Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (6): 1618-1625    DOI: 10.11720/wtyht.2024.1481
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
地震信号倒谱分解技术及其在超深层碳酸盐岩储层烃类检测中的应用
张永升1(), 黄超1, 刘军1, 张永恒2, 王兴建2, 薛雅娟3
1.中国石化西北油田分公司 勘探开发研究院,新疆 乌鲁木齐 830011
2.成都理工大学 地球物理学院,四川 成都 610059
3.成都信息工程大学 通信与信息工程学院,四川 成都 610059
Cepstrum decomposition of seismic signals and its application in hydrocarbon detection of ultradeep carbonate reservoirs
ZHANG Yong-Sheng1(), HUANG Chao1, LIU Jun1, ZHANG Yong-Heng2, WANG Xing-Jian2, XUE Ya-Juan3
1. Exploration and Development Research Institute,SINOPEC Northwest Oilfield Branch,Urumqi 830011,China
2. College of Geophysics,Chengdu University of Technology,Chengdu 610059,China
3. School of Communication and Information Engineering,Chengdu University of Information Technology,Chengdu 610059,China
全文: PDF(5594 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地震信号倒谱分解技术是近年来发展起来的一种烃类检测方法,有利于突出宽频带地震信号内某些特定频段的弱流体信息。本文着重研究了基于傅里叶变换倒谱和基于小波包变换倒谱的地震信号倒谱分解技术,并应用于顺北地区超深层碳酸盐岩储层烃类检测。对比分析了共倒谱剖面与传统共频率剖面的特征,进一步详细对比分析了基于傅里叶变换倒谱和基于小波包变换倒谱的一阶和二阶共倒频剖面特征,在此基础上,对比研究了基于傅里叶变换倒谱和基于小波包变换倒谱的烃类检测效果。实际地震数据处理结果表明,倒谱分解技术较常规基于小波变换的谱分解技术时空分辨率更高,能给出更多的细节信息。小波包倒谱分解技术较傅里叶变换倒谱分解技术检测到的地震幅度异常剖面能给出更准确的含气性解释结果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张永升
黄超
刘军
张永恒
王兴建
薛雅娟
关键词 倒谱分解傅里叶变换倒谱小波包倒谱超深层碳酸盐岩储层    
Abstract

The cepstrum decomposition technology for seismic signals,recently developed for hydrocarbon detection,can highlight weak fluid information in some specific frequency bands of broadband seismic signals.This study explored the cepstrum decomposition technology for seismic signals using Fourier transform(FT)- and wavelet packet transform (WPT)-based cepstrum.Moreover,the technology was applied to the ultradeep carbonate reservoirs in the Shunbei area for hydrocarbon detection.A comparative analysis was conducted on the characteristics of common cepstrum profiles and conventional common frequency profiles.Furthermore,a detailed comparative analysis was conducted on the characteristics of the first- and second-order common cepstrum profiles of FT- and WPT-based cepstra.On this basis,the hydrocarbon detection effects were compared between FT- and WPT-based cepstra.The processing results of actual seismic data show that compared to the conventional spectral decomposition technology based on wavelet transform,the cepstrum decomposition technology manifested higher spatio-temporal resolution,providing more detailed information. Contrasting with FT-based cepstrum decomposition,WPT-based cepstrum decomposition provided a more accurate interpretation of gas-bearing properties through the seismic amplitude anomaly profiles.

Key wordscepstrum decomposition    Fourier transform-based cepstrum    wavelet packet transform-based cepstrum    ultradeep carbonate reservoir
收稿日期: 2024-02-11      修回日期: 2024-09-26      出版日期: 2024-12-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目“基于相干成像的测井远探测高精度成像理论研究”(42074163)
引用本文:   
张永升, 黄超, 刘军, 张永恒, 王兴建, 薛雅娟. 地震信号倒谱分解技术及其在超深层碳酸盐岩储层烃类检测中的应用[J]. 物探与化探, 2024, 48(6): 1618-1625.
ZHANG Yong-Sheng, HUANG Chao, LIU Jun, ZHANG Yong-Heng, WANG Xing-Jian, XUE Ya-Juan. Cepstrum decomposition of seismic signals and its application in hydrocarbon detection of ultradeep carbonate reservoirs. Geophysical and Geochemical Exploration, 2024, 48(6): 1618-1625.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1481      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I6/1618
Fig.1  基于傅里叶变换倒谱的地震数据倒谱分解技术流程
Fig.2  基于小波包变换倒谱的地震数据倒谱分解技术流程
Fig.3  地质模型(a)及其地震响应剖面(b)
层号 Vp /(m·s-1) ρ/(g·cm-3) ζ/Hz η/(m2·s-1) Q
5000 2.500 1.0 1.0 200
5260 2.539 1.0 1.0 200
5320 2.548 1.0 1.0 200
5100 2.515 5 400 5
5550 2.583 1.0 1.0 200
5800 2.620 1.0 1.0 200
Table 1  地质模型参数
Fig.4  地震振幅异常剖面
a—傅里叶倒谱;b—小波包倒谱
Fig.5  过井剖面
Fig.6  过井剖面的一阶共倒谱剖面和共频率剖面
a—CWT提取的8 Hz共频率剖面,小波变换中使用Morlet小波;b—傅里叶变换倒谱提取的一阶共倒谱剖面;c—小波包倒谱提取的一阶共倒谱剖面
Fig.7  傅里叶倒谱和小波包倒谱提取的一阶和二阶共倒谱剖面
a—傅里叶变换倒谱提取的一阶共倒谱剖面;b—傅里叶变换倒谱提取的二阶共倒谱剖面;c—小波包倒谱提取的一阶共倒谱剖面;d—小波包倒谱提取的二阶共倒谱剖面
Fig.8  地震振幅异常剖面
a—傅里叶倒谱;b—小波包倒谱
Fig.9  地震振幅异常切片
a—傅里叶倒谱;b—小波包倒谱
[1] 曹俊兴, 刘树根, 田仁飞, 等. 龙门山前陆盆地深层海相碳酸盐岩储层地震预测研究[J]. 岩石学报, 2011, 27(8):2423-2434.
[1] Cao J X, Liu S G, Tian R F, et al. Seismic prediction of carbonate reservoirs in the deep of Longmenshan foreland basin[J]. Acta Petrologica Sinica, 2011, 27(8):2423-2434.
[2] Cao J, Tian R, He X. Seismic-print Analysis and Hydrocarbon Identification[C]// AGU Fall Meeting Abstracts,AGUFM, 2011.
[3] 田仁飞, 曹俊兴. 地震分倒频处理技术[J]. 地球物理学进展, 2012, 27(3):1183-1188.
[3] Tian R F, Cao J X. Seismic sub-inverted frequency processing technology[J]. Progress in Geophysics, 2012, 27(3):1183-1188.
[4] 曹俊兴, 薛雅娟, 田仁飞, 等. 深层碳酸盐岩储层含气性检测方法技术研究[J]. 石油物探, 2019, 58(1):9-16.
doi: 10.3969/j.issn.1000-1441.2019.01.002
[4] Cao J X, Xue Y J, Tian R F, et al. Advances in hydrocarbon detection in deep carbonate reservoirs[J]. Geophysical Prospecting for Petroleum, 2019, 58(1):9-16.
doi: 10.3969/j.issn.1000-1441.2019.01.002
[5] Xue Y J, Cao J X, Tian R F, et al. Wavelet-based cepstrum decomposition of seismic data and its application in hydrocarbon detection[J]. Geophysical Prospecting, 2016, 64(6):1441-1453.
[6] Cao J X, Jiang X D, Xue Y J, et al. The state-of-the-art techniques of hydrocarbon detection and its application in ultra-deep carbonate reservoir characterization in the Sichuan Basin,China[J]. Frontiers in Earth Science, 2022, 10:851828.
[7] Bogert B P, Healy M J R, Tukey J W. The quefrency analysis of time series for echoes:Cepstrum,pseudo-autocovariance,cross-cepstrum and saphe cracking[G]// Rosenblatt M.Proceedings of the Symposium on Time Series Analysis, 1963:209-243.
[8] Ulrych T J. Application of homomorphic deconvolution to seismology[J]. Geophysics, 1971, 36(4):650-660.
[9] Ulrych T J, Jensen O G, Ellis R M, et al. Homomorphic deconvolution of some teleseismic events[J]. Bulletin of the Seismological Society of America, 1972, 62(5):1269-1281.
[10] Tuetuencueoglu K, Sate R. Cepstrum analysis for determination of rupture length of microearthquakes[J]. IISEE Bulletin, 1974, 12:1-16.
[11] Buhl P, Stoffa P L, Bryan G M. The application of homomorphic deconvolution to shallow-water marine seismology:Part ii:Real data[J]. Geophysics, 1974, 39(4):417-426.
[12] Scheuer T E, Wagner D E. Deconvolution by autocepstral windowing[J]. Geophysics, 1985, 50(10):1533-1540.
[13] Miah K H, Herrera R H, Van Der Baan M, et al. Application of fractional Fourier transform in cepstrum analysis[C]// Recovery-2011 CSPG CSEG CWLS Convention, 2011:1-4.
[14] Hall M. Predicting bed thickness with cepstral decomposition[J]. The Leading Edge, 2006, 25(2):199-204.
[15] Oppenheim A V, Schafer R W. Discrete-time signal processing[M]. Englewood Cliffs,NJ:Prentice Hall, 1989.
[16] Oppenheim A V. Superposition in a class of nonlinear systems[D]. Cambridge: Massachusetts Institute of Technology, 1965.
[17] Sanchez F L, Barbon S, Vieira L S, et al. Wavelet-based cepstrum calculation[J]. Journal of Computational and Applied Mathematics, 2009, 227(2):288-293.
[18] Deng L, O'Shaughnessy D. Speech processing:A dynamic and optimization-oriented approach[M]. CRC Press, 2003:50-52.
[19] Korneev V A, Goloshubin G M, Daley T M, et al. Seismic low-frequency effects in monitoring fluid-saturated reservoirs[J]. Geophysics, 2004, 69(2):522.
[20] 陈学华, 贺振华, 钟文丽. 低频阴影与储层特征关系的数值模拟[J]. 中国矿业大学学报, 2011, 40(4):584-591.
[20] Chen X H, He Z H, Zhong W L. Numeric simulation in the relationship between low frequency shadow and reservoir characteristic[J]. Journal of China University of Mining & Technology, 2011, 40(4):584-591.
[1] 张珈畅, 李涛, 梁宏刚, 费娥, 孙致远, 岳彤. 塔里木盆地二八台地区走滑断裂体系研究[J]. 物探与化探, 2024, 48(6): 1588-1598.
[2] 王兴宇, 刘艳丽, 王通, 荣立新. 银额盆地西部地震勘探试验研究进展及效果[J]. 物探与化探, 2024, 48(6): 1599-1608.
[3] 许磊明, 李斐, 王建华, 李美, 曹永亮, 王浩坤. 分步振幅一致性处理技术在鄂尔多斯盆地拼接大剖面中的应用[J]. 物探与化探, 2024, 48(6): 1643-1652.
[4] 张永升, 张荣, 樊易, 张安家, 李英才. 基于稀疏约束频率域抛物线Radon变换的波场分解[J]. 物探与化探, 2024, 48(6): 1653-1663.
[5] 边会媛, 臧鑫, 张迪, 张程恩, 聂晓敏, 武银婷. 应力效应下页岩动静态弹性各向异性特征[J]. 物探与化探, 2024, 48(6): 1664-1673.
[6] 陈珂磷, 文冉, 杨扬, 吴俐辉, 杨高建, 严海滔, 张奎. 基于同步挤压广义S变换的多尺度断裂刻画研究[J]. 物探与化探, 2024, 48(6): 1674-1683.
[7] 赵朋朋. 基于MEMS的槽波地震仪的研制[J]. 物探与化探, 2024, 48(6): 1684-1692.
[8] 周鑫, 王洪华, 王欲成, 吴祺铭, 王浩林, 刘洪瑞. 基于共偏移距GPR信号包络和三维速度谱分析的介质电磁波速度估计方法[J]. 物探与化探, 2024, 48(6): 1693-1701.
[9] 张建磊, 王鹏飞, 孙郧松, 李国发. 信号自适应识别多道反褶积方法[J]. 物探与化探, 2024, 48(6): 1702-1708.
[10] 杨浩, 邹杰, 程丹丹, 于景兰. 探地雷达在临海市古长城内部结构检测中的应用分析[J]. 物探与化探, 2024, 48(6): 1741-1746.
[11] 黄福强, 陈建文, 李斌, 张异彪, 杨佳佳, 李珂. 南黄海强屏蔽层下富低频强能量气枪震源设计及应用[J]. 物探与化探, 2024, 48(5): 1294-1301.
[12] 姚铭. 基于构造导向滤波处理的断层提取技术及其应用[J]. 物探与化探, 2024, 48(5): 1313-1321.
[13] 杨浪邕航, 李红星. 浅地表环境下ESPAC微动成像方法影响因素分析[J]. 物探与化探, 2024, 48(5): 1322-1330.
[14] 齐鹏, 杨金龙, 胡守旺. 一种改进的SRME方法在陆地表面多次波压制中的应用[J]. 物探与化探, 2024, 48(5): 1331-1336.
[15] 何小龙, 张兵, 杨凯, 何一帆, 李琢. 基于沉积微相特征挖掘的随机森林岩石相测井识别方法——以新场地区须家河组二段致密砂岩为例[J]. 物探与化探, 2024, 48(5): 1337-1347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com