Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1664-1673    DOI: 10.11720/wtyht.2024.0014
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
应力效应下页岩动静态弹性各向异性特征
边会媛1, 臧鑫1, 张迪2,3, 张程恩4, 聂晓敏4, 武银婷5
1.西安科技大学 地质与环境学院,陕西 西安 710054
2.青海油田勘探开发研究院,甘肃 敦煌 736202
3.青海省高原咸化湖盆油气地质重点实验室,甘肃 敦煌 736202
4.中国石油集团测井有限公司 青海分公司,甘肃 敦煌 736202
5.长安大学 地质工程与测绘学院,陕西 西安 710064
Impacts of anisotropy on the dynamic and static elastic characteristics of shales under stress effects
BIAN Hui-Yuan1, ZANG Xin1, ZHANG Di2,3, ZHANG Cheng-En4, NIE Xiao-Min4, WU Yin-Ting5
1. College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
2. Exploration and Development Research Institute of PetroChina Qinghai Oilfield Company, Dunhuang 736202, China
3. Qinghai Provincial Key Laboratory of Plateau Saline-Lacustrine Basinal Oil & Gas Geology, Dunhuang 736202, China
4. Qinghai Branch of China Petroleum Logging Co., Ltd., Dunhuang 736202, China
5. College of Geology Engineering and Geomatics, Chang'an University, Shaanxi, Xi'an 710064, China
全文: PDF(6062 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

静态弹性力学参数是页岩油开采及注水压裂工程的关键参数,应力效应下各向异性对页岩动静态弹性特征具有重要的影响,开展储层动静态弹性特征的主控因素与控制机理研究是页岩油气开采及注水压裂工程中一项亟须解决的关键科学问题。通过不同加压方式下页岩的三轴压缩力学与声学联测实验,研究各向异性对页岩纵、横波速度及宏观力学性质的影响,探究页岩动静态弹性特征的响应规律。结果表明:①随压力的增加,页岩动、静态杨氏模量增大,且增大速率由快到慢趋于稳定值;②层理角度一定时,动态杨氏模量大于静态杨氏模量,二者呈正相关,动、静态泊松比关系较差;③岩石动、静态刚度系数均随围压增大而增大,与纵波相关的动态刚度系数C11C33比与横波相关的动态刚度系数C44C66变化更明显;④页岩动、静态各向异性均随围压的增大而增大。研究结果可以揭示页岩动、静态弹性特征响应机理,并能够为页岩油气储层开采与水力压裂改造提供关键力学参数。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
边会媛
臧鑫
张迪
张程恩
聂晓敏
武银婷
关键词 页岩油各向异性弹性性质静态模量地层压力    
Abstract

The static elastic parameters are crucial for shale oil and gas production and fracturing through water injection. Under stress effects, anisotropy exerts significant impacts on the dynamic and static elastic characteristics of shales. Investigating the dominant factors and mechanisms controlling reservoirs' dynamic and static elastic characteristics is a burning key scientific problem in shale oil and gas production and fracturing through water injection. Based on triaxial compression tests combining mechanics and acoustics for shales under different pressurization methods, this study delved into the impacts of anisotropy on the compressional/shear wave (P-and S-wave) velocities and macromechanical properties of shales, and the response patterns of dynamic and static elastic characteristics of shales. The results are as follows: (1) With an increase in the pressure, the dynamic and static Young's moduli of shales increase at a gradually decelerating rate, finally tending to be stable; (2) At certain bedding angles, the dynamic and static Young's moduli are positively correlated, with the former higher than the latter, whereas the dynamic and static Poisson's ratios manifest a subtle correlation; (3) The dynamic and static stiffness coefficients of shales increase with the confining pressure. The P-wave-related dynamic stiffness coefficients C11 and C33 display more significant changes than the S-wave-related dynamic stiffness coefficients C44 and C66; (4) The dynamic and static anisotropies of shales also increase with the confining pressure. The results of this study reveal the response mechanisms of the dynamic and static elastic characteristics of shales while providing crucial mechanical parameters for the exploitation and hydraulic fracturing of shale oil and gas reservoirs, thus demonstrating significant scientific research value.

Key wordsshale    anisotropy    elastic property    static modulus    formation pressure
收稿日期: 2024-01-15      修回日期: 2024-03-05      出版日期: 2024-12-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目“基于声力效应的页岩动静态弹性特征响应机理研究”(42304143);陕西省自然科学基础研究计划项目“表面及层间多次波反演成像研究”(2022JM-139)
引用本文:   
边会媛, 臧鑫, 张迪, 张程恩, 聂晓敏, 武银婷. 应力效应下页岩动静态弹性各向异性特征[J]. 物探与化探, 2024, 48(6): 1664-1673.
BIAN Hui-Yuan, ZANG Xin, ZHANG Di, ZHANG Cheng-En, NIE Xiao-Min, WU Yin-Ting. Impacts of anisotropy on the dynamic and static elastic characteristics of shales under stress effects. Geophysical and Geochemical Exploration, 2024, 48(6): 1664-1673.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.0014      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1664
Fig.1  沧东凹陷孔二段沉积体系[23]
Fig.2  不同角度页岩取心方位
Fig.3  不同层理角度页岩光学扫描结果
样品号 孔隙度/% 渗透率/mD 总有机碳/% 成熟度/%
A1-0° 1.3 0.01 6.19 0.11
A1-45° 1.5 0.01 6.19 0.11
A1-90° 1.2 0.01 6.19 0.11
Table 1  沧东凹陷孔二段页岩油样品基本参数
样品编号 石英石 钾长石 斜长石 方解石 白云石 黄铁矿 菱铁矿 铁白云石 石膏 斜沸石 黏土矿物
A1-0° 15.0 11.0 24.0 11.0 1.0 0.0 0.0 34.0 0.0 0.0 4.0
A1-45° 12.0 11.0 22.0 14.0 1.0 0.0 2.0 31.0 0.0 3.0 4.0
A1-90° 12.0 4.0 25.0 13.0 0.0 1.0 0.0 38.0 1.0 0.0 6.0
Table 2  页岩样品矿物组分含量
样品编号 粘土矿物含量/% 伊/蒙混层比/%
伊利石 高岭石 绿泥石 伊/蒙混层 绿/蒙混层 蒙皂石层 伊利石层
C3T6 79.0 0 0 21.0 0 35.0 65.0
Table 3  页岩样品粘土含量
Fig.4  页岩样品薄片照片
Fig.5  岩样声学力学联测原理流程
Fig.6  应力加载路径及动静态弹性参数测试
Fig.7  刚度系数与围压关系
Fig.8  静态弹性参数与围压关系
Fig.9  动态弹性参数与围压关系
Fig.10  不同方向动静态弹性参数关系
Fig.11  动、静态弹性参数关系
Fig.12  动、静态各向异性系数与围压关系
[1] Wang Y, Zhao L X, Han D H, et al. Anisotropic dynamic and static mechanical properties of organic-rich shale:The influence of stress[J]. Geophysics, 2021, 86(2):C51-C63.
[2] Gong F, Di B R, Zeng L B, et al. Static and dynamic linear compressibility of dry artificial and natural shales under confining pressure[J]. Journal of Petroleum Science and Engineering, 2020, 192:107242.
[3] Bustin A M M, Bustin R M. Importance of rock properties on the producibility of gas shales[J]. International Journal of Coal Geo-logy, 2012, 103:132-147.
[4] Sone H, Zoback M D. Mechanical properties of shale-gas reservoir rocks:Part 1:Static and dynamic elastic properties and anisotropy[J]. Geophysics, 2013, 78(5):D381-D392.
[5] Barree R D, Cox S A, Miskimins J L, et al. Economic optimization of horizontal-well completions in unconventional reservoirs[J]. SPE Production & Operations, 2015, 30(4):293-311.
[6] Jin Y, Chen K P, Chen M. Analytical solution and mechanisms of fluid production from hydraulically fractured wells with finite fracture conductivity[J]. Journal of Engineering Mathematics, 2015, 92(1):103-122.
[7] Zhang F S, Damjanac B, Maxwell S. Investigating hydraulic fracturing complexity in naturally fractured rock masses using fully coupled multiscale numerical modeling[J]. Rock Mechanics and Rock Engineering, 2019, 52(12):5137-5160.
[8] Holt R M, Fjær E, Stenebråten J F, et al. Brittleness of shales:Relevance to borehole collapse and hydraulic fracturing[J]. Journal of Petroleum Science and Engineering, 2015, 131:200-209.
[9] Vahid S, Ahmad G. Hydraulic fracture initiation from a wellbore in transversely isotropic rock[C]// 45thUS Rock Mechanics/Geomechanics Symposium,OnePetro, 2011.
[10] Bian H Y, Wang F, Zhang C G, et al. A new model between dynamic and static elastic parameters of shale based on experimental studies[J]. Arabian Journal of Geosciences, 2019, 12(19):609.
[11] Canady W. A method for full-range Young’s modulus correction[C]// SPE.The Woodlands,Texas,USA, 2011.
[12] Dong Y, Lu N, McCartney J S. Scaling shear modulus from small to finite strain for unsaturated soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(2):04017110.
[13] Hornby B E, Schwartz L M, Hudson J A. Anisotropic effective-medium modeling of the elastic properties of shales[J]. Geophysics, 1994, 59(10):1570-1583.
[14] Kaarsberg E A. Introductory studies of natural and artificial argillaceous aggregates by sound-propagation and X-ray diffraction methods[J]. The Journal of Geology, 1959, 67(4):447-472.
[15] Zhao L X, Qin X, Zhang J Q, et al. An effective reservoir parameter for seismic characterization of organic shale reservoir[J]. Surveys in Geophysics, 2018, 39(3):509-541.
[16] Johnston D H. Physical properties of shale at temperature and pressure[J]. Geophysics, 1987, 52(10):1391-1401.
[17] Miller D, Plumb R, Boitnott G. Compressive strength and elastic properties of a transversely isotropic calcareous mudstone[J]. Geophysical Prospecting, 2013, 61(2):315-328.
[18] Liu Q, Liang B, Sun W J, et al. Experimental study on the difference of shale mechanical properties[J]. Advances in Civil Engineering, 2021,(1):1-14.
[19] Li C B, Zou B B, Zhou H W, et al. Experimental investigation on failure behaviors and mechanism of an anisotropic shale in direct tension[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(4):98.
[20] Davarpanah S M, Ván P, Vásárhelyi B. Investigation of the relationship between dynamic and static deformation moduli of rocks[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6(1):29.
[21] 边会媛, 王飞, 张永浩, 等. 储层条件下致密砂岩动静态弹性力学参数实验研究[J]. 岩石力学与工程学报, 2015, 34(S1):3045-3054.
[21] Bian H Y, Wang F, Zhang Y H, et al. Experimental study of dynamic and static elastic parameters of tight sandstones under reservoir conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1):3045-3054.
[22] 王飞, 边会媛, 张永浩, 等. 不同温压下页岩动态与静态弹性模量转换研究[J]. 石油与天然气地质, 2018, 39(5):1048-1055.
[22] Wang F, Bian H Y, Zhang Y H, et al. Experimental study on dynamic and static elastic modulus conversion forshale under different temperatures and pressures[J]. Oil & Geology, 2018, 39(5):1048-1055.
[23] 赵贤正, 周立宏, 蒲秀刚, 等. 湖相页岩滞留烃形成条件与富集模式——以渤海湾盆地黄骅坳陷古近系为例[J]. 石油勘探与开发, 2020, 47(5):856-869.
doi: 10.11698/PED.2020.05.02
[23] Zhao X Z, Zhou L H, Pu X G, et al. Formation conditions and enrichment model of retained petroleum in lacustrine shale:A case study of the Paleogene in Huanghua depression,Bohai Bay Basin,China[J]. Petroleum Exploration & Development, 2020, 47(5):856-869.
[24] 马霄一, 李呈呈, 白俊, 等. 基于超声测试的页岩岩石物理特征分析[J]. 石油地球物理勘探, 2021, 56(4):801-808,673.
[24] Ma X Y, Li C C, Bai J, et al. Analysis of physical characteristics of shale rock based on ultrasonic testing[J]. Oil Geophysical Prospecting, 2021, 56(4):801-808,673.
[1] 杨富强, 廖海志, 王正, 莫亚军, 李叶飞, 刘营. 海岸效应对大地电磁测深数据畸变影响研究[J]. 物探与化探, 2024, 48(5): 1284-1293.
[2] 高玲霞, 冯斌, 梁萌, 吴文鹂, 孙跃. 青藏高原及其周缘的各向异性研究[J]. 物探与化探, 2024, 48(3): 684-689.
[3] 梁志强, 李弘. 不同方位各向异性反演技术对比和总结[J]. 物探与化探, 2024, 48(2): 443-450.
[4] 唐军, 刘沁园, 赖强, 吴煜宇, 许巍. 白云岩声电各向异性实验测量及分析[J]. 物探与化探, 2022, 46(6): 1492-1499.
[5] 谢锐, 阎建国, 陈琪. 叠前各向异性系数反演及在裂缝预测中的应用[J]. 物探与化探, 2022, 46(4): 968-976.
[6] 郭建磊. 轴向各向异性地层瞬变电磁三分量响应特征[J]. 物探与化探, 2022, 46(2): 362-372.
[7] 欧居刚, 王小兰, 杨晓, 邓小江, 黄诚, 李文佳. 水平井地震导向技术探索与应用——以四川盆地复杂地区页岩气井为例[J]. 物探与化探, 2021, 45(3): 551-559.
[8] 孙永壮, 李键, 秦德文, 刘庆文. 三维边缘保持滤波方法在海上地震数据噪声压制中的应用研究——以东海某凹陷为例[J]. 物探与化探, 2021, 45(3): 692-701.
[9] 陈志刚, 马文杰, 赵宏忠, 许凤, 崔全章, 马辉, 孙星. 利用曲率类属性预测储层裂缝的流程及应用实例[J]. 物探与化探, 2020, 44(5): 1201-1207.
[10] 周锦钟, 张金海, 牛全兵, 张惠瑜, 王海峰, 朱波, 李丽, 尹思, 王娜. 柴达木盆地尖顶山地区低频可控震源“两宽一高”地震资料处理关键技术应用研究[J]. 物探与化探, 2020, 44(2): 313-320.
[11] 王超, 宋维琪, 林彧涵, 张云银, 高秋菊, 魏欣伟. 基于叠前反演的地应力预测方法应用[J]. 物探与化探, 2020, 44(1): 141-148.
[12] 张红文, 刘喜恒, 周兴海, 李六五, 杜喜善, 王成泉. 全方位偏移成像技术在南马庄潜山构造带的应用[J]. 物探与化探, 2020, 44(1): 25-33.
[13] 唐杰, 李聪, 温雷, 戚瑞轩. 裂隙连通性对含流体介质剪切波分裂特征的影响[J]. 物探与化探, 2019, 43(4): 859-865.
[14] 李文成, 扶喆一. 焦石坝地区页岩各向异性及其影响的分析研究[J]. 物探与化探, 2019, 43(2): 266-272.
[15] 冯德山, 王向宇. 基于卷积完全匹配层的旋转交错网格高阶差分法模拟弹性波传播[J]. 物探与化探, 2018, 42(4): 766-776.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com