Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1588-1598    DOI: 10.11720/wtyht.2024.0015
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
塔里木盆地二八台地区走滑断裂体系研究
张珈畅1(), 李涛1(), 梁宏刚2, 费娥1, 孙致远1, 岳彤1
1.长江大学 地球科学学院,湖北 武汉 430100
2.中国石化西北油田分公司勘探开发研究院,新疆 乌鲁木齐 830011
Strike-slip fault system in the Erbatai area, Tarim Basin
ZHANG Jia-Chang1(), LI Tao1(), LIANG Hong-Gang2, FEI E1, SUN Zhi-Yuan1, YUE Tong1
1. School of Geosciences, Yangtze University, Wuhan 430100, China
2. Exploration and Development Research Institute, Northwest Oil Field Company, SINOPEC, Urumqi 830011, China
全文: PDF(11103 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

油气勘探中断层的分布特征一直是地震资料解释的难点和重点,其中走滑断裂体系中的断裂组合最为复杂。塔里木盆地二八台地区发育复杂的轮台走滑断裂体系,为明确其断裂构造特征,采用倾角+方位角扫描+构造导向滤波处理手段来降低背景噪声,综合利用相干体、蚂蚁体、最大似然体等多种属性形成多级嵌套技术,识别并统计了二八台41条断裂的走向、倾向、倾角、断距等几何学发育特征,明确了走滑断裂体系内部复杂断裂结构组合关系;认识到二八台地区发育近EW向为主的主走滑断裂带和NE走向的次级伴生断裂带,为左旋扭动产生的张破裂,表现为右阶式雁列正断层系。研究结果对二八台构造油气藏的评价有借鉴意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张珈畅
李涛
梁宏刚
费娥
孙致远
岳彤
关键词 走滑断裂地震解释构造导向滤波塔里木盆地二八台地区    
Abstract

In structural confirmation for oil and gas exploration, ascertaining the distributions of faults remains a challenge and priority in seismic data interpretation. The most complex fault combinations can be observed in strike-slip fault systems. This study investigated the Erbatai area that hosts a complex Luntai strike-slip fault system in the Tarim Basin. First, the background noise was reduced using the dip angle plus azimuth scanning and the structure-oriented filtering. Then, a multi-level nesting technology was developed by integrating attributes like coherence cube, ant-tracking attribute, and maximum likelihood. Using the technology, this study identified and statistically analyzed 41 faults in the Erbatai area for their geometric development characteristics, including strike, dip, dip angle, and fault throw. Furthermore, this study determined the complex fault combinations within the strike-slip fault system. The findings indicate that the Erbatai area develops a dominant nearly EW-trending strike-slip fault zone and a NE-trending secondary fault zone. These faults are extensional fractures caused by left-lateral torsion, manifested as right-stepping en echelon normal faults. Overall, this study can be referenced for assessing structural hydrocarbon reservoirs in the Erbatai area.

Key wordsstrike-slip fault    seismic interpretation    structure-oriented filtering    Tarim Basin    Erbatai area
收稿日期: 2024-01-15      修回日期: 2024-05-27      出版日期: 2024-12-20
ZTFLH:  P631.4  
基金资助:中国石化西北油田分公司勘探开发研究院项目(KY2021-S-018)
通讯作者: 李涛(1982-),男,博士,副教授,从事构造地质学方向的研究工作。Email:ltm817@yangtzeu.edu.cn
引用本文:   
张珈畅, 李涛, 梁宏刚, 费娥, 孙致远, 岳彤. 塔里木盆地二八台地区走滑断裂体系研究[J]. 物探与化探, 2024, 48(6): 1588-1598.
ZHANG Jia-Chang, LI Tao, LIANG Hong-Gang, FEI E, SUN Zhi-Yuan, YUE Tong. Strike-slip fault system in the Erbatai area, Tarim Basin. Geophysical and Geochemical Exploration, 2024, 48(6): 1588-1598.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.0015      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1588
Fig.1  走滑断裂体系下的地震精细解释技术流程
Fig.2  二八台地区区域位置
Fig.3  二八台地区原始地震资料(a)及处理后的地震资料(b)
Fig.4  二八台地区Inline1872测线地震剖面
Fig.5  二八台地区Inline1872测线三种苏维依组顶界沿层属性对比
Fig.6  多级嵌套断层解释结果
Fig.7  二八台地区苏维依组顶界沿层相干体属性识别
Fig.8  二八台苏维依组顶界沿层蚂蚁体地震属性识别
Fig.9  二八台地区Inline1857测线苏维依组顶界沿层最大似然体地震属性识别
Fig.10  二八台地区三维立体效果对比
Fig.11  二八台断裂分级示意
Fig.12  二八台断裂演化模式示意
[1] 杨勇, 汤良杰, 刁新东, 等. 塔里木盆地雅克拉断凸断裂差异变形特征及其控制因素[J]. 石油与天然气地质, 2018, 39(1):89-97.
[1] Yang Y, Tang L J, Diao X D, et al. Differential deformation and its control mechanism of fault structures in Yakela fault-salient,Tarim Basin[J]. Oil & Gas Geology, 2018, 39(1):89-97.
[2] 刘睿, 黄晓波, 汪晶, 等. 渤海湾沙北地区共轭走滑断裂带特征及其对油气的控制作用[J]. 东北石油大学学报, 2018, 42(2):43-50,119-120.
[2] Liu R, Huang X B, Wang J, et al. Characteristics of conjugate strike-slip fault zone and its control over hydrocarbons in Shabei area of Bohai Bay[J]. Journal of Northeast Petroleum University, 2018, 42(2):43-50,119-120.
[3] 武小宁, 钟厚财, 林煜, 等. 中拐凸起走滑断裂发育特征及对成藏的控制作用[J]. 断块油气田, 2023, 30(2):286-293.
[3] Wu X N, Zhong H C, Lin Y, et al. The development characteristics of strike-slip faults and its control effect on reservoir accumulation in Zhongguai Uplift[J]. Fault-Block Oil & Gas Field, 2023, 30(2):286-293.
[4] 吴梅莲, 刘永福, 彭鹏, 等. 轮南古潜山走滑断裂特征及其对油气成藏的影响[J]. 断块油气田, 2021, 28(4):456-462.
[4] Wu M L, Liu Y F, Peng P, et al. Characteristics of strike-slip faults in Lunnan buried hill and its influence on hydrocarbon accumulation[J]. Fault-Block Oil & Gas Field, 2021, 28(4):456-462.
[5] 管树巍, 梁瀚, 姜华, 等. 四川盆地中部主干走滑断裂带及伴生构造特征与演化[J]. 地学前缘, 2022, 29(6):252-264.
doi: 10.13745/j.esf.sf.2022.8.8
[5] Guan S W, Liang H, Jiang H, et al. Characteristics and evolution of the main strike-slip fault belts of the central Sichuan Basin,southWestern China,and associated structures[J]. Earth Science Frontiers, 2022, 29(6):252-264.
[6] 冯建伟, 郭宏辉, 汪如军, 等. 塔里木盆地塔北地区深层走滑断裂分段性成因机制[J]. 地球科学, 2023, 48(7):2506-2519.
[6] Feng J W, Guo H H, Wang R J, et al. Segmentation genesis mechanism of strike-slip fracture of deep carbonate rocks in tabei area,Tarim basin[J]. Earth Science, 2023, 48(7):2506-2519.
[7] 陈更生, 谢清惠, 吴建发, 等. 地震多属性技术组合在泸州页岩气区块构造解释中的综合应用[J]. 物探与化探, 2022, 46(6):1349-1358.
[7] Chen G S, Xie Q H, Wu J F, et al. Comprehensive application of the seismic multi-attribute technique combination in the tectonic interpretation of the Luzhou shale gas block[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1349-1358.
[8] 陈永芮, 张军华, 林承焰, 等. 一种基于小波优势频带的深层—超深层碳酸盐岩走滑断裂识别方法及应用[J]. 地球物理学进展, 2021, 36(5):1941-1947.
[8] Chen Y R, Zhang J H, Lin C Y, et al. The method and application of minor strike-slip faults identification about deep and ultra-deep carbonate reservoir based on wavelet transform sensitive frequency[J]. Progress in Geophysics, 2021, 36(5):1941-1947.
[9] 陈珂磷, 井翠, 杨扬, 等. 频率域多尺度断裂检测技术在长宁页岩气勘探中的应用[J]. 断块油气田, 2022, 29(3):289-294.
[9] Chen K L, Jing C, Yang Y, et al. Application of frequency domain multi-scale fault detection technique in shale gas exploration in Changning region[J]. Fault-Block Oil & Gas Field, 2022, 29(3):289-294.
[10] 刘军, 龚伟, 黄超, 等. 塔里木盆地顺北5号走滑断裂带北段超深层裂缝储层的地震属性表征方法研究及应用[J]. 地质科技通报, 2022, 41(4):1-11.
[10] Liu J, Gong W, Huang C, et al. Seismic attribute characteristics of an ultradeep fractured-reservoir in the northern section of Shunbei No.5 strike-slip fault zone in Tarim Basin[J]. Bulletin of Geolo-gical Science and Technology, 2022, 41(4):1-11.
[11] 孙致远. 基于优势频带地震属性融合的走滑断裂识别研究——以准噶尔盆地莫西庄油田为例[D]. 荆州: 长江大学, 2024.
[11] Sun Z Y. Research on identification of strike-slip faults based on dominant frequency band seismic multi-attribute:A case study of Moxizhuang Oilfield,Junggar Basin[D]. Jingzhou: Yangtze University, 2024.
[12] 马峰, 汪泽成, 雷明, 等. 川中海相碳酸盐岩层系小型走滑断裂地震识别[J]. 地球科学, 2023, 48(6):2204-2220.
[12] Ma F, Wang Z C, Lei M, et al. Seismic identification of small strike-slip faults in marine carbonate strata in paleouplift area of central Sichuan Basin[J]. Earth Science, 2023, 48(6):2204-2220.
[13] 李飞跃, 王涛, 曾清波, 等. 基于构造导向的高清似然属性在白云凹陷深层断裂预测中的应用[J]. 石油物探, 2023, 62(1):163-172.
doi: 10.3969/j.issn.1000-1441.2023.01.014
[13] Li F Y, Wang T, Zeng Q B, et al. Application of high-definition likelihood attributes based on structure orientation in the prediction of deep faults in Baiyun Sag[J]. Geophysical Prospecting for Petroleum, 2023, 62(1):163-172.
doi: 10.3969/j.issn.1000-1441.2023.01.014
[14] 赵凤全, 崔德育, 康婷婷, 等. 构造导向滤波技术在断裂识别中的应用[J]. 石油地球物理勘探, 2018, 53(S1):214-218,227,15-16.
[14] Zhao F Q, Cui D Y, Kang T T, et al. Fault identification with structure-oriented filtering[J]. Oil Geophysical Prospecting, 2018, 53(S1):214-218,227,15-16.
[15] 吴晨骁. 构造导向滤波技术在准噶尔盆地滴南凸起南带石炭系小断裂识别的应用[J]. 石化技术, 2021, 28(9):26-27.
[15] Wu C X. Application of structure-guided filtering technique in identification of small faults of Carboniferous system in the southern belt of Dinan Uplift,Junggar Basin[J]. Petrochemical Industry Technology, 2021, 28(9):26-27.
[16] 谢清惠, 蒋立伟, 赵春段, 等. 提高蚂蚁追踪裂缝预测精度的应用研究[J]. 物探与化探, 2021, 45(5):1295-1302.
[16] Xie Q H, Jiang L W, Zhao C D, et al. Application study of improving the precision of the ant-tracking-based fracture prediction technique[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1295-1302.
[17] 庄益明, 张兴平, 王琦, 等. 基于构造导向滤波下的蚂蚁追踪技术的应用与实践[J]. 煤炭技术, 2018, 37(9):150-152.
[17] Zhuang Y M, Zhang X P, Wang Q, et al. Application and practice of ant tracking technology based on structure oriented filtering[J]. Coal Technology, 2018, 37(9):150-152.
[18] 赵小辉, 于宝利, 曹小璐. 属性融合技术在微小断裂识别中的应用[J]. 石油地球物理勘探, 2017, 52(S2):164-169,8.
[18] Zhao X H, Yu B L, Cao X L. Minor fault identification with seismic multi-attribute fusion[J]. Oil Geophysical Prospecting, 2017, 52(S2):164-169,8.
[19] 马德波, 赵一民, 张银涛, 等. 最大似然属性在断裂识别中的应用——以塔里木盆地哈拉哈塘地区热瓦普区块奥陶系走滑断裂的识别为例[J]. 天然气地球科学, 2018, 29(6):817-825.
doi: 10.11764/j.issn.1672-1926.2018.04.006
[19] Ma D B, Zhao Y M, Zhang Y T, et al. Application of maximum likelihood attribute to fault identification:A case study of Rewapu block in Halahatang area,Tarim Basin,NW China[J]. Natural Gas Geoscience, 2018, 29(6):817-825.
doi: 10.11764/j.issn.1672-1926.2018.04.006
[20] 王晓阳, 霍晗勇, 丁立明, 等. ZC地区断裂检测方法及特征研究[J]. 石油物探, 2023, 62(S1):118-125.
[20] Wang X Y, Huo H Y, Ding L M, et al. Study on fault detection method and characteristics in ZC area[J]. Geophysical Prospecting for Petroleum, 2023, 62(S1):118-125.
[21] 甄宗玉, 陈华靖, 张鹏志, 等. 基于特定反射系数压制与最大似然属性的断层识别方法[J]. 断块油气田, 2021, 28(3):335-339.
[21] Zhen Z Y, Chen H J, Zhang P Z, et al. The fault identification method based on specific reflection coefficient suppression and maximum likelihood attribute[J]. Fault-Block Oil & Gas Field, 2021, 28(3):335-339.
[22] 何松高, 邓尚, 刘雨晴, 等. 克拉通内走滑断裂空间结构及派生构造新样式:以塔里木盆地顺北12号断裂为例[J]. 地球科学, 2023, 48(6):2136-2150.
[22] He S G, Deng S, Liu Y Q, et al. New structural style of spatial architecture and derived structure of intracratonic strike-slip faults:A case study of Shunbei No.12 fault,Tarim Basin[J]. Earth Science, 2023, 48(6):2136-2150.
[23] 吴家安, 董百会, 唐大卿, 等. 塔河地区断裂构造样式及其演化[J]. 复杂油气藏, 2022, 15(1):1-7.
[23] Wu J A, Dong B H, Tang D Q, et al. Structure style and evolution of faults in Tahe area[J]. Complex Hydrocarbon Reservoirs, 2022, 15(1):1-7.
[24] 张仲培, 徐勤琪, 刘士林, 等. 塔里木盆地巴麦地区东段北东向走滑断裂体系特征及油气地质意义[J]. 石油实验地质, 2023, 45(4):761-769.
[24] Zhang Z P, Xu Q Q, Liu S L, et al. Characteristics of NE strike-slip fault system in the eastern section of Bachu-Maigaiti area,Tarim Basin and its oil-gas geological significance[J]. Petroleum Geology & Experiment, 2023, 45(4):761-769.
[25] 冯志强, 李萌, 郭元岭, 等. 中国典型大型走滑断裂及相关盆地成因研究[J]. 地学前缘, 2022, 29(6):206-223.
doi: 10.13745/j.esf.sf.2022.8.6
[25] Feng Z Q, Li M, Guo Y L, et al. Genetic analysis of typical strike-slip faults and related basins in China[J]. Earth Science Frontiers, 2022, 29(6):206-223.
doi: 10.13745/j.esf.sf.2022.8.6
[26] 梁瀚, 唐浩, 冉崎, 等. 四川盆地川中地区走滑断裂的分布、类型与成因[J]. 地质学报, 2023, 97(8):2609-2620.
[26] Liang H, Tang H, Ran Q, et al. The distribution,type and origin of the strike-slip faults in the central Sichuan basin[J]. Acta Geologica Sinica, 2023, 97(8):2609-2620.
[27] 吕海涛, 张哨楠, 马庆佑. 塔里木盆地中北部断裂体系划分及形成机制探讨[J]. 石油实验地质, 2017, 39(4):444-452.
[27] Lyu H T, Zhang S N, Ma Q Y. Classification and formation mechanism of fault systems in the central and northern Tarim Basin[J]. Petroleum Geology & Experiment, 2017, 39(4):444-452.
[28] 罗小龙, 汤良杰, 谢大庆, 等. 塔里木盆地雅克拉断凸走滑作用及其形成机理[J]. 石油与天然气地质, 2013, 34(2):257-263.
[28] Luo X L, Tang L J, Xie D Q, et al. Strike-slip movement and its genetic mechanism in Yakela faulted salient,the Tarim Basin[J]. Oil & Gas Geology, 2013, 34(2):257-263.
[29] 张红波, 周雨双, 沙旭光, 等. 塔里木盆地顺北5号走滑断裂隆起段发育特征与演化机制[J]. 石油与天然气地质, 2023, 44(2):321-334.
[29] Zhang H B, Zhou Y S, Sha X G, et al. Development characteristics and evolution mechanism of the uplifted segment of the No.5 strike-slip fault zone in Shunbei area,Tarim Basin[J]. Oil & Gas Geology, 2023, 44(2):321-334.
[30] 袁丹丹. 轮台断裂带特征及控藏作用研究[D]. 东营: 中国石油大学(华东), 2021.
[30] Yuan D D. Study on characteristics and reservoir control of Luntai fault zone[D]. Dongying: China University of Petroleum (Huadong), 2021.
[31] 王峰. 塔北隆起东部地质结构与构造演化[D]. 北京: 中国地质大学(北京), 2018.
[31] Wang F. Geological structure and tectonic evolution in eastern Tabei uplift[D]. Beijing: China University of Geosciences, 2018.
[1] 姚铭. 基于构造导向滤波处理的断层提取技术及其应用[J]. 物探与化探, 2024, 48(5): 1313-1321.
[2] 袁晓满, 李相文, 张洁, 但光箭, 卢忠沅, 韩重阳, 张磊, 许建洋. 基于改进广义S变换时频分析的“板状”断控油藏油柱高度预测[J]. 物探与化探, 2024, 48(3): 768-776.
[3] 沈东义, 袁秋霞, 张洁, 李会弟. 多类型地震数据自动化处理成图软件的研究与实现[J]. 物探与化探, 2023, 47(6): 1555-1562.
[4] 谢清惠, 蒋立伟, 赵春段, 王仲达, 唐协华, 罗瑀峰. 提高蚂蚁追踪裂缝预测精度的应用研究[J]. 物探与化探, 2021, 45(5): 1295-1302.
[5] 高利君, 李宗杰, 李海英, 王虹, 黄超. 塔里木盆地深层岩溶缝洞型储层三维雕刻“五步法”定量描述技术研究与应用[J]. 物探与化探, 2020, 44(3): 691-697.
[6] 郑浩, 蔡杰雄, 王静波. 基于构造导向滤波的高斯束层析速度建模方法及其应用[J]. 物探与化探, 2020, 44(2): 372-380.
[7] 杨敬雅, 李相文, 刘永雷, 徐博, 高江涛, 王茂, 吴江勇, 张泉. 一种基于随钻VSP地震地质导向的钻井轨迹高效优化方法及其应用[J]. 物探与化探, 2019, 43(2): 257-265.
[8] 韩翀, 陈明江, 赵辉, 曹博超, 李金玺, 尹晓贺. 现代体属性分析技术在风化壳气藏勘探中的应用——以苏里格气田桃7区块马五13段为例[J]. 物探与化探, 2016, 40(3): 445-451.
[9] 党青宁, 崔永福, 陈猛, 赵锐锐, 刘伟明, 李勇军. OVT域叠前裂缝预测技术——以塔里木盆地塔中ZG地区奥陶系碳酸盐岩为例[J]. 物探与化探, 2016, 40(2): 398-404.
[10] 张鹏志, 李兰斌. 地震纹理分析在油气勘探中应用进展[J]. 物探与化探, 2013, 37(3): 461-466.
[11] 邱爱美, 李百祥. 从地球物理场信息探讨阿尔金断裂带东北尾端效应和延伸[J]. 物探与化探, 2011, 35(2): 149-154.
[12] 赖江德, 张进铎, 蔡东地, 杨广琴, 张素红. 缅甸M区块地震构造样式分析与研究[J]. 物探与化探, 2009, 33(1): 24-26.
[13] 刘胜, 邱其祥, 程增庆, 蔡福绿. 利用相对波阻抗识别煤层缺失变薄带[J]. 物探与化探, 2008, 32(6): 682-684.
[14] 蒋涛, 程同锦. 吸附丝法在塔里木盆地某区的应用[J]. 物探与化探, 2005, 29(5): 425-427,430.
[15] 钟广法, 祁兴中, 马勇, 张永忠, 柳建华, 杜寻社. 电成像测井资料在裂缝成因分析中的应用[J]. 物探与化探, 2005, 29(2): 116-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com