Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (3): 794-803    DOI: 10.11720/wtyht.2023.1199
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
地下供水管线渗漏的探地雷达模拟探测试验分析
王欲成(), 王洪华(), 苏鹏锦, 龚俊波, 席宇何
桂林理工大学 地球科学学院,广西 桂林 541004
Simulated detection experiments of underground water supply pipeline leakage based on ground penetrating radar
WANG Yu-Cheng(), WANG Hong-Hua(), SU Peng-Jin, GONG Jun-Bo, XI Yu-He
College of Earth Sciences,Guilin University of Technology,Guilin 541004,China
全文: PDF(7153 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地下供水管线作为城市基础设施的重要部分,由于年久失修、腐蚀、施工质量不佳等原因,常常发生管线渗漏及破裂问题。利用无损检测方法准确识别地下供水管线的渗漏位置及影响区域,对其早期预警和后续治理具有重要意义。本文利用探地雷达(GPR)方法对地下供水管线渗漏进行模拟探测试验与分析。首先,基于GeoStudio软件中的SEEP/W模块建立砂土中供水管线渗漏模型并计算其不同渗漏位置和渗漏时间的体积含水量,然后根据Topp公式和电导率与含水量的经验公式构建相应供水管线渗漏的相对介电常数和电导率模型。在此基础上,利用时域有限差分法(FDTD)对不同渗漏位置、不同渗漏时间的供水管线渗漏模型进行GPR模拟探测,并对模拟结果进行分析。最后,开展供水管线渗漏的GPR物理模拟探测试验,并与数值模拟结果进行对比分析。结果表明:与供水管线未渗漏的双曲线绕射波相比,上侧渗漏时,渗漏时间越长,渗漏区域越大,双曲线绕射波出现时间越早,能量越弱,其顶点水平位置保持不变;下侧渗漏时,出现2条分别向上和向下移动的双曲线绕射波,且渗漏时间越长,2条双曲线绕射波能量越弱且越分离,其顶点水平位置保持不变;左(右)侧渗漏时,渗漏时间越长,双曲线绕射波能量越弱,且顶点越向左(右)上偏移。模拟探测研究成果可为供水管线渗漏问题的早期预警和后期治理提供较为可靠的依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王欲成
王洪华
苏鹏锦
龚俊波
席宇何
关键词 供水管线渗漏GeoStudio软件探地雷达数值模拟物理模拟    
Abstract

As an important part of urban infrastructure, underground water supply pipelines frequently leak or break due to disrepair,corrosion,and poor construction quality.It is of great significance to identify the leakage locations and affected areas of underground water supply pipelines using a non-destructive testing method for the purpose of early warning and follow-up treatment.This study conducted simulated detection experiments and analysis of underground water supply pipeline leakage using the ground penetrating radar (GPR) method.Firstly,this study established the leakage model of water supply pipelines in sandy soil using the SEEP/W module in the GeoStudio software and calculated the volumetric water content of different leakage locations and leakage times.Then,it established the relative dielectric constant and conductivity model for water supply pipeline leakage using the Topp equation and the empirical equations of electrical conductivity and water content.On this basis,this study conducted the GPR simulated detection of the water supply pipeline leakage model with different leakage locations and different leakage times using the finite difference time domain (FDTD) method and analyzed the simulation results.Finally,this study conducted the GPR-based physical simulated detection tests of water supply pipeline leakage and compared the test results with the numerical simulation results.The study results are as follows.Compared with the hyperbolic diffracted wave of the water supply pipelines without leakage,that of the water supply pipelines with leakage at different locations are stated as follows.For the leakage on the upper side,a longer leakage area and a larger leakage area were associated with an earlier present hyperbolic diffracted wave with weaker energy,while the horizontal position of the hyperbolic diffracted wave's vertex remained unchanged.For the leakage on the lower side,two hyperbolic diffracted waves appeared,which moved up and down individually.Moreover,a longer leakage time corresponded to two weaker and more separated hyperbolic diffracted waves.The horizontal positions of the hyperbolic diffracted waves' vertexes remained unchanged.For the leakage on the left (right) side,a longer leakage time was associated with a weaker hyperbolic diffracted wave,whose vertex deviated farther toward the upper left (right).The simulated detection results of this study can provide a reliable basis for early warning and follow-up treatment of water supply pipeline leakage.

Key wordswater supply pipeline leakage    GeoStudio software    ground penetrating radar    numerical simulation    physical simulation
收稿日期: 2022-05-17      修回日期: 2023-04-07      出版日期: 2023-06-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目(41604102);广西自然科学基金项目(2020GXNSFAA159121);广西自然科学基金项目(2022GXNSFAA035595)
通讯作者: 王洪华(1986-),男,副教授,主要从事探地雷达正反演理论及应用研究工作。Email:wanghonghua5@163.com
作者简介: 王欲成(1996-),男,硕士研究生,主要从事探地雷达数据处理及偏移成像方面的研究工作。Email:1125413321@qq.com
引用本文:   
王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
WANG Yu-Cheng, WANG Hong-Hua, SU Peng-Jin, GONG Jun-Bo, XI Yu-He. Simulated detection experiments of underground water supply pipeline leakage based on ground penetrating radar. Geophysical and Geochemical Exploration, 2023, 47(3): 794-803.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1199      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I3/794
Fig.1  供水管线不同位置渗漏2.0 h后的体积含水量分布
a—上侧渗漏;b—下侧渗漏;c—左侧渗漏;d—右侧渗漏
Fig.2  供水管线不同位置渗漏2.0 h后的相对介电常数分布
a—上侧渗漏;b—下侧渗漏;c—左侧渗漏;d—右侧渗漏
Fig.3  供水管线不同位置渗漏2.0 h后的电导率分布
a—上侧渗漏;b—下侧渗漏;c—左侧渗漏;d—右侧渗漏
Fig.4  供水管线未渗漏相对介电常数模型(a)及其GPR模拟剖面(b)
Fig.5  供水管线上侧渗漏0.5 h(a)、1.0 h(b)、2.0 h(c)、3.0 h(d)后的相对介电常数模型
Fig.6  供水管线上侧渗漏 0.5 h(a)、1.0 h(b)、2.0 h (c)、3.0 h(d)后的GPR模拟剖面
Fig.7  图6中水平中心位置处的单道波形对比
Fig.8  供水管线下侧渗漏 0.5 h(a)、1.0 h(b)、2.0 h(c)、3.0 h(d)后的相对介电常数模型
Fig.9  供水管线下侧渗漏 0.5 h(a)、1.0 h(b)、2.0 h(c)、3.0 h(d)后的GPR模拟剖面
Fig.10  图9中水平中心位置处的单道波形对比
Fig.11  供水管线左侧渗漏0.5 h(a)、1.0 h(b)、2.0 h(c)、3.0 h(d)后的相对介电常数模型
Fig.12  供水管线右侧渗漏0.5 h(a)、1.0 h(b)、2.0 h(c)、3.0 h(d)后的相对介电常数模型
Fig.13  供水管线左侧渗漏 0.5 h(a)、1.0 h(b)、2.0 h(c)、3.0 h(d)后的GPR模拟剖面
Fig.14  供水管线右侧渗漏 0.5 h(a)、1.0 h(b)、2.0 h(c)、3.0 h(d)后的GPR模拟剖面
Fig.15  图13图14中水平中心位置处的单道波形对比
Fig.16  地下供水管线渗漏物理模型(a)与现场测线布置(b)
Fig.17  供水管线上侧渗漏 0 min(a)、20.0 min(b)、40.0 min(c)、60.0 min(d)后的GPR物理模拟剖面
Fig.18  供水管线下侧渗漏 0 min(a)、20.0 min(b)、40.0 min(c)和60.0 min(d)后的GPR物理模拟剖面
Fig.19  供水管线左侧渗漏 0 min(a)、20.0 min(b)、40.0 min(c)、60.0 min(d)后的GPR物理模拟剖面
Fig.20  供水管线右侧渗漏 0 min(a)、20.0 min(b)、40.0 min(c)、60.0 min(d)后的GPR物理模拟剖面
[1] 金鑫. 管线渗漏异常探地雷达数据的电场分量成像分析[J]. 煤田地质与勘探, 2018, 46(2):159-163.
[1] Jin X. Study on electric field component imaging of leakage in pipeline using GPR[J]. Coal Geology & Exploration, 2018, 46(2):159-163.
[2] 姬建, 夏嘉诚, 张哲铭, 等. 污水管线渗漏诱发地面下陷数值分析[J]. 河海大学学报:自然科学版, 2021, 49(5):406-412.
[2] Ji J, Xia J C, Zhang Z M, et al. Numerical analysis of ground subsidence induced by leakage of sewage pipeline[J]. Journal of Hohai University:Natural Sciences, 2021, 49(5):406-412.
[3] 张军伟, 刘秉峰, 李雪, 等. 基于GPRMax2D的地下管线精细化探测方法[J]. 物探与化探, 2019, 43(2):435-440.
[3] Zhang J W, Liu B F, Li X, et al. Refined detection method of underground pipeline based on GPRMax2D[J]. Geophysical and Geochemical Exploration, 2019, 43(2):435-440.
[4] 杨向东. 地下管线综合探测技术在道路改造中的应用[J]. 物探与化探, 2001, 25(6):477-479.
[4] Yang X D. The application of comprehensive detection technology for underground pipes and cables to road rebuilding[J]. Geophysical and Geochemical Exploration, 2001, 25(6):477-479.
[5] Prego F J, Solla M, Puente I, et al. Efficient GPR data acquisition to detect underground pipes[J]. NDT&E International, 2017, 91:22-31.
doi: 10.1016/j.ndteint.2017.06.002
[6] 袁明德. 探地雷达探测地下管线的能力[J]. 物探与化探, 2002, 26(2):152-155,162.
[6] Yuan M D. The capacity of the ground-penetrating radar for detecting underground pipelines[J]. Geophysical and Geochemical Exploration, 2002, 26(2):152-155,162.
[7] Laanearu J, Hou Q, Annus I, et al. Water-column mass losses during the emptying of a large-scale pipeline by pressurized air[J]. Proceedings of the Estonian Academy of Sciences, 2015, 64(1):8-16.
doi: 10.3176/proc.2015.1.02
[8] 杨理践, 张禄, 高松巍. 供水管道泄漏声信号特性[J]. 沈阳工业大学学报, 2011, 33(2):183-187.
[8] Yang L J, Zhang L, Gao S W. Acoustic signal characteristic for water supply pipeline leakage[J]. Journal of Shenyang University of Technology, 2011, 33(2):183-187.
[9] 陈建宇. 供水管道在线泄露检测方法[J]. 辽宁工程技术大学学报:自然科学版, 2015, 34(4):496-499.
[9] Chen J Y. On-line water-pipeline leak detection method[J]. Journal of Liaoning Technical University:Natural Science, 2015, 34(4):496-499.
[10] Lai W W L, Chang R K W, Sham J F C, et al. Perturbation mapping of water leak in buried water pipes via laboratory validation experiments with high-frequency ground penetrating radar (GPR)[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2016, 52:157-167.
[11] Lau K W, Cheung W Y, Lai W L, et al. Characterizing pipe leakage with a combination of GPR wave velocity algorithms[J]. Tunnelling and Underground Space Technology, 2021, 109:103740.
doi: 10.1016/j.tust.2020.103740
[12] 李方震, 沈宇鹏, 黄乐艺, 等. 探地雷达识别管线渗漏病害的试验研究[J]. 城市地质, 2017, 12(1):20-29.
[12] Li F Z, Shen Y P, Huang L Y, et al. Study on application of test method for GPR pipeline seepage defects[J]. Urban Geology, 2017, 12(1):20-29.
[13] 胡群芳, 郑泽昊, 刘海, 等. 三维探地雷达在城市市政管线渗漏探测中的应用[J]. 同济大学学报:自然科学版, 2020, 48(7):972-981.
[13] Hu Q F, Zheng Z H, Liu H, et al. Application of 3D ground penetrating radar to leakage detection of urban underground pipes[J]. Journal of Tongji University:Natural Science, 2020, 48(7):972-981.
[14] 宋涵韬, 高磊, 韩川, 等. 地下管线及油污泄漏地质雷达正演模拟研究[J]. 能源与环保, 2019, 41(1):52-57.
[14] Song H T, Gao L, Han C, et al. Study on forward modeling of underground pipelines and oil leakage by ground penetrating radar[J]. China Energy and Environmental Protection, 2019, 41(1):52-57.
[15] 沈宇鹏, 董淑海, 王卿, 等. 城市供水管道渗漏程度的渗流模型分析与探地雷达信号正演[J]. 工程地质学报, 2016, 24(s1):422-429.
[15] Shen Y P, Dong S H, Wang Q, et al. Different degrees of water pipelines leakage model analysis and GPR signal forward simulation[J]. Journal of Engineering Geology, 2016, 24(s1):422-429.
[16] 何保, 宋帅. 基于GeoStudio的边坡稳定性分析及支护方案选择的理论探讨[J]. 地质与勘探, 2019, 55(5):1329-1335.
[16] He B, Song S. Theoretical analysis of slope stability and support scheme selection based on software GeoStudio[J]. Geology and Exploration, 2019, 55(5):1329-1335.
[17] 鞠程炜, 郝嘉凌, 杨晓松, 等. 台州东部新区围区海水入侵抗渗计算[J]. 武汉大学学报:工学版, 2018, 51(5):394-400,417.
[17] Ju C W, Hao J L, Yang X S, et al. Calculation of anti-seepage of seawater intrusion in Taizhou eastern new reclamation area[J]. Engineering Journal of Wuhan University, 2018, 51(5):394-400,417.
[18] 郝喆, 陈红丹, 张颖, 等. 降雨—蒸发—蒸腾耦合作用下的中小型尾矿库重金属Cu2+迁移规律研究[J]. 安全与环境学报, 2022, 22(1):467-475.
[18] Hao Z, Chen H D, Zhang Y, et al. Research on migration rule of heavy metal Cu2+ in small and medium-sized tailings ponds under rainfall-evaporation-transpiration coupling[J]. Journal of Safety and Environment, 2022, 22(1):467-475.
[19] 曹泽. 下穿管道对堤防工作性状的影响分析[D]. 扬州: 扬州大学, 2016.
[19] Cao Z. The Analysis of mechanical behavior of pipeline undercrossing embankment[D]. Yangzhou: Yangzhou University, 2016.
[20] Topp G C, Davis J L, Annan A P. Electromagnetic determination of soil water content:Measurements in coaxial transmission lines[J]. Water Resources Research, 1980, 16(3):574-582.
doi: 10.1029/WR016i003p00574
[21] Mccutcheon M C, Farahani H J, Stednick J D, et al. Effect of soil water on apparent soil electrical conductivity and texture relationships in a dryland field[J]. Biosystems Engineering, 2006, 94(1):19-32.
doi: 10.1016/j.biosystemseng.2006.01.002
[22] 胡明顺, 潘冬明, 董守华, 等. 煤火区浅部松散煤体及采空区的探地雷达响应特征[J]. 物探与化探, 2012, 36(4):598-601,606.
[22] Hu M S, Pan D M, Dong S H, et al. GPR response characteristics of shallow loose coal seam and goaf in the coalfield combustion area[J]. Geophysical and Geochemical Exploration, 2012, 36(4):598-601,606.
[23] 黄玲, 曾昭发, 王者江, 等. 钢筋混凝土缺陷的探地雷达检测模拟与成像效果[J]. 物探与化探, 2007, 31(2):181-185.
[23] Huang L, Zeng Z F, Wang Z J, et al. Modeling and imaging effects of GPR detection of reinforced concrete defects[J]. Geophysical and Geochemical Exploration, 2007, 31(2):181-185.
[24] 王敏玲, 王洪华. 探地雷达波动方程数值模拟方法研究进展综述[J]. 地球物理学进展, 2018, 33(5):1974-1984.
[24] Wang M L, Wang H H. Review of wave equation numerical simulation methods for ground penetrating radar[J]. Progress in Geophysics, 2018, 33(5):1974-1984.
[1] 席宇何, 王洪华, 王欲成, 吴祺铭. 基于速度移动窗的最小熵法在GPR逆时偏移中的应用[J]. 物探与化探, 2023, 47(5): 1250-1260.
[2] 吴嵩, 宁晓斌, 杨庭伟, 姜洪亮, 卢超波, 苏煜堤. 基于神经网络的探地雷达数据去噪[J]. 物探与化探, 2023, 47(5): 1298-1306.
[3] 曾波, 刘硕, 杨军, 冯德山, 袁忠明, 柳杰, 王珣. 地表起伏对地下管线GPR探测的影响[J]. 物探与化探, 2023, 47(4): 1064-1070.
[4] 徐立, 冯温雅, 姜彦南, 王娇, 朱四新, 覃紫馨, 李沁璘, 张世田. 基于行列方差方法的探地雷达道路数据感兴趣区域自动提取技术[J]. 物探与化探, 2023, 47(3): 804-809.
[5] 冯温雅, 程丹丹, 王成浩, 程星. 基于探地雷达等效采样的时变零偏实时校正方法[J]. 物探与化探, 2023, 47(2): 372-376.
[6] 肖世鹏, 熊高君, 袁梦雨, 毛明秋, 王胜艺, 韦增涛. 黏声波高阶傅里叶有限差分法参数优化成像[J]. 物探与化探, 2022, 46(5): 1207-1213.
[7] 柴伦炜. 井间超高密度电法探测基桩的模拟及应用[J]. 物探与化探, 2022, 46(5): 1283-1288.
[8] 周东, 刘毛毛, 刘宗辉, 刘保东. 基于瞬时相位余弦的探地雷达多层路面自动检测[J]. 物探与化探, 2022, 46(4): 961-967.
[9] 苏林帅, 蔡明, 郑占树, 徐宝宝, 罗居森, 胡燕杰, 张荆宇. 井眼扩径对水平井声波测井响应影响的数值模拟[J]. 物探与化探, 2022, 46(2): 467-473.
[10] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[11] 肖妍姗, 周正华, 苏杰, 魏鑫. 地表水平正反敲击激振下孔法剪切波速测试理论依据讨论[J]. 物探与化探, 2021, 45(5): 1288-1294.
[12] 裴肖明, 冯国瑞, 戚庭野. 瞬变电磁法探测复杂状态下煤矿充水采空区物理模拟实验[J]. 物探与化探, 2021, 45(4): 1055-1063.
[13] 张斯薇, 吴荣新, 韩子傲, 吴海波. 双边滤波在探地雷达数据去噪处理中的应用[J]. 物探与化探, 2021, 45(2): 496-501.
[14] 苏鹏, 杨进. 时移电阻率反演模拟研究[J]. 物探与化探, 2021, 45(1): 159-164.
[15] 蔡连初, 缪念有. 探地雷达宽角反射图形拟合方法[J]. 物探与化探, 2021, 45(1): 239-244.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com