issn.1000-1441.2023.62.04.002
[11] Li D A, Wang M S. Full-wave field seismic acquisition[J]. Geophysical Prospecting for Petroleum, 2023, 62(4):592-604,644.
doi: 10.12431/issn.1000-1441.2023.62.04.002
[12] 石油化学工业部石油地球物理勘探局计算中心站. 地震勘探数字技术:第三册[M]. 北京: 科学出版社, 1977.
[12] Central computing station of Petroleum Geophysical Prospecting Bureau,Ministry of Petroleum Chemical Industry. Digital technology of seismic exploration:Volume III[M]. Beijing: Science Press, 1977.
[13] 朱生旺, 李佩, 宁俊瑞. 局部倾角滤波和预测反演联合分离绕射波[J]. 地球物理学报, 56(1):280-288.
[13] Zhu S W, Li P, Ning J R. Reflection/diffraction separation with a hybrid method of local dip filter and prediction inversion[J]. Chinese Journal of Geophysics, 2013, 56(1):280-288.
[14] 刘培君, 黄建平, 李振春, 等. 一种基于反稳相的深度域绕射波分离成像方法[J]. 石油地球物理勘探, 2017, 52(5):967-973,879.
[14] Liu P J, Huang J P, Li Z C, et al. A diffraction imaging method in the depth domain driven by anti-stationary phase strategy[J]. Oil Geophysical Prospecting, 2017, 52(5):967-973,879.
[15] 罗腾腾, 徐基祥, 秦臻, 等. 混合域高分辨率Radon变换及其在绕射波分离与成像中的应用[J]. 石油物探, 2020, 59(6):890-900.
doi: 10.3969/j.issn.1000-1441.2020.06.007
[15] Luo T T, Xu J X, Qin Z, et al. Hybrid-domain high-resolution Radon transform and its application in diffraction wave separation and imaging[J]. Geophysical Prospecting for Petroleum, 2020, 59(6):890-900.
[16] 魏巍, 高鸿, 刘忠岩. 奇异值分解技术在绕射波分离成像中的应用研究[J]. 石油物探, 2020, 59(2):236-241.
doi: 10.3969/j.issn.1000-1441.2020.02.009
[16] Wei W, Gao H, Liu Z Y. Separation and imaging of seismic diffractions using singular value decomposition[J]. Geophysical Prospecting for Petroleum, 2020, 59(2):236-241.
doi: 10.3969/j.issn.1000-1441.2020.02.009
[17] 朱万怡, 王华忠, 吴成梁, 等. 基于行波分解的绕射波成像方法研究[J]. 石油物探, 2020, 59(2):226-235,302.
doi: 10.3969/j.issn.1000-1441.2020.02.008
[17] Zhu W Y, Wang H Z, Wu C L, et al. Diffraction imaging based on wavefield decomposition[J]. Geophysical Prospecting for Petroleum, 2020, 59(2):226-235,302.
doi: 10.3969/j.issn.1000-1441.2020.02.008
[18] 汪天池, 刘少勇, 顾汉明, 等. 倾角域逆时偏移绕射波成像方法[J]. 石油地球物理勘探, 2020, 55(3):591-598,471.
[18] Wang T C, Liu S Y, Gu H M, et al. Seismic diffraction imaging by reverse time migration in dip angle domain[J]. Oil Geophysical Prospecting, 2020, 55(3):591-598,471.
[19] 罗腾腾, 徐基祥, 孙夕平. 应用迭代收缩高分辨率Radon变换的绕射波分离与成像方法[J]. 石油地球物理勘探, 2021, 56(2):313-322,212-213.
[19] Luo T T, Xu J X, Sun X P. Diffraction wave separation and imaging based on high-resolution Radon transform on an iterative model shrinking approach[J]. Oil Geophysical Prospecting, 2021, 56(2):313-322,212-213.
[20] 杨城增, 张宣堂, 盛同杰, 等. 绕射波叠前共虚震源道集分离方法[J]. 石油地球物理勘探, 2022, 57(4):847-854,739.
[20] Yang C Z, Zhang X T, Sheng T J, et al. Diffraction separation method in the prestack common virtual source gather[J]. Oil Geophysical Prospecting, 2022, 57(4):847-854,739.
[21] 栾锡武, 杨佳佳. 地震绕射波波场分离与成像方法综述[J]. 石油物探, 2022, 61(5):761-770.
doi: 10.3969/j.issn.1000-1441.2022.05.001
[21] Luan X W, Yang J J. A review of seismic diffraction wavefield separation and imaging methods[J]. Geophysical Prospecting for Petroleum, 2022, 61(5):761-770.
doi: 10.3969/j.issn.1000-1441.2022.05.001
[1] 曹绍贺, 任凤茹, 王霄霄. 东胜气田致密砂岩储层甜点预测关键技术与应用效果[J]. 物探与化探, 2024, 48(4): 954-961.
[2] 李路路, 姜国宇, 刘涛, 何岩, 张永波. 准噶尔盆地石南地区白垩系储层地球物理方法识别[J]. 物探与化探, 2024, 48(2): 334-341.
[3] 何希鹏, 刘明, 薛野, 李彦婧, 何贵松, 孟庆利, 张勇, 刘昊娟, 蓝加达, 杨帆. 渝东南复杂构造区常压页岩气地球物理勘探实践及攻关方向[J]. 物探与化探, 2024, 48(2): 314-326.
[4] 史全党, 孔令业, 吴超, 丁艳雪, 刘泽民, 于雪, 王江. 基于小波边缘分析与井—震联合建模的波阻抗反演技术在陆梁隆起带储层预测中的应用[J]. 物探与化探, 2023, 47(6): 1425-1432.
[5] 陈人杰, 徐乐意, 刘灵, 朱焕, 易浩, 姜曼. 基于协克里金技术的陆相地层反演低频模型构建方法[J]. 物探与化探, 2023, 47(6): 1595-1601.
[6] 李栋, 朱博华. 基于上覆地层频率约束的匹配追踪强反射层分离方法[J]. 物探与化探, 2023, 47(5): 1261-1272.
[7] 宋晨, 金吉能, 潘仁芳, 朱博远, 喻志骅, 唐小玲. 分频AVO技术在安岳气田须二段储层含气性分析中的应用[J]. 物探与化探, 2023, 47(3): 681-689.
[8] 刘军, 黄超, 杨林, 张永升, 查明. 顺北地区碳酸盐岩断控缝洞体油气产能定量化估算技术[J]. 物探与化探, 2023, 47(3): 747-756.
[9] 冯鑫. 平点技术在西非深水碎屑岩储层烃检中的应用[J]. 物探与化探, 2022, 46(2): 433-443.
[10] 王成泉, 王孟华, 周佳宜, 王盛亮, 杨洲鹏, 刘慧, 张红文. 多属性融合定量储层预测方法研究与应用——以廊固凹陷杨税务潜山为例[J]. 物探与化探, 2022, 46(1): 87-95.
[11] 刘鸿洲, 王孟华, 张浩, 彭玲丽, 李雯, 张杰, 赵智鹏, 伍泽荆. 基于分频构形反演方法的河道砂精准预测——以华北冀中探区赵皇庄地区为例[J]. 物探与化探, 2021, 45(5): 1311-1319.
[12] 刘家材, 张冲, 韩绪军. 哈萨克斯坦B油田M02段综合地震储层预测[J]. 物探与化探, 2021, 45(2): 379-386.
[13] 刘浩杰, 陈雨茂, 王延光, 宗兆云, 吴国忱, 侯庆杰. 粘弹介质叠前四参数同步反演及应用[J]. 物探与化探, 2021, 45(1): 140-148.
[14] 孔省吾, 张云银, 沈正春, 张建芝, 魏红梅, 宋艳阁, 王甜. 波形指示反演在灰质发育区薄互层浊积岩预测中的应用——以牛庄洼陷沙三中亚段为例[J]. 物探与化探, 2020, 44(3): 665-671.
[15] 杨雪, 裴家学, 何绍勇, 蒋学峰, 谢天寿, 高建军. 煤层发育条件下薄储层预测方法研究[J]. 物探与化探, 2020, 44(2): 406-411.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com