Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (1): 159-164    DOI: 10.11720/wtyht.2021.1251
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
时移电阻率反演模拟研究
苏鹏(), 杨进
中国地质大学(北京) 地球物理与信息技术学院,北京 100083
Simulation study of inversion of time-lapse resistivity
SU Peng(), YANG Jin
School of Geophysics and Information Technique, China University of Geosciences, Beijing 100083, China
全文: PDF(1447 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

电阻率法可用于地表浅层的探测,也可用于对动态地下目标进行监测。对于监测数据的反演,不同数据集的单独反演存在一定缺陷,为此本文在常规电阻率反演算法的基础上,推导了时移电阻率反演公式,实现了时移反演算法程序;为了论证时移反演算法对动态地下目标成像的优越性,建立一组多个正演模型,利用模拟数据进行单独反演和时移反演,并对比两种方法的结果。研究表明,尽管两种算法都能圈定动态地下目标体,但时移反演算法可以消除不同观测数据集中所包含的随机误差,减少假异常的出现。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏鹏
杨进
关键词 电阻率法时移反演数值模拟    
Abstract

The resistivity method can be used for the detection of near ground surface, and can also be employed to monitor dynamic underground targets. For the inversion of monitoring data, the single inversion of different data sets has certain defects. For this reason, on the basis of the traditional resistivity inversion algorithm, the time-lapse resistivity inversion formula was derived and the time-lapse inversion program was realized; for the purpose of demonstrating the superiority of the time-lapse inversion algorithm for imaging of dynamic underground targets, a set of multiple forward models was established, and the simulation data were used for single inversion and time-lapse inversion. The results show that, although both algorithms can draw the dynamic underground targets, the time-lapse inversion algorithm can eliminate random errors contained in different observation data sets and reduce the occurrence of inversion artifacts.

Key wordsresistivity method    time-lapse inversion    numerical simulation
收稿日期: 2020-05-11      出版日期: 2021-03-01
:  P631  
基金资助:国家自然科学基金项目“深部多金属矿勘探中天然场激电法正反演计算和野外试验研究”(41374133)
作者简介: 苏鹏(1989-),男,中国地质大学(北京)地球物理学专业在读博士,主要研究方向为地球物理电磁法正反演。Email:spvfly@126.com
引用本文:   
苏鹏, 杨进. 时移电阻率反演模拟研究[J]. 物探与化探, 2021, 45(1): 159-164.
SU Peng, YANG Jin. Simulation study of inversion of time-lapse resistivity. Geophysical and Geochemical Exploration, 2021, 45(1): 159-164.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1251      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I1/159
Fig.1  不同时间点的模型
Fig.2  模拟数据单独和时移反演结果
Fig.3  不同模型反演结果的差异
[1] French H, Binley A. Snowmelt infiltration: Monitoring temporal and spatial variability using time-lapse electrical resistivity[J]. Journal of Hydrology, 2004, 297(1-4): 174-186. https://doi.org/10.1016/j.jhydrol.2004.04.005
doi: 10.1016/j.jhydrol.2004.04.005
[2] Oberdorster C, Vanderborght J, Kemna A, et al. Investigating preferential flow processes in a forest soil using time domain reflectometry and electrical resistivity tomography[J]. Vadose Zone Journal, 2010,9(2): 350-361. https://doi.org/10.2136/vzj2009.0073
doi: 10.2136/vzj2009.0073
[3] Travelletti J, Sailhac P, Malet J P, et al. Hydrological response of weathered clay-shale slopes: Water infiltration monitoring with time-lapse electrical resistivity tomography[J]. Hydrological Processes, 2012,26(14): 2106-2119. https://doi.org/10.1002/hyp.7983
doi: 10.1002/hyp.7983
[4] Looms M C, Jensen K H, Binley A, et al. Monitoring unsaturated flow and transport using cross-borehole geophysical methods[J]. Vadose Zone Journal, 2008, 7(1): 227-237. https://doi.org/10.2136/vzj2006.0129
doi: 10.2136/vzj2006.0129
[5] Binley A, Hubbard S S, Huisman J A, et al. The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales[J]. Water Resources Research, 2015, 51(6): 3837-3866. https://doi.org/10.1002/2015WR017016
doi: 10.1002/2015WR017016 pmid: 26900183
[6] Ogilvy R D, Meldrum P I, Kuras O, et al. Automated monitoring of coastal aquifers with electrical resistivity tomography[J]. Near Surface Geophysics, 2009, 7(5-6): 367-376. https://doi.org/10.3997/1873-0604.2009027
doi: 10.3997/1873-0604.2009027
[7] Robert T, Caterina D, Deceuster J, et al. A salt tracer test monitored with surface ERT to detect preferential flow and transport paths in fractured/karstified limestones[J]. Geophysics, 2012, 77(2): B55-B67. https://doi.org/10.1190/geo2011-0313.1
doi: 10.1190/GEO2011-0313.1
[8] Krautblatter M, Verleysdonk S, Flores-Orozco A, et al. Temperature-calibrated imaging of seasonal changes in permafrost rock walls by quantitative electrical resistivity tomography (Zugspitze, German/Austrian Alps)[J]. Journal of Geophysical Research: Earth Surface, 2010,115(2). https://doi.org/10.1029/2008JF001209
[9] Hermans T, Wildemeersch S, Jamin P, et al. Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT[J]. Geothermics, 2015, 53: 14-26. https://doi.org/10.1016/j.geothermics.2014.03.013
doi: 10.1016/j.geothermics.2014.03.013
[10] Arato A, Boaga J, Comina C, et al. Geophysical monitoring for shallow geothermal applications-Two Italian case histories[J]. First Break, 2015,33:75-79.
[11] 李飞, 程久龙, 陈绍杰, 等. 基于时移高密度电法的覆岩精细探测方法研究[J]. 矿业科学学报, 2019, 4(1): 1-7. https://doi.org/10. 19606 /j. cnki. jmst.2019.01.001
[11] Li F, Cheng J L, Chen S J, et al. Fine detection of overburden strata based on time lapse high density resistivity method[J]. Journal of Mining Science and Technology, 2019, 4(1): 1-7. https://doi.org/10. 19606 /j. cnki. jmst.2019.01.001
[12] 孙大利, 李貅, 齐彦福, 等. 基于非结构网格三维有限元堤坝隐患时移特征分析[J]. 物探与化探, 2019, 43(4): 804-814. https://doi.org/10.11720/wtyht.2019.0045
[12] Sun D L, Li X, Qi Y F, et al. Time-lapse characteristics analysis of hidden dangers of three-dimensional finite element levees based on unstructured grids[J]. Geophysical and Geochemical Exploration, 2019, 43(4): 804-814. https://doi.org/10.11720/wtyht.2019.0045
[13] Daily W, Ramirez A, LaBrecque D, et al. Electrical resistivity tomography of vadose water movement[J]. Water Resources Research, 1992, 28(5): 1429-1442. https://doi.org/10.1029/91WR03087
doi: 10.1029/91WR03087
[14] LaBrecque D J, Yang X. Difference inversion of ERT data: A fast inversion method for 3-D in situ monitoring[J]. Journal of Environmental & Engineering Geophysics, 2001, 6(2): 83-89. https://doi.org/10.4133/JEEG6.2.83
[15] Kim J H, Yi M J, Park S G, et al. 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model[J]. Journal of Applied Geophysics, 2009, 68(4): 522-532. https://doi.org/10.1016/j.jappgeo.2009.03.002
doi: 10.1016/j.jappgeo.2009.03.002
[16] Hayley K, Pidlisecky A, Bentley L R. Simultaneous time-lapse electrical resistivity inversion[J]. Journal of Applied Geophysics, 2011, 75(2): 401-411. https://doi.org/10.1016/j.jappgeo.2011.06.035
doi: 10.1016/j.jappgeo.2011.06.035
[17] Karaoulis M C, Kim J H, Tsourlos P I. 4D active time constrained resistivity inversion[J]. Journal of Applied Geophysics, 2011, 73(1): 25-34. https://doi.org/10.1016/j.jappgeo.2010.11.002
doi: 10.1016/j.jappgeo.2010.11.002
[18] Loke M H, Dahlin T, Rucker D F. Smoothness-constrained time-lapse inversion of data from 3D resistivity surveys[J]. Near Surface Geophysics, 2014, 12(1): 5-24. https://doi.org/10.3997/1873-0604.2013025
doi: 10.3997/1873-0604.2013025
[19] Pidlisecky A, Haber E, Knight R. RESINVM3D: A 3-D resistivity inversion package[J]. Geophysics, 2007, 72(2): 1-10. https://doi.org/10.1190/1.2402499
[20] Yi M J, Kim J H, Chung S H. Enhancing the resolving power of least-squares inversion with active constraint balancing[J]. Geophysics, 2003, 68(3): 931-941. https://doi.org/10.1190/1.1581045
doi: 10.1190/1.1581045
[1] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[2] 何胜, 马文鑫, 甘斌. 地面核磁共振法与高密度电阻率法在西藏盐湖卤水钾矿勘查中的应用[J]. 物探与化探, 2021, 45(6): 1409-1415.
[3] 肖妍姗, 周正华, 苏杰, 魏鑫. 地表水平正反敲击激振下孔法剪切波速测试理论依据讨论[J]. 物探与化探, 2021, 45(5): 1288-1294.
[4] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[5] 王文杰, 郝一, 薄海军, 王海龙, 徐浩清, 李永利, 毛磊, 刘永新, 袁帅. 包头市固阳县矿集区高密度电阻率法找水定井实例分析[J]. 物探与化探, 2021, 45(4): 869-881.
[6] 杨利普, 徐志萍, 徐顺强, 刘明军, 姜磊, 熊伟, 贺为民. 薄壁断裂峪河口至方庄段电性结构特征[J]. 物探与化探, 2020, 44(6): 1301-1305.
[7] 武建平, 张超, 陈剑平, 杨玺, 裴运军, 周庆东. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066-1072.
[8] 胡文革, 邹宁, 李丹丹, 黄知娟, 雷健, 郭宇航, 潘保芝. 断溶体油藏油源深度对井温分布影响的数值模拟[J]. 物探与化探, 2020, 44(4): 748-755.
[9] 甘团杰, 陈剑平, 杨玺, 周庆东, 曾亮. 海底电缆电磁场分布模拟与分析[J]. 物探与化探, 2020, 44(3): 550-558.
[10] 许艺煌, 黄真萍, 程志伟, 陈少博, 陈振明. 高密度电阻率法在弃渣堆积体分布调查中的应用[J]. 物探与化探, 2020, 44(2): 435-440.
[11] 姚纪华, 罗仕军, 宋文杰, 刘媛, 赵文刚, 吕慧珠. 综合物探在水库渗漏探测中的应用[J]. 物探与化探, 2020, 44(2): 456-462.
[12] 邬健强, 赵茹玥, 甘伏平, 张伟, 刘永亮, 朱超强. 综合电法在岩溶山区地下水勘探中的应用——以湖南怀化长塘村为例[J]. 物探与化探, 2020, 44(1): 93-98.
[13] 刘道涵, 罗士新, 陈长敬. 高密度电阻率法在丹江口水源区尾矿坝监测中的应用[J]. 物探与化探, 2020, 44(1): 215-219.
[14] 李卓岱, 张怀强, 卢炜煌, 刘进洋, 颜苗苗. 宽能域γ能谱测井系统结构参数优化设计研究[J]. 物探与化探, 2019, 43(6): 1291-1296.
[15] 马欢, 张洪洋, 郭越, 雷阳, 谭捍东, 吴萍萍, 张浩楠, 席彪. 时移电阻率法归一化数据反演分辨电阻率结构微小变化[J]. 物探与化探, 2019, 43(6): 1320-1325.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com