Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1207-1213    DOI: 10.11720/wtyht.2022.1419
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
黏声波高阶傅里叶有限差分法参数优化成像
肖世鹏(), 熊高君, 袁梦雨, 毛明秋, 王胜艺, 韦增涛
成都理工大学 地球物理学院,四川 成都 610000
Parameter optimization and imaging of visco-acoustic media using high-order Fourier finite-difference method
XIAO Shi-Peng(), XIONG Gao-Jun, YUAN Meng-Yu, MAO Ming-Qiu, WANG Sheng-Yi, WEI Zeng-Tao
College of Geophysics, Chengdu University of Technology, Chengdu 610000,China
全文: PDF(3287 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

黏声波高阶傅里叶有限差分法数值模拟可以更精准地反映具有大地吸收效应的高倾角地层地震响应,它能适应任意横向速度变化并压制大倾角处有限差分法出现的频散现象及背景噪声。高倾角地层偏移精度取决于差分算子常系数确定及阶数的求取。本文使用梯度下降法对傅里叶有限差分算子中的高阶有限差分校正项进行了优化,根据相对误差和约束系数优化结果,在不提高方程阶次的情况下达到更高阶方程的逼近效果,并将其扩展到黏声介质。通过设计的模型算例可以得出,文中方法适应具有吸收衰减效应的强空间变速介质的正演模拟,且具有较高的计算精度和计算效率,能对复杂地质构造进行准确的地震数值模拟。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖世鹏
熊高君
袁梦雨
毛明秋
王胜艺
韦增涛
关键词 傅里叶有限差分法黏声波介质地震数值模拟偏移衰减    
Abstract

The numerical simulation of visco-acoustic media using the high-order Fourier finite-difference method can reflect the seismic response of high-dip strata with geo-absorption effects more accurately.It can adapt to any lateral speed changes and suppress the dispersion and background noise at large dip angles caused by the finite-difference method.The migration precision of the high-dip strata depends on the determination of the constant coefficient of the difference operator and the calculation of the order.In this study,the gradient descent method was used to optimize the high-order finite-difference correction item in the Fourier finite-difference operator.According to the optimization results of the relative errors and constraint coefficients,the approximation effects of higher-order equations were achieved without increasing the order of the equation and then were expanded to viscoelastic media.Using the designed model,it can be concluded that the proposed method is applicable to the forward simulation of the strong spatial variable speed media with absorption and attenuation effects and has high calculation accuracy and efficiency.Accurate seismic numerical simulation of complex geological structures further confirmed the effectiveness of this method.

Key wordsFourier finite difference method    visco-acoustic media    seismic numerical simulation    migration    attenuation
收稿日期: 2021-08-11      修回日期: 2022-05-18      出版日期: 2022-10-20
ZTFLH:  P631.4  
基金资助:四川省教育厅地震正演模拟项目(KZB029)
作者简介: 肖世鹏(1997-),男,在读硕士研究生,从事地震勘探方面的研究工作。Email:Xiao_Shipeng@163.com
引用本文:   
肖世鹏, 熊高君, 袁梦雨, 毛明秋, 王胜艺, 韦增涛. 黏声波高阶傅里叶有限差分法参数优化成像[J]. 物探与化探, 2022, 46(5): 1207-1213.
XIAO Shi-Peng, XIONG Gao-Jun, YUAN Meng-Yu, MAO Ming-Qiu, WANG Sheng-Yi, WEI Zeng-Tao. Parameter optimization and imaging of visco-acoustic media using high-order Fourier finite-difference method. Geophysical and Geochemical Exploration, 2022, 46(5): 1207-1213.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1419      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1207
Fig.1  开尔文模型
N an bn cn dn
N=1 0.4078 0.4877 0.2539 0.1519
N=2 0.3522 -0.6803 -0.0696 0.0942
0.2400 0.7290 -0.0605 0.2647
Table 1  系数优化
Fig.2  相对误差随传播角变化曲线
(p=c/v=0.5)
Fig.3  点绕射模型
a—均匀介质中的点绕射模型;b—四阶有限差分算子优化正演;c—相移法正演;d—不同Q值波场变化对比
Fig.4  层状模型
a—黏弹性介质速度模型;b—系数优化后傅里叶有限差分正演结果;c—傅里叶有限差分偏移结果;d—优化系数后4阶傅里叶有限差分偏移结果
Fig.5  不同方法的Marmousi模型成像结果对比
a—Maimousi速度模型;b—2阶FFD正演(Q=∞);c—2阶优化FFD正演(Q=∞);d—4阶优化FFD正演(Q=∞);e—4阶优化FFD正演(变Q介质)
[1] 俞寿朋. 高分辨率地震勘探[M]. 北京: 石油工业出版社,1993.
[1] Yu S P. High resolution seismic exploration[M]. Beijing: Petroleum Industry Press,1993.
[2] 李庆忠. 走向精确勘探的道路[M]. 北京: 石油工业出版社,1994.
[2] Li Q Z. The road to accurate exploration[M]. Beijing: Petroleum Industry Press,1994.
[3] 陈树民, 刘礼农, 张剑峰, 等. 一种补偿介质吸收叠前时间偏移技术[J]. 石油物探, 2018, 57(4):576-583.
[3] Chen S M, Liu L N, Zhang J F, et al. A deabsorption prestack time migration technology[J]. Petroleum Geophysical Prospecting, 2018, 57(4):576-583.
[4] 徐凯, 孙赞东. 基于粘声衰减补偿的最小二乘逆时偏移[J]. 石油物探, 2018, 57(3):419-427.
[4] Xu K, Sun Z D. Least-squares reverse time migration based on visco-acoustic attenuation compensation[J]. Geophysical Prospecting for Petroleum, 2018, 57(3):419-427.
[5] 冀国强, 石颖. 正则化形式的稳定粘声逆时偏移成像方法[J]. 石油物探, 2020, 59(3):374-381.
[5] Ji G Q, Shi Y. Stable and regularized visco-acoustic reverse time migration[J]. Geophysical Prospecting for Petroleum, 2020, 59(3):374-381.
[6] 周斯琛. 频率域粘声介质全波形反演方法研究[D]. 青岛: 中国石油大学(华东), 2017.
[6] Zhou S C. The research on frequency domain visco-acoustic full waveform insersion[D]. Qingdao: China University of Petroleum (East China), 2017.
[7] 廖建平, 王华忠, 刘和秀, 等. 精确的频率空间域黏声波有限差分数值模拟[J]. 物探与化探, 2011, 35(4):541-545.
[7] Liao J P, Wang H Z, Liu H X, et al. Accurate visco-acoustic wave finite difference numerical simulation in frequency space domain[J]. Geophysical and Geochemical Exploration, 2011, 35(4):541-545.
[8] Stolt R H. Migration by fourier transform[J]. Geophyscis, 2012, 43(1): 23-48.
[9] 牛滨华, 孙春岩. 半无限空间各向同性黏弹性介质与地震波传播[M]. 北京: 地质出版社, 2007.
[9] Niu B H, Sun C Y. Half-space homogeneous isotropic viscoelastic medium and seismic wave propagation[M]. Beijing: Geological Publishing House, 2007.
[10] 李金丽, 李振春, 管路平, 等. 地震波衰减及补偿方法[J]. 物探与化探, 2015, 39(3):456-465.
[10] Li J L, Li Z C, Guan L P, et al. The method of seismic attenuation and energy compensation[J]. Geophysical and Geochemical Exploration, 2015, 39(3):456-465.
[11] 邓文志, 李振春, 王延光, 等. 基于稳定逆时传播算子的黏声介质最小二乘逆时偏移[J]. 物探与化探, 2015, 39(4):791-796.
[11] Deng W Z, Li Z C, Wang Y G, et al. The least-squares reverse time migration for visco-acoustic medium based on a stable reverse-time propagator[J]. Geophysical and Geochemical Exploration, 2015, 39(4):791-796.
[12] 李金丽, 曲英铭, 刘建勋, 等. 三维黏声最小二乘逆时偏移方法研究[J]. 物探与化探, 2018, 42(5):1013-1025.
[12] Li J L, Qu Y M, Liu J X, et al. A model study of three-dimensional viscoacoustic least-squares reverse time migration[J]. Geophysical and Geochemical Exploration, 2018, 42(5):1013-1025.
[13] 赵连锋. 井间地震波速与衰减联合层析成像方法研究[D]. 成都: 成都理工大学, 2002.
[13] Zhao L F. Study on crosswell seismic tomography combing velocity and attenuation[D]. Chengdu: Chengdu University of Technology, 2002.
[14] 贺振华, 赵宪生, 陈琴芳. 地震记录的快速f-k正演模拟[J]. 石油地球物理勘探, 1992, 27(3):336-342.
[14] He Z H, Zhao X S, Chen Q F. Fast f-k forward modeling of seismic data[J]. Oil Geophysical Prospecting, 1992, 27(3):336-342.
[15] 张金海, 王卫民, 赵连锋, 等. 黏声波介质傅里叶有限差分法正演模拟[J]. 石油地球物理勘探, 2008, 43(2):174-178.
[15] Zhang J H, Wang W M, Zhao L F, et al. Fourier finite-different forward modeling in viscoacoustic media[J]. Oil Geophysical Prospecting, 2008, 43(2):174-178.
[16] Stoffa P L, Fokkema J T, de Luna Freire R M, et al. Split-step Fourier migration[J]. Geophysics, 1990, 55(4):410-421.
doi: 10.1190/1.1442850
[17] Ristow D, Rühl T. Fourier finite-difference migration[J]. Geophysics, 1994, 59(12):1882-1893.
doi: 10.1190/1.1443575
[18] 邓巧琳. 地震波在反射与透射影响下的能量衰减分析[D]. 长沙: 湖南大学, 2013.
[18] Deng Q L. Derivation of reflection and transmission coefficient of seismic waves in viscoelastic media[D]. Changsha: Hunan University, 2013.
[19] Jo C H, Shin C, Suh J H. An optimal 9-point finite-difference frequency-space 2-D scalar wave extrapolator[J]. Geophysics, 1996, 61(2):529-537.
doi: 10.1190/1.1443979
[20] 马在田. 高阶有限差分偏移[J]. 石油地球物理勘探, 1982, 17(1):6-15.
[20] Ma Z T. The finite-difference migration of higher-order equation[J]. Oil Geophysical Prospecting, 1982, 17(1):6-15.
[21] 王华忠, 马在田, 曹景忠. 优化系数傍轴近似方程三维一步法偏移[J]. 石油地球物理勘探, 1998, 33(2):170-184.
[21] Wang H Z, Ma Z T, Cao J Z. Three dimensional one-pass migration using paraxial approximate equation with optimized coefficients[J]. Oil Geophysical Prospecting, 1998, 33(2):170-184.
[22] Liu L N, Zhang J F. 3D wavefield extrapolation with optimum split-step Fourier method[J]. Society of Exploration Geophysicists, 2006, 71(3):95-108.
[23] Lee M W, Suh S Y. Optimization of one-way wave equations[J]. Geophysics, 1985, 50(10):1634-1637.
doi: 10.1190/1.1441853
[24] Kadalbajoo M K, Awasthi A. Crank-Nicolson finite difference method based on a midpoint upwind scheme on a non-uniform mesh for time-dependent singularly perturbed convection-diffusion equations[J]. International Journal of Computer Mathematics, 2008, 85(5):771-790.
doi: 10.1080/00207160701459672
[25] Claerbout J F. Imaging the earth’s interior[J]. Geophysical Journal International, 1986, 86(1):217.
[26] Li Z M, Liu C L. An ideal depth extrapolation of two-dimensional seismic wave field[J]. Oil Geophysical Prospecting, 1990, 25(5):517-528.
[1] 席宇何, 王洪华, 王欲成, 吴祺铭. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5): 1250-1260.
[2] 徐雷良, 赵国勇, 张剑, 钟天淼, 谷佳莹, 游剑, 曲英铭. 绕射波与一次波联合黏声最小二乘逆时偏移[J]. 物探与化探, 2023, 47(1): 91-98.
[3] 石战战, 庞溯, 王元君, 池跃龙, 周强. 基于f-x域时频非凸正则化低秩矩阵近似的共偏移距道集去噪方法[J]. 物探与化探, 2022, 46(6): 1444-1453.
[4] 王霁川, 谷丙洛, 李振春. 井中地震黏声逆时偏移的井型影响分析[J]. 物探与化探, 2022, 46(5): 1196-1206.
[5] 杨宏伟, 王霁川, 孔庆丰, 谷丙洛, 孙卫国, 李振春. 井中地震粘声逆时偏移成像影响因素分析[J]. 物探与化探, 2022, 46(4): 877-886.
[6] 窦强峰, 罗勇, 杨晓海, 谭佳. 基于近似真地表浮动面叠前深度偏移成像技术应用研究[J]. 物探与化探, 2022, 46(2): 444-450.
[7] 苏云, 游洪文, 李令喜, 孟凡冰, 李敏杰, 唐娟, 谢金丽. 沙漠区可控震源采集资料“黑三角”强能量噪声压制技术[J]. 物探与化探, 2022, 46(2): 410-417.
[8] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[9] 张莹莹. 电性源瞬变电磁法综述[J]. 物探与化探, 2021, 45(4): 809-823.
[10] 马良涛, 范廷恩, 许学良, 董建华, 蔡文涛. 油气检测多技术联合在B油田的应用研究[J]. 物探与化探, 2021, 45(4): 961-969.
[11] 段莹, 张高成, 谭雅丽. 泌阳凹陷高陡构造带地震成像[J]. 物探与化探, 2021, 45(4): 981-989.
[12] 裴肖明, 冯国瑞, 戚庭野. 瞬变电磁法探测复杂状态下煤矿充水采空区物理模拟实验[J]. 物探与化探, 2021, 45(4): 1055-1063.
[13] 邓儒炳, 阎建国, 陈琪, 宋鑫磊. 一种基于连续补偿函数的时变增益限反Q滤波方法[J]. 物探与化探, 2021, 45(3): 702-711.
[14] 欧居刚, 王小兰, 杨晓, 邓小江, 黄诚, 李文佳. 水平井地震导向技术探索与应用——以四川盆地复杂地区页岩气井为例[J]. 物探与化探, 2021, 45(3): 551-559.
[15] 徐蔚亚. 关于浮动基准面与起伏地表面的讨论[J]. 物探与化探, 2021, 45(1): 95-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com