Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (5): 1185-1192    DOI: 10.11720/wtyht.2024.1065
  “短偏移距瞬变电磁法技术与应用”专栏(特约专栏主编:薛国强) 本期目录 | 过刊浏览 | 高级检索 |
巷道电性源瞬变电磁响应三维数值模拟
贾波1(), 张富明2(), 张利军1, 刘皓皓1, 郭亮亮1, 宋伟1, 张朝阳1, 何海龙1, 王刚1
1.山西沁和绿色智能煤炭科学研究院有限公司,山西 晋城 048200
2.山西煤炭地质物探测绘院有限公司,山西 晋中 030600
Three-dimensional numerical simulation of grounded-source transient electromagnetic responses in roadways
JIA Bo1(), ZHANG Fu-Ming2(), ZHANG Li-Jun1, LIU Hao-Hao1, GUO Liang-Liang1, SONG Wei1, ZHANG Chao-Yang1, HE Hai-Long1, WANG Gang1
1. Shanxi Qinhe Green Intelligent Coal Research Institute Co., Ltd., Jincheng 048200, China
2. Coal Geological Geophysical Exploration Surveying & Mapping Institute of Shanxi Province, Jinzhong 030600, China
全文: PDF(4907 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

近年来地面电性源得到成功应用,巷道电性源瞬变电磁探测将成为热点。本文采用三维时域有限差分法,对巷道底板以及巷道与巷道之间异常体的电性源瞬变电磁响应进行了模拟。模拟结果表明:对于巷道底板异常体,受异常体表面电荷影响,电场水平分量和垂直分量在异常体表面剧烈变化,水平电场对低阻体的分辨能力较强,对高阻体的分辨能力较弱,低阻体与高阻体的垂直电场响应的符号相反;低阻体和高阻体的∂By/∂t响应在早、晚期的符号相反,低阻体响应在早期的符号为负,晚期为正,而高阻体响应在早期的符号为正,晚期为负。对于巷道与巷道之间的异常体,水平电场对低阻体的分辨能力较强,对高阻体的分辨能力较弱;高阻体模型的∂Bz/∂t响应曲线高于背景曲线,低阻体模型的响应曲线低于背景曲线,说明磁场∂Bz/∂t响应对高阻体和低阻体均有分辨能力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾波
张富明
张利军
刘皓皓
郭亮亮
宋伟
张朝阳
何海龙
王刚
关键词 电性源瞬变电磁响应分辨能力三维时域有限差分法数值模拟    
Abstract

Owing to the successful application of grounded-source in recent years, roadway detection using the grounded-source transient electromagnetic (TEM) method has attracted significant academic interest. Using the three-dimensional finite-difference time-domain (FDTD) method, this study simulated the grounded-source TEM responses of the anomalies in the roadway floors and between roadways. The simulation results are as follows: (1) For anomalies in the roadway floors, their surfaces show violent changes in the horizontal and vertical components of the electric field subjected to the surface charge of anomalies. The horizontal electric field exhibits a strong ability to discriminate low-resistivity bodies but a weak ability to discriminate high-resistivity bodies. The vertical electric field displays opposite response signs from the low- and high-resistivity bodies. The low- and high-resistivity bodies correspond to opposite ∂By/∂t responses in the early and late stages. Specifically, the response signs are negative in the early stage and positive in the late stage for low-resistivity bodies, whereas the results are contrary for high-resistivity bodies; (2) For anomalies between roadways, the horizontal electric field also exhibits a strong ability to discriminate low-resistivity bodies but a weak ability to discriminate high-resistivity bodies. The ∂Bz/∂t response curves are above the background curves in the model of high-resistivity bodies but below the background curves in the model of low-resistivity bodies, suggesting the discrimination ability of the ∂Bz/∂t response for both low- and high-resistivity bodies.

Key wordsgrounded-source transient electromagnetic response    discrimination    three-dimensional finite-difference time-domain method    numerical simulation
收稿日期: 2023-02-15      修回日期: 2023-12-28      出版日期: 2024-10-20
ZTFLH:  P631.1  
基金资助:侯村煤矿项目“整合关闭矿井资源回收前的探测分析与研究”(ZJSW2022072401D)
通讯作者: 张富明(1985-),男,工程师,主要从事地球物理勘探工作。Email:391791283@qq.com
作者简介: 贾波(1985-),男,高级工程师,主要从事煤矿安全生产工作。Email:1225970475@qq.com
引用本文:   
贾波, 张富明, 张利军, 刘皓皓, 郭亮亮, 宋伟, 张朝阳, 何海龙, 王刚. 巷道电性源瞬变电磁响应三维数值模拟[J]. 物探与化探, 2024, 48(5): 1185-1192.
JIA Bo, ZHANG Fu-Ming, ZHANG Li-Jun, LIU Hao-Hao, GUO Liang-Liang, SONG Wei, ZHANG Chao-Yang, HE Hai-Long, WANG Gang. Three-dimensional numerical simulation of grounded-source transient electromagnetic responses in roadways. Geophysical and Geochemical Exploration, 2024, 48(5): 1185-1192.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1065      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I5/1185
Fig.1  巷道瞬变电磁法装置示意
Fig.2  Yee网格单元示意
Fig.3  巷道底板异常体模型
Fig.4  不同时刻的水平电场等值线分布
Fig.5  不同时刻的垂直电场等值线分布
Fig.6  不同时刻的水平磁场等值线分布
Fig.7  巷道底板异常体瞬变电磁响应衰减曲线
Fig.8  巷道间存在异常体的模型
Fig.9  巷道间不同异常体瞬变电磁响应衰减曲线
Fig.10  巷道间不同异常体的Ex与?Bz/?t的多测道响应
[1] 陈卫营, 薛国强. 瞬变电磁法多装置探测技术在煤矿采空区调查中的应用[J]. 地球物理学进展, 2013, 28(5):2709-2717.
[1] Chen W Y, Xue G Q. Application on coal mine voids detection with multidevice TEM technology[J]. Progress in Geophysics, 2013, 28(5):2709-2717.
[2] 薛国强, 于景邨. 瞬变电磁法在煤炭领域的研究与应用新进展[J]. 地球物理学进展, 2017, 32(1):319-326.
[2] Xue G Q, Yu J C. New development of TEM research and application in coal mine exploration[J]. Progress in Geophysics, 2017, 32(1):319-326.
[3] 于景邨. 矿井瞬变电磁法勘探[M]. 徐州: 中国矿业大学出版社, 2007.
[3] Yu J C. Mine transient electromagnetic prospecting[M]. Xuzhou: China University of Mining and Technology press, 2007.
[4] 杨海燕, 邓居智, 张华, 等. 矿井瞬变电磁法全空间视电阻率解释方法研究[J]. 地球物理学报, 2010, 53(3):651-656.
[4] Yang H Y, Deng J Z, Zhang H, et al. Research on full space apparent resistivity interpretation technique in mine transient electromagnetic method[J]. Chinese Journal of Geophysics, 2010, 53(3):651-656.
[5] 姜志海, 焦险峰. 矿井瞬变电磁超前探测物理实验[J]. 煤炭学报, 2011, 36(11):1852-1857.
[5] Jiang Z H, Jiao X F. Physical experiment of mine transient electromagnetic advanced detection[J]. Journal of China Coal Society, 2011, 36(11):1852-1857.
[6] 常江浩, 于景邨. 煤矿隐蔽致灾水体全空间瞬变电磁响应特征及应用[M]. 北京: 地质出版社, 2021.
[6] Chang J H, Yu J C. Characteristics and application of whole-space transient electromagnetic response of hidden disaster-causing water bodies in coal mines[M]. Beijing: Geology Press, 2021.
[7] 薛国强, 闫述, 陈卫营. 接地源短偏移瞬变电磁法研究展望[J]. 地球物理学进展, 2014, 29(1):177-181.
[7] Xue G Q, Yan S, Chen W Y. Research prospect to grounded-wire TEM with short-offset[J]. Progress in Geophysics, 2014, 29(1):177-181.
[8] 于景邨, 刘志新, 岳建华, 等. 煤矿深部开采中的地球物理技术现状及展望[J]. 地球物理学进展, 2007, 22(2):586-592.
[8] Yu J C, Liu Z X, Yue J H, et al. Development and prospect of geophysical technology in deep mining[J]. Progress in Geophysics, 2007, 22(2):586-592.
[9] 杨海燕. 矿用多匝小回线源瞬变电磁场数值模拟与分布规律研究[D]. 徐州: 中国矿业大学, 2009.
[9] Yang H Y. Study on numerical simulation and distribution regularity of transient electromagnetic field with mine-used multi small loop[D]. Xuzhou: China University of Mining and Technology, 2009.
[10] 周璇, 刘树才, 常江浩, 等. 金属棚支架对矿井瞬变电磁探测影响及校正技术[J]. 煤炭科学技术, 2014, 42(11):101-104.
[10] Zhou X, Liu S C, Chang J H, et al. Influence on metal support to mine transient electromagnetic detection and correction technology[J]. Coal Science and Technology, 2014, 42(11):101-104.
[11] Yu J C, Malekian R, Chang J H, et al. Modeling of whole-space transient electromagnetic responses based on FDTD and its application in the mining industry[J]. IEEE Transactions on Industrial Informatics, 2017, 13(6):2974-2982.
[12] Chang J H, Yu J C, Li J J, et al. Diffusion law of whole-space transient electromagnetic field generated by the underground magnetic source and its application[J]. IEEE Access, 2019,7:63415-63425.
[13] 薛国强, 常江浩, 雷康信, 等. 瞬变电磁法三维模拟计算研究进展[J]. 地球科学与环境学报, 2021, 43(3):559-567.
[13] Xue G Q, Chang J H, Lei K X, et al. Review on three-dimensional simulations of transient electromagnetic field[J]. Journal of Earth Sciences and Environment, 2021, 43(3):559-567.
[14] Yee K S. Numerical solution of initial boundary problems involving Maxwell's equations in isotropic media[J]. IEEE Trans. Ant Prop., 1966, 14(3):302-307.
[15] Wang T, Hohmann G W. A finite-difference time-domain solution for three-dimensional electromagnetic modeling[J]. Geophysics, 1993, 58(6):797-809.
[16] 孙怀凤, 李貅, 李术才, 等. 考虑关断时间的回线源激发TEM三维时域有限差分正演[J]. 地球物理学报, 2013, 56(3):1049-1064.
[16] Sun H F, Li X, Li S C, et al. Three-dimensional FDTD modeling of TEM excited by a loop source considering ramp time[J]. Chinese Journal of Geophysics, 2013, 56(3):1049-1064.
[17] 常江浩. 煤矿富水区矿井瞬变电磁响应三维数值模拟及应用[D]. 徐州: 中国矿业大学, 2017.
[17] Chang J H. Three-dimensional numerical simulation and application of mine transient electromagnetic responses of water-rich area in coal mine[D]. Xuzhou: China University of Mining and Tech-nology, 2017.
[1] 常江浩, 薛俊杰, 孟庆鑫, 赵鹏. 煤矿富水体SOTEM响应三维数值模拟研究[J]. 物探与化探, 2024, 48(5): 1176-1184.
[2] 杨浪邕航, 李红星. 浅地表环境下ESPAC微动成像方法影响因素分析[J]. 物探与化探, 2024, 48(5): 1322-1330.
[3] 刘童, 孙成禹, 蔡瑞乾. 地震面波和P—导波正演模拟与波场分析[J]. 物探与化探, 2024, 48(4): 986-995.
[4] 刘洪华, 张卉, 王汝杰, 于鹏, 秦升强, 李文宇, 车荣祺. 滨海城市地质结构电阻率法三维模拟与应用[J]. 物探与化探, 2024, 48(4): 1037-1044.
[5] 杜惟一, 张冲, 韩华洋, 赵腾腾, 张文艺. 潜山花岗岩裂缝性储层阵列声波测井数值模拟研究[J]. 物探与化探, 2024, 48(2): 514-520.
[6] 黄瑶. 基于三维电阻率法的水电工程隧道地质条件探查[J]. 物探与化探, 2024, 48(1): 281-286.
[7] 张雪昂, 杨志超, 李小燕, 董丽媛. 多孔隙度变化倾角裂缝型砂岩铀矿超热中子运移模拟[J]. 物探与化探, 2023, 47(6): 1547-1554.
[8] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[9] 柴伦炜. 井间超高密度电法探测基桩的模拟及应用[J]. 物探与化探, 2022, 46(5): 1283-1288.
[10] 肖世鹏, 熊高君, 袁梦雨, 毛明秋, 王胜艺, 韦增涛. 黏声波高阶傅里叶有限差分法参数优化成像[J]. 物探与化探, 2022, 46(5): 1207-1213.
[11] 苏林帅, 蔡明, 郑占树, 徐宝宝, 罗居森, 胡燕杰, 张荆宇. 井眼扩径对水平井声波测井响应影响的数值模拟[J]. 物探与化探, 2022, 46(2): 467-473.
[12] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[13] 肖妍姗, 周正华, 苏杰, 魏鑫. 地表水平正反敲击激振下孔法剪切波速测试理论依据讨论[J]. 物探与化探, 2021, 45(5): 1288-1294.
[14] 苏鹏, 杨进. 时移电阻率反演模拟研究[J]. 物探与化探, 2021, 45(1): 159-164.
[15] 武建平, 张超, 陈剑平, 杨玺, 裴运军, 周庆东. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066-1072.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com