Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1674-1683    DOI: 10.11720/wtyht.2024.1453
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于同步挤压广义S变换的多尺度断裂刻画研究
陈珂磷1(), 文冉1, 杨扬1, 吴俐辉2, 杨高建2, 严海滔2, 张奎2
1.四川长宁天然气开发有限责任公司,四川 成都 610000
2.北京普瑞斯安能源科技有限公司,北京 100085
Multi-scale fault characterization using synchrosqueezing generalized S-transform
CHEN Ke-Lin1(), WEN Ran1, YANG Yang1, WU Li-Hui2, YANG Gao-Jian2, YAN Hai-Tao2, ZHANG Kui2
1. Sichuan Changning Natural Gas Development Co. Ltd., Chengdu 610000, China
2. Beijing Precise Energy Technology Co. Ltd., Beijing 100085, China
全文: PDF(9329 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

叠后断裂识别一般基于构造类属性,但该类属性都存在断点刻画不清、断层连续性差等特点;深度学习对于大、中尺度的断裂有着较好的表征能力,但是针对小尺度的断裂刻画能力有限。基于此,提出同步挤压广义S变换的振幅梯度凌乱性多尺度断裂刻画算法:首先,在时频域内将地震数据分解为不同频带的单频数据体;其次,基于不同频带的地震数据体计算振幅梯度向量的凌乱性;最后,运用不同频带的地震数据体刻画不同尺度的断裂信息。基于模型及实际资料的研究结果表明,同步挤压广义S变换振幅梯度凌乱性属性不仅对大、中尺度断裂有较好的刻画能力,同时对于小尺度断裂也有着很好的表征。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈珂磷
文冉
杨扬
吴俐辉
杨高建
严海滔
张奎
关键词 叠后断裂同步挤压广义S变换振幅梯度凌乱性多尺度断裂    
Abstract

Post-stack fault recognition is typically performed based on structural attributes, which, however, frequently exhibit unclear characterization of fault contacts and poor fault continuity. Deep learning can characterize middle- to large-scale faults accurately but has a limited capacity to characterize small-scale ones. This study developed a multi-scale fault characterization algorithm using amplitude gradient clutter based on synchrosqueezing generalized S-transform (SSGST). First, seismic data were decomposed into single-frequency data volumes across different frequency bands in the time-frequency domain. Then, the clutter of the amplitude gradient vectors was computed based on the seismic data volumes of different frequency bands. Finally, multi-scale faults were characterized using seismic data volumes of different frequency bands. The results from both model simulations and practical data demonstrate that the amplitude gradient clutter property derived using SSGST provides can effectively characterize small-scale faults besides large-and medium-scale faults.

Key wordspost-stack fracture characterization    synchrosqueezing generalized S-transform (SSGST)    amplitude gradient clutter    multi-scale fracture
收稿日期: 2023-10-19      修回日期: 2024-08-07      出版日期: 2024-12-20
ZTFLH:  P631.4  
引用本文:   
陈珂磷, 文冉, 杨扬, 吴俐辉, 杨高建, 严海滔, 张奎. 基于同步挤压广义S变换的多尺度断裂刻画研究[J]. 物探与化探, 2024, 48(6): 1674-1683.
CHEN Ke-Lin, WEN Ran, YANG Yang, WU Li-Hui, YANG Gao-Jian, YAN Hai-Tao, ZHANG Kui. Multi-scale fault characterization using synchrosqueezing generalized S-transform. Geophysical and Geochemical Exploration, 2024, 48(6): 1674-1683.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1453      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1674
Fig.1  理论信号的时频谱
Fig.2  理论信号加噪后的时频变换结果
Fig.3  速度模型及正演记录
Fig.4  叠后单道记录及二维时频谱
Fig.5  多尺度断裂预测结果
Fig.6  不同属性分析得到的断裂识别结果
Fig.7  振幅梯度凌乱性连井剖面
Fig.8  叠后实际资料单道记录及二维时频谱
Fig.9  不同频段的断裂叠合剖面
Fig.10  全频带断裂检测结果
Fig.11  大尺度断裂检测结果
Fig.12  小尺度断裂检测结果
Fig.13  多尺度断裂检测结果
[1] 郑马嘉, 陈珂磷, 蔡景顺, 等. 基于振幅梯度凌乱性检测算法的页岩气裂缝预测在长宁地区的应用[J]. 地球物理学进展, 2022, 37(5):2110-2117.
[1] Zheng M J, Chen K L, Cai J S, et al. Application of shale gas fracture prediction based on amplitude gradient messy detection algorithm in Changning area[J]. Progress in Geophysics, 2022, 37(5):2110-2117.
[2] Bahorich M, Farmer S. 3D seismic discontinuity for faults and stratigraphic features:The coherence cube[J]. The Leading Edge, 1995, 14(10):1053-1058.
[3] Marfurt K J, Kirlin R L, Farmer S L, et al. 3D seismic attributes using a semblance-based coherency algorithm[J]. Geophysics, 1998, 63(4):1150-1165.
[4] Gersztenkorn A, Marfurt K J. Eigenstructure-based coherence computations as an aid to 3D structural and stratigraphic mapping[J]. Geophysics, 1999, 64(5):1468-1479.
[5] 王西文, 杨孔庆, 周立宏, 等. 基于小波变换的地震相干体算法研究[J]. 地球物理学报, 2002, 45(6):847-852,908.
[5] Wang X W, Yang K Q, Zhou L H, et al. Methods of calculating coherence cube on the basis of wavelet transform[J]. Chinese Journal of Geophysics, 2002, 45(6):847-852,908.
[6] Hale D. Methods to compute fault images,extract fault surfaces,and estimate fault throws from 3D seismic images[J]. Geophysics, 2013, 78(2):33-43.
[7] Wu X M, Hale D. 3D seismic image processing for faults[J]. Geophysics, 2016, 81(2):IM1-IM11.
[8] Wu X M. Methods to compute salt likelihoods and extract salt boundaries from 3D seismic images[J]. Geophysics, 2016, 81(6):IM119-IM126.
[9] Wu X M, Liang L M, Shi Y Z, et al. FaultSeg3D:Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation[J]. Geophysics, 2019, 84(3):IM35-IM45.
[10] Wu X M, Geng Z C, Shi Y Z, et al. Building realistic structure models to train convolutional neural networks for seismic structural interpretation[J]. Geophysics, 2020, 85(4):WA27-WA39.
[11] Al-Dossary S, Wang Y E, McFarlane M. Estimating randomness using seismic disorder[J]. Interpretation, 2014, 2(1):SA93-SA97.
[12] Daubechies I, Lu J F, Wu H T. Synchrosqueezed wavelet transforms:An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2):243-261.
[13] 黄忠来, 张建中. 同步挤压S变换[J]. 中国科学:信息科学, 2016, 46(5):643-650.
[13] Huang Z L, Zhang J Z. Synchrosqueezing S-transform[J]. Scientia Sinica:Informationis, 2016, 46(5):643-650.
[14] 黄忠来, 张建中, 邹志辉. 二阶同步挤压S变换及其在地震谱分解中的应用[J]. 地球物理学报, 2017, 60(7):2833-2844.
doi: 10.6038/cjg20170728
[14] Huang Z L, Zhang J Z, Zou Z H. A second-order synchrosqueezing S-transform and its application in seismic spectral decomposition[J]. Chinese Journal of Geophysics, 2017, 60(7):2833-2844.
[15] 严海滔, 周怀来, 牛聪, 等. 同步挤压改进短时傅里叶变换分频相干技术在断裂识别中的应用[J]. 石油地球物理勘探, 2019, 54(4):860-866,725-726.
[15] Yan H T, Zhou H L, Niu C, et al. Fault identification with short-time Fourier transform frequency-decomposed coherence improved by synchronous extrusion[J]. Oil Geophysical Prospecting, 2019, 54(4):860-866,725-726.
[16] 严海滔, 黄饶, 周怀来, 等. 同步挤压广义S变换在南海油气识别中的应用[J]. 地球物理学进展, 2019, 34(3):1229-1235.
[16] Yan H T, Huang R, Zhou H L, et al. Application of Nanhai oil and gas identification based on synchrosqueezing generalized S transform[J]. Progress in Geophysics, 2019, 34(3):1229-1235.
[17] 严海滔, 龚齐森, 周怀来, 等. 基于同步挤压改进短时傅里叶变换的谱分解应用[J]. 大庆石油地质与开发, 2019, 38(3):122-131.
[17] Yan H T, Gong Q S, Zhou H L, et al. Application of the spectral decomposition based on the improved short-time Fourier transform by synchronous extrusion[J]. Petroleum Geology & Oilfield Development in Daqing, 2019, 38(3):122-131.
[1] 张珈畅, 李涛, 梁宏刚, 费娥, 孙致远, 岳彤. 塔里木盆地二八台地区走滑断裂体系研究[J]. 物探与化探, 2024, 48(6): 1588-1598.
[2] 王兴宇, 刘艳丽, 王通, 荣立新. 银额盆地西部地震勘探试验研究进展及效果[J]. 物探与化探, 2024, 48(6): 1599-1608.
[3] 张永升, 黄超, 刘军, 张永恒, 王兴建, 薛雅娟. 地震信号倒谱分解技术及其在超深层碳酸盐岩储层烃类检测中的应用[J]. 物探与化探, 2024, 48(6): 1618-1625.
[4] 许磊明, 李斐, 王建华, 李美, 曹永亮, 王浩坤. 分步振幅一致性处理技术在鄂尔多斯盆地拼接大剖面中的应用[J]. 物探与化探, 2024, 48(6): 1643-1652.
[5] 张永升, 张荣, 樊易, 张安家, 李英才. 基于稀疏约束频率域抛物线Radon变换的波场分解[J]. 物探与化探, 2024, 48(6): 1653-1663.
[6] 边会媛, 臧鑫, 张迪, 张程恩, 聂晓敏, 武银婷. 应力效应下页岩动静态弹性各向异性特征[J]. 物探与化探, 2024, 48(6): 1664-1673.
[7] 赵朋朋. 基于MEMS的槽波地震仪的研制[J]. 物探与化探, 2024, 48(6): 1684-1692.
[8] 周鑫, 王洪华, 王欲成, 吴祺铭, 王浩林, 刘洪瑞. 基于共偏移距GPR信号包络和三维速度谱分析的介质电磁波速度估计方法[J]. 物探与化探, 2024, 48(6): 1693-1701.
[9] 张建磊, 王鹏飞, 孙郧松, 李国发. 信号自适应识别多道反褶积方法[J]. 物探与化探, 2024, 48(6): 1702-1708.
[10] 杨浩, 邹杰, 程丹丹, 于景兰. 探地雷达在临海市古长城内部结构检测中的应用分析[J]. 物探与化探, 2024, 48(6): 1741-1746.
[11] 黄福强, 陈建文, 李斌, 张异彪, 杨佳佳, 李珂. 南黄海强屏蔽层下富低频强能量气枪震源设计及应用[J]. 物探与化探, 2024, 48(5): 1294-1301.
[12] 姚铭. 基于构造导向滤波处理的断层提取技术及其应用[J]. 物探与化探, 2024, 48(5): 1313-1321.
[13] 杨浪邕航, 李红星. 浅地表环境下ESPAC微动成像方法影响因素分析[J]. 物探与化探, 2024, 48(5): 1322-1330.
[14] 齐鹏, 杨金龙, 胡守旺. 一种改进的SRME方法在陆地表面多次波压制中的应用[J]. 物探与化探, 2024, 48(5): 1331-1336.
[15] 何小龙, 张兵, 杨凯, 何一帆, 李琢. 基于沉积微相特征挖掘的随机森林岩石相测井识别方法——以新场地区须家河组二段致密砂岩为例[J]. 物探与化探, 2024, 48(5): 1337-1347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com