Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (2): 467-473    DOI: 10.11720/wtyht.2022.2447
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
井眼扩径对水平井声波测井响应影响的数值模拟
苏林帅1,2,3(), 蔡明1,2(), 郑占树4, 徐宝宝2, 罗居森2, 胡燕杰2, 张荆宇2
1.长江大学 油气资源与勘探技术教育部重点实验室, 湖北 武汉 430100
2.长江大学 地球物理与石油资源学院, 湖北 武汉 430100
3.中国石油塔里木油田分公司 安全环保与工程监督中心,新疆 库尔勒 841000
4.中国石油集团测井有限公司 辽河分公司,辽河 盘锦 124011
Numerical simulation of the effects of borehole enlargement on sonic logging response of horizontal wells
SU Lin-Shuai1,2,3(), CAI Ming1,2(), ZHENG Zhan-Shu4, XU Bao-Bao2, LUO Ju-Sen2, HU Yan-Jie2, ZHANG Jing-Yu2
1. Key Laboratory of Exploration Technologies for Oil and Gas Resources,Ministry of Education,Yangtze University,Wuhan 430100,China
2. College of Geophysics and Petroleum Resources,Yangtze University,Wuhan 430100,China
3. Safety,Environmental Protection and Engineering Supervision Center of Tarim Oilfield Company,PetroChina,Korla 841000,China
4. Liaohe Branch,China Petroleum Logging Co. Ltd.,Panjin 124011,China
全文: PDF(1344 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

水平钻井得到越来越广泛的应用。作为储层评价最重要手段之一的声波测井在水平井中往往受到井眼状况等因素的影响,从而导致其应用效果明显变差。为此,采用三维有限差分法针对径向扩径尺寸变化、轴向扩径尺寸变化和扩径位置变化三大类情况开展了正演模拟研究,重点研究了井眼扩径对水平井声波测井波形幅度、到时和波速的影响。结果表明,当扩径段位于声源与最近的接收器之间时,扩径属性参数变化对纵横波波速测量结果无影响,但均会导致波形幅度明显降低;纵、横波幅度均随扩径圆筒厚度和长度的增大而减小,但基本不受扩径距的影响;纵波到时随扩径圆筒厚度和长度的增大而增大,但随扩径距的增大而轻微减小。本研究厘清了井眼扩径对水平井声波测井响应的影响规律,可为进一步开展水平井声波测井影响因素校正方法研究提供指导和帮助。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏林帅
蔡明
郑占树
徐宝宝
罗居森
胡燕杰
张荆宇
关键词 水平井扩径声波测井幅度数值模拟    
Abstract

Horizontal well drilling is increasingly being widely applied. However, sonic logging-one of the most important reservoir assessment methods-tends to be affected by the borehole conditions in the application of horizontal wells,leading to notably reduced application effects.In view of this fact,this paper conducts the forward simulation of the radial and axial size changes induced by borehole enlargement and the changes in enlargement positions using the three-dimensional finite difference method,with the focus on the effects of borehole enlargement on the waveform amplitude,arrival times,and velocities of waves in the sonic logging of horizontal wells.The results are as follows.In the case that the borehole enlargement occurred between the sonic transmitter and the nearest receiver,the changes in borehole enlargement parameters had no effect on the measured results of the compressional and shear wave velocities but led to the notable decrease in waveform amplitude.The amplitude of compressional and shear waves decreased with an increase in the thickness and length of the enlargement cylinder but was almost not affected by the distance between the sonic transmitter and the expansion section.The compressional wave arrival time increased with an increase in the thickness and length of the enlargement cylinder but slightly decreased with an increase in the distance between the sonic transmitter and the expansion section.This study clarifies the laws of the effects of borehole enlargement on the sonic logging response of horizontal wells,and it will provide guidance and assistance for further research on the methods for influencing factor correction in the sonic logging of horizontal wells.

Key wordshorizontal well    borehole enlargement    sonic logging    amplitude    numerical simulation
收稿日期: 2020-09-14      修回日期: 2021-11-02      出版日期: 2022-04-20
ZTFLH:  P631.4  
基金资助:中国石油科技创新基金项目(2019D-5007-0303);国家自然科学基金项目(42104126);国家自然科学基金项目(41774116);湖北省教育厅科技项目(Q20211309)
通讯作者: 蔡明
作者简介: 苏林帅(1997-),男,主要从事地球物理测井方面的研究与钻井地质工程项目的监督工作。Email: 675450484@qq.com
引用本文:   
苏林帅, 蔡明, 郑占树, 徐宝宝, 罗居森, 胡燕杰, 张荆宇. 井眼扩径对水平井声波测井响应影响的数值模拟[J]. 物探与化探, 2022, 46(2): 467-473.
SU Lin-Shuai, CAI Ming, ZHENG Zhan-Shu, XU Bao-Bao, LUO Ju-Sen, HU Yan-Jie, ZHANG Jing-Yu. Numerical simulation of the effects of borehole enlargement on sonic logging response of horizontal wells. Geophysical and Geochemical Exploration, 2022, 46(2): 467-473.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.2447      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I2/467
Fig.1  交错网格剖分示意
空间阶数2N m am
2 0 1
4 0
1
9/8
-1/24
6 0
1
2
75/64
-25/384
3/640
Table 1  常用空间阶数下交错网格差分的系数
Fig.2  水平井模型
参数 纵波速度/
(m·s-1)
横波速度/
(m·s-1)
密度/
(kg·m-3)
地层 4000 2300 2500
井内流体 1500 1000
Table 2  地层及井内流体的参数
Fig.3  有限差分(3D-FD)与实轴积分(RAI)波形对比
Fig.4  水平井扩径模型示意
Fig.5  不同径向扩径尺寸条件下的全波波形
Fig.6  纵横波幅度随径向扩径尺寸变化关系
Fig.7  纵横波速度随径向扩径尺寸变化关系
Fig.8  纵波到时随径向扩径尺寸变化关系
Fig.9  不同轴向扩径尺寸条件下的全波波形
Fig.10  纵波幅度随轴向扩径尺寸变化关系
Fig.11  纵波到时随轴向扩径尺寸变化关系
Fig.12  不同扩径距条件下的全波波形
Fig.13  纵横波幅度随扩径距变化关系
Fig.14  纵波到时随扩径距变化关系
[1] 吴月先, 钟水清, 徐永高, 等. 中国水平井技术实力现状及发展趋势[J]. 石油矿场机械, 2008, 37(3):33-36.
[1] Wu Y X, Zhong S Q, Xu Y G, et al. Present condition of horizontal well technique strength and its development trend in China[J]. Oil Field Equipment, 2008, 37(3):33-36.
[2] 章成广, 江万哲, 潘和平. 声波测井原理与应用[M]. 北京: 石油工业出版社, 2009.
[2] Zhang C G, Jiang W Z, Pan H P. Principle and application of acoustic logging[M]. Beijing: Petroleum Industry Press, 2009.
[3] 蔡明, 章成广, 韩闯, 等. 微裂缝对横波衰减影响的实验研究及其在致密砂岩裂缝评价中的应用[J]. 中国石油大学学报:自然科学版, 2020, 44(1):45-52.
[3] Cai M, Zhang C G, Han C, et al. Experimental research of effect of microfracture on shear wave attenuation and its application on fracture evaluation in tight sand formation[J]. Journal of China University of Petroleum:Natural Science Edition, 2020, 44(1):45-52.
[4] 蔡明, 章成广, 唐军, 等. 参数估计法声波远探测反射波提取效果影响因素研究[J]. 西安石油大学学报:自然科学版, 2020, 35(1):42-48.
[4] Cai M, Zhang C G, Tang J, et al. Study on factors of influencing extraction effect of reflection wave in acoustic remote detection using parameter estimation method[J]. Journal of Xi'an Shiyou University:Natural Science Edition, 2020, 35(1):42-48.
[5] Cai M, Qiao W, Ju X, et al. Lossless compression method for acoustic waveform data based on wavelet transform and bit-recombination mark coding[J]. Geophysics, 2013, 78(5):V219-V228.
[6] 周灿灿, 王昌学. 水平井测井解释技术综述[J]. 地球物理学进展, 2006, 21(1):152-160.
[6] Zhou C C, Wang C X. Technology review on the log interpretation of horizontal well[J]. Progress in Geophysics, 2006, 21(1):152-160.
[7] Stephen R A, Cardo-Casas F, Cheng C H. Finite-difference synthetic acoustic logs[J]. Geophysics, 1985, 50(10):1588-1609.
doi: 10.1190/1.1441849
[8] Randall C J, Scheibner D J, Wu P T. Multipole borehole acoustic waveforms: Synthetic logs with beds and borehole washouts[J]. Geophysics, 1991, 56(11):1757-1769.
doi: 10.1190/1.1442988
[9] Chen N Y. Borehole wave propagation in isotropic and anisotropic media:Three-dimensional finite difference approach[D]. Cambridge: Massachusetts Institute of Technology, 1994.
[10] Mittet R, Renlie L. High-order,finite-difference modeling of multipole logging in formations with anisotropic attenuation and elasticity[J]. Geophysics, 1996, 61(1):21-33.
doi: 10.1190/1.1443942
[11] 陶果, 张友生, 张洪娥, 等. 用于声波测井的大型三维有限差分模拟程序[J]. 测井技术, 2001, 25(4):273-277.
[11] Tao G, Zhang Y S, Zhang H E, et al. 3D Finite difference simulating program for acoustic logging[J]. Well Logging Technology, 2001, 25(4):273-277.
[12] 陶果, 何峰江, 王兵, 等. 声反射成像测井在地层中的三维波场模拟方法研究[J]. 中国科学D辑:地球科学, 2008, 38(S1):166-173.
[12] Tao G, He F J, Wang B, et al. Study on 3D wave field simulation of acoustic reflection imaging logging in formation[J]. Science of China Series D:Earth Science, 2008, 38(S1):166-173.
[13] 陈德华, 丛健生, 徐德龙, 等. 裂缝性地层中的井孔声场模拟[J]. 大庆石油学院学报, 2004, 28(3):4-6.
[13] Chen D H, Cong J S, Xu D L, et al. Borehole acoustic field simulation in fractured formation[J]. Journal of Daqing Petroleum Institute, 2004, 28(3):4-6.
[14] 何峰江, 陶果, 王锡莉. 贴井壁声波测井仪的有限差分模拟研究[J]. 地球物理学报, 2006, 49(3):923-928.
[14] He F J, Tao G, Wang X L. Finite difference modeling of the acoustic field by sidewall logging devices[J]. Chinese J. Geophys., 2006, 49(3):923-928.
[15] 丛健生, 乔文孝. 水平井地层界面声波测井响应模拟分析[J]. 测井技术, 2008, 32(1):29-32.
[15] Cong J S, Qiao W X. Simulated response of acoustic log in horizontal borehole placing on interface of two formations[J]. Well Logging Technology, 2008, 32(1):29-32.
[16] 陈木银, 何西攀, 金小慧. 水平井声波时差测井响应特征研究[J]. 国外测井技术, 2013(4):38-41.
[16] Chen M Y, He X P, Jin X H. Study on the characteristics of acoustic slowness difference logging response in horizontal wells[J]. World Well Logging Technology, 2013(4):38-41.
[17] 杨歆. 水平井及大斜度井声波测井时差校正方法研究[D]. 北京: 中国石油大学(北京), 2016.
[17] Yang X. Research on correction method of sonic logging slowness in horizontal wells and high angle deviated wells[D]. Beijing: China University of Petroleum (Beijing), 2016.
[18] 张鹏云. 基于声电组合的水平井地层评价方法研究[D]. 青岛: 中国石油大学(华东), 2016.
[18] Zhang P Y. Research on horizontal well formation evaluation method based on acoustic and resistivity logging[D]. Qingdao: China University of Petroleum(East China), 2016.
[19] Liu H, Wang B, Tao G, et al. Study on the simulation of acoustic logging measurements in horizontal and deviated wells[J]. Applied Geophysics, 2017, 14(3):337-350.
doi: 10.1007/s11770-017-0637-6
[20] 刘黎, 章成广, 蔡明, 等. 裂缝对井眼声波的传播影响规律研究[J]. 物探与化探, 2019, 43(6):1333-1340.
[20] Liu L, Zhang C G, Cai M, et al. Studies on the effect of crack on the propagation of acoustic waves in wellbore[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1333-1340.
[21] 王秀明, 张海澜, 王东. 利用高阶交错网格有限差分法模拟地震波在非均匀孔隙介质中的传播[J]. 地球物理学报, 2003, 46(6):842-849.
[21] Wang X M, Zhang H L, Wang D. Modelling of seismic wave propagation in heterogeneous poroelastic media using a high-order staggered finite-difference method[J]. Chinese J. Geophys., 2003, 46(6):842-849.
[22] 严红勇, 刘洋. Kelvin-Voigt黏弹性介质地震波场数值模拟与衰减特征[J]. 物探与化探, 2012, 36(5):806-812.
[22] Yan H Y, Liu Y. Numerical modeling and attenuation characteristics of seismic wavefield in Kelvin-Voigt viscoelastic media[J]. Geophysical and Geochemical Exploration, 2012, 36(5):806-812.
[23] Komatitsch D, Martin R. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation[J]. Geophysics, 2007, 72(5):SM155-SM167.
[24] Martin R, Komatitsch D, Ezziani A. An unsplit convolutional perfectly matched layer improved at grazing incidence for seismic wave propagation in poroelastic media[J]. Geophysics, 2008, 73(4):T51-T61.
[25] 廖扬强, 余庆. 大斜度井水平井井壁力学稳定性技术现状[J]. 钻采工艺, 2003, 26(3):13-16.
[25] Liao Y Q, Yu Q. Technical status of wellbore mechanical stability of horizontal well with large inclination[J]. Drilling Process, 2003, 26(3):13-16.
[1] 陈海文, 叶益信, 杨烁健, 覃金生. 基于非结构有限元的电阻率超前探测中旁侧异常影响特征研究[J]. 物探与化探, 2023, 47(4): 975-985.
[2] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[3] 肖世鹏, 熊高君, 袁梦雨, 毛明秋, 王胜艺, 韦增涛. 黏声波高阶傅里叶有限差分法参数优化成像[J]. 物探与化探, 2022, 46(5): 1207-1213.
[4] 柴伦炜. 井间超高密度电法探测基桩的模拟及应用[J]. 物探与化探, 2022, 46(5): 1283-1288.
[5] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[6] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[7] 肖妍姗, 周正华, 苏杰, 魏鑫. 地表水平正反敲击激振下孔法剪切波速测试理论依据讨论[J]. 物探与化探, 2021, 45(5): 1288-1294.
[8] 夏红敏, 郑小文, 黄捍东, 肖炎辉, 董金超, 廖俊. 基于去低频化的低幅度构造识别方法研究及应用[J]. 物探与化探, 2021, 45(4): 998-1003.
[9] 欧居刚, 王小兰, 杨晓, 邓小江, 黄诚, 李文佳. 水平井地震导向技术探索与应用——以四川盆地复杂地区页岩气井为例[J]. 物探与化探, 2021, 45(3): 551-559.
[10] 刘伟男, 张超谟, 朱林奇, 胡松, 孔政, 邓瑞. 页岩气水平井TOC测井评价新方法[J]. 物探与化探, 2021, 45(2): 423-431.
[11] 周昊仪, 莫修文, 王丽丽, 许宝寅. 基于模拟退火算法的阵列声波测井组分波慢度提取[J]. 物探与化探, 2021, 45(2): 466-472.
[12] 苏鹏, 杨进. 时移电阻率反演模拟研究[J]. 物探与化探, 2021, 45(1): 159-164.
[13] 武建平, 张超, 陈剑平, 杨玺, 裴运军, 周庆东. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066-1072.
[14] 胡文革, 邹宁, 李丹丹, 黄知娟, 雷健, 郭宇航, 潘保芝. 断溶体油藏油源深度对井温分布影响的数值模拟[J]. 物探与化探, 2020, 44(4): 748-755.
[15] 甘团杰, 陈剑平, 杨玺, 周庆东, 曾亮. 海底电缆电磁场分布模拟与分析[J]. 物探与化探, 2020, 44(3): 550-558.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com