Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (4): 986-995    DOI: 10.11720/wtyht.2024.1387
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
地震面波和P—导波正演模拟与波场分析
刘童(), 孙成禹, 蔡瑞乾
中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580
Forward modeling and wave field analysis of seismic surface waves and guided P-waves
LIU Tong(), SUN Cheng-Yu, CAI Rui-Qian
School of Geosciences,China University of Petroleum(East China),Qingdao 266580,China
全文: PDF(4815 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

面波和P—导波是两种与边界有关的波动现象,是近地表地震波场的重要组成部分。为研究面波和P—导波的产生机制和传播规律,本文采用高阶交错网格有限差分算法,在把数值模拟中遇到的数值频散、边界条件等问题解决的基础上,设计不同厚度和不同弹性参数的介质模型进行正演模拟,并在正演结果的基础上提取频散剖面、振幅随炮检距变化曲线等进一步分析。当地表存在低速薄层,且来自同一震源的P波和SV波的相速度大于下伏高速层S波速度小于其P波速度时,会产生P—导波。在高泊松比(大于0.4)介质中,面波和P—导波的相速度分别对S波和P波速度敏感,两者通常携带了不能从折射波和反射波中获得的近地表信息,通过适当的采集、分析和反演能够建立高分辨率近地表模型。本文总结了在同一震源下激发生成面波和P—导波的产生条件和波场特征,加深对面波和P—导波传播规律的认识,为反演和去噪研究奠定基础。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘童
孙成禹
蔡瑞乾
关键词 面波P—导波数值模拟产生条件波场分析    
Abstract

Surface waves and guided P-waves,as two boundary-related wave phenomena,are a crucial part of the near-surface seismic wave field.This study investigated their generation mechanism and propagation regularity using the high-order staggered-grid finite-difference algorithm.First,it solved the problems like numerical dispersion and boundary conditions in numerical simulation.Based on this,it designed medium models under different thicknesses and elastic parameters for forward modeling.Furthermore,it extracted dispersion profiles and amplitude versus offset curves for analysis.In the case of a low-velocity thin layer on the surface,guided P-waves can be generated when the phase velocities of P and SV waves from the same source exceed the S-wave velocity but are less than the P-wave velocity of the underlying high-velocity layer.In media with high Poisson's ratios(>0.4),the phase velocities of surface waves and guided P-waves are sensitive to the S- and P-wave velocities,respectively.Surface waves and guided P-waves usually contain near-surface information that is unavailable in refracted and reflected waves.The appropriate acquisition,analysis,and inversion of near-surface information enable the establishment of a high-resolution near-surface model.This study generalized the generation conditions and wave field characteristics of surface waves and guided P-waves under the same source and deepened the understanding of their propagation regularity,laying a foundation for inversion and denoising research.

Key wordssurface wave    guided P-wave    numerical simulation    generation condition    wave field analysis
收稿日期: 2023-10-23      修回日期: 2024-05-10      出版日期: 2024-08-20
ZTFLH:  P631.4  
基金资助:国家自然科学基金项目“基于石油勘探面波与P—导波的近地表纵横波速度一体化反演”(42174140);国家自然科学基金青年项目“黏弹各向异性介质复杂震源机制解析与微地震响应高精度正演”(42004113)
作者简介: 刘童(2000-),男,硕士研究生,2022年毕业于中国石油大学(华东),获勘查技术与工程专业学士学位,现为该校地质资源与地质工程专业在读研究生,主要从事地震波传播理论与地震波场正演、地震资料处理方法和近地表地震勘探的理论研究工作。Email:tenten0531@foxmail.com
引用本文:   
刘童, 孙成禹, 蔡瑞乾. 地震面波和P—导波正演模拟与波场分析[J]. 物探与化探, 2024, 48(4): 986-995.
LIU Tong, SUN Cheng-Yu, CAI Rui-Qian. Forward modeling and wave field analysis of seismic surface waves and guided P-waves. Geophysical and Geochemical Exploration, 2024, 48(4): 986-995.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.1387      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I4/986
Fig.1  交错网格差分示意
Fig.2  模型设置示意
Fig.3  波场快照
a—有自由边界时波场快照;b—无自由边界时波场快照
Fig.4  地震记录
a—有自由边界时的地面地震记录;b—无自由边界时的地面地震记录
Fig.5  单道地震记录对比
a—有自由边界时第230道地震记录;b—无自由边界时第230道地震记录
Fig.6  弹性波正演模拟记录
a—地震记录(水平分量);b—地震记录(垂直分量);c—150 ms波场快照
Fig.7  正演记录的分析结果
a—面波的质点运动轨迹;b—面波振幅随炮检距变化曲线;c—频散成像
模型 层序 层厚/m vp/
(m·s-1)
vs/
(m·s-1)
ρ/
(kg·m-3)
泊松比
1 1 10 1100 330 1600 0.45
2 1800 540 2000
2 1 20 1100 330 1600 0.45
2 1800 540 2000
3 1 40 1100 330 1600 0.45
2 1800 540 2000
4 1 10 1100 450 1600 0.40
2 1800 730 2000
5 1 10 1100 490 1600 0.30
2 1800 960 2000
Table 1  模型弹性参数
Fig.8  模型1地震记录(a)与频散关系(b)
Fig.9  模型2地震记录(a)与频散关系(b)
Fig.10  模型3地震记录(a)与频散关系(b)
Fig.11  模型4地震记录(a)与频散关系(b)
Fig.12  模型5地震记录(a)与频散关系(b)
Fig.13  振幅随炮检距变化曲线
a—从图8a地震记录提取的振幅曲线;b—从图9a地震记录提取的振幅曲线
2N C0 C1 C2 C3 C4
2 0 5.0000000×10-1
4 0 6.6666667×10-1 -8.3333333×10-2
6 0 7.5000000×10-1 -1.5000000×10-1 1.6666667×10-2
8 0 8.0000000×10-1 -2.0000000×10-1 3.8095238×10-2 -3.5414286×10-3
Table 2  一阶导数对应于不同阶精度的权系数值
[1] Roth M, Holliger K, Green A G. Guided waves in near-surface seismic surveys[J]. Geophysical Research Letters, 1998, 25(7):1071-1074.
[2] 吴华, 李庆春, 邵广周. 瑞利波波形反演的发展现状及展望[J]. 物探与化探, 2018, 42(6):1103-1111.
[2] Wu H, Li Q C, Shao G Z. Development status and prospect of Rayleigh waveform inversion[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1103-1111.
[3] Sun C Y, Wang Z N, Wu D S, et al. A unified description of surface waves and guided waves with relative amplitude dispersion maps[J]. Geophysical Journal International, 2021, 227(3):1480-1495.
[4] Wang Z J, Xiao J Y, Li D, et al. Full waveform inversion guided wave tomography with a recurrent neural network[J]. Ultrasonics, 2023, 133:107043.
[5] Rayleigh L. On waves propagated along the plane surface of an elastic solid[J]. Proceedings of the London Mathematical Society, 1885,s1- 17(1):4-11.
[6] Leslie D M, Evans B. The cause and effects of multilayer-generated guided-waves[J]. Exploration Geophysics, 2000, 31(4):543-551.
[7] Alterman Z S, Karal F C J. Propagation of elastic waves in layered media by finite difference methods[J]. The Bulletin of the Seismological Society of America, 1969, 59(1):471.
[8] Boore D. Finite difference methods for seismic wave propagation in heterogeneous materials[M]// Methods in computational physics: Advances in Research and Applications. Amsterdam:Elsevier, 1972:1-37.
[9] Madariaga R. Dynamics of an expanding circular fault[J]. The Bulletin of the Seismological Society of America, 1976, 66(3):639-666.
[10] Jean V. SH-wave propagation in heterogeneous media:Velocity-stress finite-difference method[J]. Geophysics, 1984, 49(11):1933.
[11] Jean V. P-SV wave propagation in heterogeneous media:Velocity-stress finite-difference method[J]. Geophysics, 1986, 51(4):889-901.
[12] Levander A R. Fourth-order finite-difference P-SV seismograms[J]. Geophysics, 1988, 53(11):1425.
[13] 董良国, 马在田, 曹景忠, 等. 一阶弹性波方程交错网格高阶差分解法[J]. 地球物理学报, 2000, 43(3):411-419.
[13] Dong L G, Ma Z T, Cao J Z, et al. A staggered-grid high-order difference method of one-order elastic wave equation[J]. Chinese Journal of Geophysics, 2000, 43(3):411-419.
[14] Collino F, Tsogka C. Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media[J]. Geophysics, 2001, 66(1):294.
[15] 张伟, 甘伏平, 刘伟, 等. 双相介质瑞雷面波有限差分正演模拟[J]. 物探与化探, 2014, 38(6):1275-1283.
[15] Zhang W, Gan F P, Liu W, et al. Rayleigh surface wave modeling by finite difference method in biphasic media[J]. Geophysical and Geochemical Exploration, 2014, 38(6):1275-1283.
[16] 廉西猛, 张睿璇. 基于GPU集群的大规模三维有限差分正演模拟并行策略[J]. 物探与化探, 2015, 39(3):615-620.
[16] Lian X M, Zhang R X. Parallel strategy of large-scale 3D seismic forward by finite difference method on GPU cluster[J]. Geophysical and Geochemical Exploration, 2015, 39(3):615-620.
[17] 彭更新, 刘威, 郭念民, 等. 基于时空域交错网格有限差分法的应力速度声波方程数值模拟[J]. 石油物探, 2022, 61(1):156-165,173.
doi: 10.3969/j.issn.1000-1441.2022.01.016
[17] Peng G X, Liu W, Guo N M, et al. A time-space domain dispersion-relationship-based staggered-grid finite-difference scheme for modeling the stress-velocity acoustic wave equation[J]. Geophysical Prospecting for Petroleum, 2022, 61(1):156-165,173.
doi: 10.3969/j.issn.1000-1441.2022.01.016
[18] Pekeris C L. Theory of propagation of explosive sound in shallow water[J]. Geological Society of America Memoirs, 1948, 27(1):1-116.
[19] Robertsson J O A, Holliger K, Green A G, et al. Effects of near-surface waveguides on shallow high-resolution seismic refraction and reflection data[J]. Geophysical Research Letters, 1996, 23(5):495-498.
[20] Sheriff R E, Geldart L P. Exploration seismology(2nd ed)[M]. Cambridge: Cambridge University Press, 1995.
[21] Roth M, Holliger K. Joint inversion of Rayleigh and guided waves in high-resolution seismic data using a genetic algorithm[C]// SEG Technical Program Expanded Abstracts 1998.Society of Exploration Geophysicists, 1998:1570-1573.
[22] Herman G C, Milligan P A, Huggins R J, et al. Imaging shallow objects and heterogeneities with scattered guided waves[J]. Geophysics, 2000, 65(1):247.
[23] Carcione J M, Helle H B. The physics and simulation of wave propagation at the ocean bottom[J]. Geophysics, 2004, 69(3):825-839.
[24] Klein G, Bohlen T, Theilen F, et al. Acquisition and inversion of dispersive seismic waves in shallow marine environments[J]. Marine Geophysical Researches, 2005, 26(2):287-315.
[25] Ernst F E. Long-wavelength statics estimation from guided waves[C]// London:69th EAGE Conference and Exhibition incorporating SPE EUROPEC 2007,European Association of Geoscientists & Engineers, 2007:1-5.
[26] 李正波. 频率贝塞尔变换法提取地震记录中的频散信息[D]. 合肥: 中国科学技术大学, 2020.
[26] Li Z B. Frequency-Bessel transform method for extracting dispersion information from seismic records[D]. Hefei: University of Science and Technology of China, 2020.
[27] 刘辉, 李静, 曾昭发, 等. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4):951-960.
[27] Liu H, Li J, Zeng Z F, et al. Stochastic inversion of surface wave dispersion curves based on Bayesian theory[J]. Geophysical and Geochemical Exploration, 2021, 45(4):951-960.
[28] Boerner D E, West G F. A generalized representation of the electromagnetic fields in a layered earth[J]. Geophysical Journal International, 1989, 97(3):529-547.
[29] Collino F. Perfectly matched absorbing layers for the paraxial equations[J]. Journal of Computational Physics, 1997, 131(1):164-180.
[30] Roth M, Holliger K. Inversion of source-generated noise in high-resolution seismic data[J]. The Leading Edge, 1999, 18(12):1402-1406.
[31] Robertsson J O A. A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography[J]. Geophysics, 1996, 61(6):1921-1934.
[32] 董良国, 马在田. 一阶弹性波方程交错网格高阶差分解法稳定性研究[J]. 地球物理学报, 2000, 43(6):856-864.
[32] Dong L G, Ma Z T. A study on stability of the staggered-grid high-order difference method of first-order elastic wave equation[J]. Chinese Journal of Geophysics, 2000, 43(6):856-864.
[33] 伍敦仕, 孙成禹, 林美言. 基于互相关相移的主动源地震面波频散成像方法[J]. 地球物理学进展, 2017, 32(4):1693-1700.
[33] Wu D S, Sun C Y, Lin M Y. Activeseismic surface wave dispersion imaging method based on cross-correlation and phase-shifting[J]. Progress in Geophysics, 2017, 32(4):1693-1700.
[34] 熊嫘, 孙成禹, 蔡瑞乾. 柱对称条件下地震面波波场正演研究[J]. 石油地球物理勘探, 2023, 58(1):133-144.
[34] Xiong L, Sun C Y, Cai R Q. Forward wavefield modeling of seismic surface waves under cylindrical symmetry[J]. Oil Geophysical Prospecting, 2023, 58(1):133-144.
[35] Buchen P W, Ben-Hador R. Free-mode surface-wave computations[J]. Geophysical Journal International, 1996, 124(3):869-887.
[36] 邱新明, 王赟, 韦永祥, 等. 多分量面波研究进展[J]. 石油物探, 2021, 60(1):46-56.
doi: 10.3969/j.issn.1000-1441.2021.01.005
[36] Qiu X M, Wang Y, Wei Y X, et al. Advancements in multi-component surface waves:A review[J]. Geophysical Prospecting for Petroleum, 2021, 60(1):46-56.
doi: 10.3969/j.issn.1000-1441.2021.01.005
[37] Shi C W, Ren H X, Chen X F. Dispersion inversion for P- and S-wave velocities based on guided P and Scholte waves[J]. Geophysics, 2023, 88(6):R721-R736.
[1] 刘洪华, 张卉, 王汝杰, 于鹏, 秦升强, 李文宇, 车荣祺. 滨海城市地质结构电阻率法三维模拟与应用[J]. 物探与化探, 2024, 48(4): 1037-1044.
[2] 孙红林, 刘铁华, 刘铁, 张占荣, 陈支兴. 多源频率域地震勘探技术及应用[J]. 物探与化探, 2024, 48(3): 618-628.
[3] 刘迪, 杨涛, 宋华东, 李广超, 毋光荣, 郭良春, 张锦想. 基于功率谱密度筛选的高海拔区背景噪声快速成像技术[J]. 物探与化探, 2024, 48(2): 437-442.
[4] 杜惟一, 张冲, 韩华洋, 赵腾腾, 张文艺. 潜山花岗岩裂缝性储层阵列声波测井数值模拟研究[J]. 物探与化探, 2024, 48(2): 514-520.
[5] 秦长春, 王国顺, 李婧. 主动源面波采集装置改进及在地铁施工勘察中的应用[J]. 物探与化探, 2024, 48(1): 264-271.
[6] 黄瑶. 基于三维电阻率法的水电工程隧道地质条件探查[J]. 物探与化探, 2024, 48(1): 281-286.
[7] 张泽奇, 高级, 刘梁, 查华胜, 张海江. 基于三角和线性台阵的煤矿背景噪声成像技术适用性研究[J]. 物探与化探, 2023, 47(6): 1528-1537.
[8] 张雪昂, 杨志超, 李小燕, 董丽媛. 多孔隙度变化倾角裂缝型砂岩铀矿超热中子运移模拟[J]. 物探与化探, 2023, 47(6): 1547-1554.
[9] 张利振, 孙成禹, 王志农, 李世中, 焦峻峰, 颜廷容. 面波信息约束的初至波走时层析反演方法[J]. 物探与化探, 2023, 47(5): 1198-1205.
[10] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[11] 陈实, 金荣杰, 李延清, 李崇博, 胡尊平. 天然源面波技术在城市规划区场地评价中的应用[J]. 物探与化探, 2023, 47(1): 264-271.
[12] 柴伦炜. 井间超高密度电法探测基桩的模拟及应用[J]. 物探与化探, 2022, 46(5): 1283-1288.
[13] 肖世鹏, 熊高君, 袁梦雨, 毛明秋, 王胜艺, 韦增涛. 黏声波高阶傅里叶有限差分法参数优化成像[J]. 物探与化探, 2022, 46(5): 1207-1213.
[14] 邵广周, 李远林, 岳亮. 主动源与被动源面波联合勘探在黄土覆盖区三维成像中的应用[J]. 物探与化探, 2022, 46(4): 897-903.
[15] 吴为治, 娄利, 王鹏, 王宾. 基于Python语言的瑞利面波频散反演实行方案[J]. 物探与化探, 2022, 46(3): 743-749.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com