Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (5): 1337-1347    DOI: 10.11720/wtyht.2024.0180
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于沉积微相特征挖掘的随机森林岩石相测井识别方法——以新场地区须家河组二段致密砂岩为例
何小龙(), 张兵(), 杨凯, 何一帆, 李琢
成都理工大学 地球勘探与信息技术教育部重点实验室,四川 成都 610059
A log-based lithofacies identification method based on random forest and sedimentary microfacies characteristics:A case study of tight sandstones in the second member of the Xujiahe Formation in the Xinchang area
HE Xiao-Long(), ZHANG Bing(), YANG Kai, HE Yi-Fan, LI Zhuo
Key Laboratory of Earth Exploration and Information Techniques,Ministry of Education,Chengdu University of Technology,Chengdu 610059,China
全文: PDF(5425 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

致密砂岩是天然气和石油的重要储层之一,通过致密砂岩岩石相的识别,可以更加深入地了解储层发育特征。采用岩心观察和测井数据处理相结合,分析新场地区致密砂岩岩石相与沉积微相的特征以及内部联系,通过沉积微相特征数据挖掘,构建具有地质内涵的随机森林分类模型。 结果表明:①致密砂岩可划分为泥岩、沙纹层理粉砂岩、块状细砂岩、平行层理细砂岩、块状中粗砂岩、平行层理中粗砂岩、交错层理中粗砂岩7种典型岩石相;②研究区主要沉积微相为水下分流河道、水下分流间湾、河口坝以及前三角洲泥,且与岩石相的沉积联系紧密;③分类模型中可以将沉积微相内GR曲线的相对重心(RM)、变差方根差(GS)、平均中位数(AM)以及平均斜率(M)作为特征参数,增加数据集的特征数;④考虑沉积微相特征尤其是水体能量与水体动荡情况,可以显著提升随机森林分类模型性能。研究结果为机器学习方法识别岩石相提供了新思路,并为致密砂岩油气勘探提供了重要的参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何小龙
张兵
杨凯
何一帆
李琢
关键词 沉积微相随机森林岩石相须家河组致密砂岩    
Abstract

Tight sandstones serve as significant oil and gas reservoirs.Their lithofacies identification can assist in further understanding the developmental characteristics of reservoirs.Combining core observations with log data processing,this study analyzed the lithofacies and sedimentary microfacies characteristics of tight sandstones in the Xinchang area and the internal relationships between lithofacies and sedimentary microfacies.Moreover,it constructed a random forest classification model with geological implications through data mining of sedimentary microfacies characteristics.The results show that:(1)Tight sandstones in the Xinchang area can be classified into seven typical lithofacies,including mudstone,siltstone with ripple lamination,massive fine sandstone,fine sandstone with parallel bedding,massive medium- to coarse-grained sandstone,and medium- to coarse-grained sandstone with parallel/cross bedding;(2)The sedimentary microfacies in the Xinchang area consist primarily of subaqueous distributary channel,subaqueous distributary bay,river-mouth bar,and prodeltaic mud,which are closely associated with the sedimentation of lithofacies;(3)In the classification model,the relative centroid(RM),root mean square deviation(GS),average median(AM),and average slope(M) of the gamma ray(GR) curve can be used as the characteristic parameters of sedimentary microfacies to increase the number of characteristics in the dataset;(4)Considering the characteristics of sedimentary microfacies,especially the energy and turbulence of water bodies,can significantly enhance the performance of the random forest classification model.Overall,the results of this study provide a novel approach for lithofacies identification using machine learning methods and a significant reference for oil and gas exploration in tight sandstones.

Key wordssedimentary microfacies    random forest    lithofacies    Xujiahe Formation    tight sandstone
收稿日期: 2024-04-25      修回日期: 2024-06-30      出版日期: 2024-10-20
ZTFLH:  P631.4  
基金资助:中石化项目“川西坳陷须二段优质储层形成机理与‘甜点’预测”(AH2022-0577)
通讯作者: 张兵(1981-),男,博士,教授,研究方向为沉积学与储层地质学。Email:zhangb@cdut.edu.cn
作者简介: 何小龙(2000-),男,成都理工大学在读硕士研究生,研究方向为地球物理勘探。Email:hexiaolong@stu.cdut.edu.cn
引用本文:   
何小龙, 张兵, 杨凯, 何一帆, 李琢. 基于沉积微相特征挖掘的随机森林岩石相测井识别方法——以新场地区须家河组二段致密砂岩为例[J]. 物探与化探, 2024, 48(5): 1337-1347.
HE Xiao-Long, ZHANG Bing, YANG Kai, HE Yi-Fan, LI Zhuo. A log-based lithofacies identification method based on random forest and sedimentary microfacies characteristics:A case study of tight sandstones in the second member of the Xujiahe Formation in the Xinchang area. Geophysical and Geochemical Exploration, 2024, 48(5): 1337-1347.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.0180      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I5/1337
Fig.1  川西坳陷新场地区构造位置(a)及须二段综合柱状图(b)
Fig.2  川西坳陷须二段岩石相典型沉积构造
a—XC7井(T3x2-3),透镜体软沉积变形; b—GM3井(T3x2-1),沙纹层理;c—ZJ20井(T3x2-3),后积层理;d—ZJ20井(T3x2-1),平行层理;e—ZJ20井(T3x2-1),槽状交错层理;f—GM3井(T3x2-1),块状层理;g—GM3井(T3x2-3),泥砾;h—CF563井(T3x2-1),碳屑;i—XC8井(T3x2-3),平行层理“酥饼缝”;j—GM3井(T3x2-3),板状交错层理“酥饼缝”
a—well XC7(T3x2-3),soft deposition deformation of lens body;b—well GM3(T3x2-1),sandprint bedding;c—well ZJ20井(T3x2-3),retrogradation bedding;d—well ZJ20(T3x2-1),parallel bedding;e—well ZJ20(T3x2-1),trough cross bedding;f—well GM3(T3x2-1),massive bedding;g—well GM3(T3x2-3),mud gravel;h—well CF563(T3x2-1),charcoal;i—well XC8(T3x2-3),parallel layer "puff pastry seam";j—well GM3(T3x2-3),plate shaped cross bedding "puff pastry seam"
Fig.3  新场地区须二段主要沉积微相
Fig.4  决策树分类示意
Fig.5  岩石相测井参数相关矩阵
参数 搜索范围 步长 网格宽度
n-estimators 100~300 20 11
max-depth 5~25,None 2 12
min-samples-split 2~12 1 11
min-samples-leaf 1~11 1 11
max-features 1/9~1 1/9 9
Table 1  超参数网格搜索范围设置
Fig.6  网格搜索F1分数分布及超参数优选
标签 精确率 召回率 F1分数 测试样本数
CMms 0.97 0.90 0.94 41
CMpl 0.82 0.88 0.85 16
CMx 0.87 0.91 0.89 22
Fms 0.84 0.89 0.86 18
Fpl 1.00 1.00 1.00 14
MS 0.94 1.00 0.97 15
S 0.95 0.90 0.93 21
加权平均 0.92 0.92 0.92 147
准确率 0.92 147
Table 2  随机森林分类报告(含沉积微相相关参数)
Fig.7  分类结果混淆矩阵
Fig.8  SHAP模型重要性分析(a)及CL562井岩石相识别结果(b)
[1] 辜穗, 王文婧, 高琼, 等. 致密砂岩气规模效益开发管理机制[J]. 天然气工业, 2023, 43(5):100-107.
[1] Gu S, Wang W J, Gao Q, et al. Management mechanism of large-scale benefit development of tight sandstone gas[J]. Natural Gas Industry, 2023, 43(5):100-107.
[2] 任瑞川, 曾济楚, 梁斌. 港西油田F19区块砂体构型特征及模式研究[J]. 录井工程, 2022, 33(2):122-128.
[2] Ren R C, Zeng J C, Liang B. Study on sandstone architecture and patterns of F19 block in Gangxi Oilfield[J]. Mud Logging Engineering, 2022, 33(2):122-128.
[3] Miall A D. Lithofacies types and vertical profile models in braided river deposits:a summary[G]//Miall A D. Fluvial Sedimentology.AAPG Memoir 5,1977:597-604.
[4] Blair T C, McPherson J G. Alluvial fans and their natural distinction from rivers based on morphology,hydraulic processes,sedimentary processes,and facies assemblages[J]. Journal of Sedimentary Research, 1994, 64(3a):450-489.
[5] Sulpizio R, Dellino P, Doronzo D M, et al. Pyroclastic density currents:State of the art and perspectives[J]. Journal of Volcanology and Geothermal Research, 2014,283:36-65.
[6] 邓远, 陈轩, 覃建华, 等. 吉木萨尔凹陷二叠系芦草沟组一段沉积期古地貌特征及有利储层分布[J]. 岩性油气藏, 2024, 36(1):136-144.
[6] Deng Y, Chen X, Qin J H, et al. Paleogeomorphology and favorable reservior distribution of the first member of Permian Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs, 2024, 36(1):136-144.
[7] 赖锦, 李红斌, 张梅, 等. 非常规油气时代测井地质学研究进展[J]. 古地理学报, 2023, 25(5):1118-1138.
[7] Lai J, Li H B, Zhang M, et al. Advances in well logging geology in the era of unconventional hydrocarbon resources[J]. Journal of Palaeogeography:Chinese Edition, 2023, 25(5):1118-1138.
[8] 车世琦. 测井资料用于页岩岩相划分及识别——以涪陵气田五峰组—龙马溪组为例[J]. 岩性油气藏, 2018, 30(1):121-132.
[8] Che S Q. Shale lithofacies identification and classification by using logging data:A case of Wufeng-Longmaxi Formation in Fuling gas field,Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1):121-132.
[9] 刘君龙, 刘忠群, 肖开华, 等. 四川盆地新场地区三叠系须家河组二段致密砂岩有利岩石相表征及油气地质意义[J]. 石油勘探与开发, 2020, 47(6):1111-1121.
doi: 10.11698/PED.2020.06.05
[9] Liu J L, Liu Z Q, Xiao K H, et al. Characterization of favorable lithofacies in tight sandstone reservoirs and its significance for gas exploration and exploitation:A case study of the 2nd Member of Triassic Xujiahe Formation in the Xinchang Area,Sichuan Basin[J]. Petroleum Exploration and Development, 2020, 47(6):1111-1121.
[10] 杨洋, 石万忠, 张晓明, 等. 页岩岩相的测井曲线识别方法——以焦石坝地区五峰组—龙马溪组为例[J]. 岩性油气藏, 2021, 33(2):135-146.
[10] Yang Y, Shi W Z, Zhang X M, et al. Identification method of shale lithofacies by logging curves:A case study from Wufeng-Longmaxi Formation in Jiaoshiba Area,SW China[J]. Lithologic Reservoirs, 2021, 33(2):135-146.
[11] Al-Mudhafar W J. Integrating well log interpretations for lithofacies classification and permeability modeling through advanced machine learning algorithms[J]. Journal of Petroleum Exploration and Production Technology, 2017, 7(4):1023-1033.
[12] 江丽, 张智谟, 王琦玮, 等. 基于不同机器学习模型的石油测井数据岩性分类对比研究[J]. 物探与化探, 2024, 48(2):489-497.
[12] Jiang L, Zhang Z M, Wang Q W, et al. Comparative study on lithology classification of oil logging data based on different machine learning models[J]. Geophysical and Geochemical Exploration, 2024, 48(2):489-497.
[13] 王民, 杨金路, 王鑫, 等. 基于随机森林算法的泥页岩岩相测井识别[J]. 地球科学, 2023, 48(1):130-142.
[13] Wang M, Yang J L, Wang X, et al. Identification of shale lithofacies by well logs based on random forest algorithm[J]. Earth Science, 2023, 48(1):130-142.
[14] 高飞, 曲志鹏, 魏震, 等. 基于机器学习方法的测井岩相分类研究[J]. 地球物理学进展, 2024, 39(3):1173-1192.
[14] Gao F, Qu Z P, Wei Z, et al. A study on well-log lithofacies classification based on machine learning methods[J]. Progress in Geophysics, 2024, 39(3):1173-1192..
[15] 李红斌, 王贵文, 王松, 等. 基于Kohonen神经网络的页岩油岩相测井识别方法——以吉木萨尔凹陷二叠系芦草沟组为例[J]. 沉积学报, 2022, 40(3):626-640.
[15] Li H B, Wang G W, Wang S, et al. Shale oil lithofacies identification by kohonen neural network method:The case of the Permian Lucaogou Formation in Jimusaer Sag[J]. Acta Sedimentologica Sinica, 2022, 40(3):626-640.
[16] 庞国印, 唐俊, 王琪, 等. 利用概率神经网络预测成岩相——以鄂尔多斯盆地合水地区延长组长8段储层为例[J]. 特种油气藏, 2013, 20(2):43-47,152-153.
[16] Pang G Y, Tang J, Wang Q, et al. Prediction of diagenetic facies with probabilistic neural network:Taking member Chang 8 of Heshui Area in Ordos Basin as an example[J]. Special Oil & Gas Reservoirs, 2013, 20(2):43-47,152-153.
[17] 张昌民, 张祥辉, Adrian J.Hartley, 等. 分支河流体系分类初探[J]. 岩性油气藏, 2023, 35(4):1-15.
[17] Zhang C M, Zhang X H, Hartley A J, et al. On classification of distributive fluvial system[J]. Lithologic Reservoirs, 2023, 35(4):1-15.
[18] 李朋威, 胡宗全, 刘忠群, 等. 川西新场地区须二段深层致密砂岩储层类型与差异控储作用[J]. 天然气地球科学, 2024, 35(7):1136-1149.
doi: 10.11764/j.issn.1672-1926.2023.12.011
[18] Li P W, Hu Z Q, Liu Z Q, et al. Types of the deep tight sandstone reservoirs and their different controlling in the T3x2 member of Xujiahe formation in Xinchang area,western Sichuan Basin[J]. Natural Gas Geoscience, 2024, 35(7):1136-1149..
[19] 王志康. 川西新场地区须家河组二段物源特征及其与储层的关系[D]. 成都: 成都理工大学, 2021.
[19] Wang Z K. Provenance characteristics and its relationship with the reservoir of the 2nd member of Xujiahe Formation in Xinchang,western Sichuan depression[D]. Chengdu: Chengdu University of Technology, 2021.
[20] 郑和荣, 刘忠群, 徐士林, 等. 四川盆地中国石化探区须家河组致密砂岩气勘探开发进展与攻关方向[J]. 石油与天然气地质, 2021, 42(4):765-783.
[20] Zheng H R, Liu Z Q, Xu S L, et al. Progress and key research directions of tight gas exploration and development in Xujiahe Formation,Sinopec exploration areas,Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4):765-783.
[21] 苏加亮, 林良彪, 余瑜, 等. 川西新场地区上三叠统须家河组二、四段物源及储层特征差异对比研究[J]. 沉积学报, 2023, 41(5):1451-1467.
[21] Su J L, Lin L B, Yu Y, et al. Comparative study on the provenance and reservoir characteristics of the second and fourth members of the Upper Triassic Xujiahe Formation in the Xinchang Area,western Sichuan,China[J]. Acta Sedimentologica Sinica, 2023, 41(5):1451-1467.
[22] 刘君龙, 纪友亮, 杨克明, 等. 川西须家河组前陆盆地构造层序及沉积充填响应特征[J]. 中国石油大学学报:自然科学版, 2015, 39(6):11-23.
[22] Liu J L, Ji Y L, Yang K M, et al. Tectono-stratigraphy and sedimentary infill characteristics of Xujiahe Formation in western Sichuan foreland basin[J]. Journal of China University of Petroleum:Edition of Natural Science, 2015, 39(6):11-23.
[23] Efron B, Tibshirani R J. An introduction to the bootstrap[M]. New York: Chapman and Hall/CRC,1994.
[24] 潘冬, 诸葛月英, 叶文军, 等. 马西地区测井相流体识别新方法研究[C]// 西安石油大学,陕西省石油学会.2018油气田勘探与开发国际会议(IFEDC 2018)论文集.中国石油集团测井有限公司华北分公司,2018:10.
[24] Pan D, Zhuge Y Y, Ye W J, et al. New method for identification of fluid with log facies in Maxi area[C]// Xi'an Shiyou University,Shaanxi Petroleum Society.Proceedings of the 2018 International Field Exploration and Development Conference(IFEDC 2018).Hebei Branch,CNPC Logging Co.,Ltd.,2018:10.
[25] 李志华, 黄文辉. 辫状河三角洲岩相特征及沉积模式——以鄂尔多斯盆地苏南地区盒8段为例[J]. 岩性油气藏, 2017, 29(1):43-50.
[25] Li Z H, Huang W H. Lithofacies characteristics and sedimentary model of braided delta:A case study of He8 member in the southern Sulige,Ordos Basin[J]. Lithologic Reservoirs, 2017, 29(1):43-50.
[1] 曹绍贺, 任凤茹, 王霄霄. 东胜气田致密砂岩储层甜点预测关键技术与应用效果[J]. 物探与化探, 2024, 48(4): 954-961.
[2] 尚亚洲, 张兆辉, 许多年, 赵雯雯, 陈华勇, 韩海波. 基于随机森林的火山岩岩性测井识别——以准噶尔盆地滴西地区石炭系为例[J]. 物探与化探, 2024, 48(4): 1025-1036.
[3] 江丽, 张智谟, 王琦玮, 封志兵, 张博程, 任腾飞. 基于不同机器学习模型的石油测井数据岩性分类对比研究[J]. 物探与化探, 2024, 48(2): 489-497.
[4] 黄彦庆. 川东北元坝地区致密砂岩多产状裂缝刻画[J]. 物探与化探, 2023, 47(5): 1189-1197.
[5] 陈超群, 戴慧敏, 冯雨林, 杨泽, 杨佳佳. 基于Sentinel-2A的孙吴地区土壤有机质反演研究[J]. 物探与化探, 2022, 46(5): 1141-1148.
[6] 朱颜, 韩向义, 岳欣欣, 杨春峰, 常文鑫, 邢丽娟, 廖晶. 致密砂岩储层脆性测井评价方法研究及应用——以鄂尔多斯盆地渭北油田为例[J]. 物探与化探, 2021, 45(5): 1239-1247.
[7] 郭建宏, 张占松, 张超谟, 周雪晴, 肖航, 秦瑞宝, 余杰. 用地球物理测井资料预测煤层气含量——基于斜率关联度—随机森林方法的工作案例[J]. 物探与化探, 2021, 45(1): 18-28.
[8] 彭刘亚, 解惠婷, 冯伟栋. 基于随机森林算法的砂土液化预测方法[J]. 物探与化探, 2020, 44(6): 1429-1434.
[9] 陈珊, 徐兴友, 罗晓玲, 白静, 刘力辉, 陆蓉. 基于改进匹配追踪算法的时频属性在薄储层沉积微相研究中的应用[J]. 物探与化探, 2018, 42(5): 1006-1012.
[10] 齐宇, 彭俊, 刘鹏, 王存武, 郭广山, 陈思路. 地震微相分析技术——以某深水油田海底扇朵叶体为例[J]. 物探与化探, 2018, 42(1): 154-160.
[11] 夏培. 含泥质致密砂岩储层三孔隙导电模型[J]. 物探与化探, 2017, 41(4): 748-752.
[12] 时磊, 刘俊州, 董宁, 王箭波, 夏红敏, 王震宇. 扩展弹性阻抗反演技术在致密砂岩薄储层含气性预测中的应用[J]. 物探与化探, 2015, 39(2): 346-351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com