Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (5): 1283-1288    DOI: 10.11720/wtyht.2022.1580
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
井间超高密度电法探测基桩的模拟及应用
柴伦炜1,2()
1.中铁第一勘察设计院集团有限公司,陕西 西安 710043
2.轨道交通工程信息化国家重点实验室,陕西 西安 710043
A simulation and application of cross-well ultra-high-density resistivity imaging in the detection of foundation piles
CHAI Lun-Wei1,2()
1. China Railway First Survey and Design Institute Group Co., Ltd., Xi'an 710043, China
2. State Key Laboratory of Rail Transit Engineering Informatization, Xi'an 710043, China
全文: PDF(2446 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为了提高基桩检测水平,减少重大安全隐患,基于2.5维井间超高密度电阻率的正反演数值模拟,构建了单桩、长短桩和群桩3种地电模型,分析其响应特征及规律;鉴于基桩检测环境的复杂性,结合两则基桩埋深探测的实例,进一步阐述了该方法的应用特点和效果。研究结果表明:井间超高密度电阻率成像技术应用于桩埋深检测,具有精度高、施工灵活方便等优点,可以大规模检测基桩的长度,而不需要1个检测孔对应1根基桩,极大提高了基桩埋深的探测水平。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柴伦炜
关键词 井间超高密度电阻率成像基桩桩埋深数值模拟    
Abstract

To improve the detection level of foundation piles and reduce major potential safety hazards, this study established three geoelectric models corresponding to a single pile, long-short piles, and a pile group through the 2.5D forward and inverse numerical simulations using the cross-well ultra-high-density resistivity imaging technology and analyzed the response characteristics and regularity of these models. Given the complex detection environment of foundation piles, this study further expounded the application characteristics and effects of the technology by combining two cases for the detection of the burial depths of piles. The results are as follows. The cross-well ultra-high-density resistivity imaging technology enjoys the advantages of high precision and flexible and convenient construction when being applied to the detection of pile buried depth. It can detect the lengths of foundation piles on a large scale rather than detecting one foundation pile using one detection hole, thus greatly improving the detection level of the burial depths of foundation piles.

Key wordscross-well ultra-high-density resistivity imaging    pile foundation    pile buried depth    numerical simulation
收稿日期: 2021-10-25      修回日期: 2022-04-26      出版日期: 2022-10-20
ZTFLH:  P631.1  
  U452  
基金资助:中铁第一勘察设计院集团有限公司科研项目(院科16-16)
作者简介: 柴伦炜(1990-),男,硕士,工程师,毕业于吉林大学地球探测与信息技术专业,注册土木工程师(岩土),注册一级建造师(市政),主要从事岩土工程勘察与设计研究工作。Email:chailw2309@126.com
引用本文:   
柴伦炜. 井间超高密度电法探测基桩的模拟及应用[J]. 物探与化探, 2022, 46(5): 1283-1288.
CHAI Lun-Wei. A simulation and application of cross-well ultra-high-density resistivity imaging in the detection of foundation piles. Geophysical and Geochemical Exploration, 2022, 46(5): 1283-1288.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1580      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I5/1283
Fig.1  基桩模拟研究成果
Fig.2  场地1低应变测桩成果
Fig.3  场地1井间超高密度电阻率反演成果
Fig.4  场地2井间超高密度电阻率检测孔平面位置示意
Fig.5  井间超高密度电阻率反演成果
检测孔号 基桩编号
1 2 3 4 5 6 7 8
ZK1—ZK2 52 55 57 58 59 60 59 57
ZK3—ZK4 60 60 59 57 56.5 56 56 56
Table 1  检测孔之间的基桩埋藏深度
[1] 龚晓南. 桩基工程手册. 第2版[M]. 北京: 中国建筑工业出版社, 2016.
[1] Gong X N. Handbook of pile foundation engineering. 2nd Edition[M]. Beijing: China Construction Industry Press, 2016.
[2] 赵振东, 杉本三千. 桩基低应变完整性检测的分析研究[J]. 地震工程与工程振动, 1995, 15(4):104-112.
[2] Zhao Z D, Sugimoto S Q. Analysis and research on low strain integrity testing of pile foundation[J]. Earthquake Engineering and Engineering Vibration, 1995, 15(4): 104-112.
[3] 蒋万里, 朱国甫, 张杰. 单桩承载力的一种直接动测法[J]. 岩土力学, 2020, 41(10):3500-3508.
[3] Jiang W L, Zhu G F, Zhang J. A direct dynamic measurement method of single pile bearing capacity[J]. Rock and Soil Mecha-nics, 2020, 41(10): 3500-3508.
[4] 刘荻, 李贺. 物探检测方法在石拱桥病害整治工程中的应用[J]. 物探与化探, 2012, 20(5):119-123.
[4] Liu D, Li H. Application of geophysical detection method in stone arch bridge disease remediation project[J]. Geophysical and Geochemical Exploration, 2012, 20(5): 119-123.
[5] 李望明, 吴述来, 易强. 利用管波信息进行定量解释的方法[J]. 物探与化探, 2017, 41(2): 311-315.
[5] Li W M, Wu S L, Yi Q. Methods for quantitative interpretation using tube wave information[J]. Geophysical and Geochemical Exploration, 2017, 41(2): 311-315.
[6] 陈亚东, 陈思, 于艳. 长短桩组合桩基宏细观工作性状研究[J]. 地下空间与工程学报, 2015, 11(3):700-705.
[6] Chen Y D, Chen S, Yu Y. Study on the macro and meso working behaviors of the combined pile foundation with long and short piles[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(3): 700-705.
[7] Zhe J, Greenhalgh S, Marescot L. Multichannel, full waveform and flexible electrode combination resistivity-imaging system[J]. Geophysics, 2007, 72(2): 592-603.
[8] 柴伦炜, 汤国毅, 王国群, 等. 超高密度跨孔电阻率法成像在灌注桩埋深探测中的应用[J]. 工程地球物理学报, 2021, 18(2):252-256.
[8] Chai L W, Tang G Y, Wang G Q, et al. The application of ultra-high-density cross-hole resistivity imaging in the buried depth detection of cast-in-place piles[J]. Journal of Engineering Geophysics, 2021, 18(2): 252-256.
[9] Zhe J, Greenhalgh S A. A new kinematic method for mapping seismic reflectors[J]. Geophysics, 2010, 64(5): 1594-1602.
doi: 10.1190/1.1444663
[10] Zhe J, Greenhalgh S A. Prestack multicomponent migration[J]. Geophysics, 1997, 62(2): 598-613.
doi: 10.1190/1.1444169
[11] 苏宝, 刘晓丽, 卫晓波, 等. 井间超高密度电阻率法溶洞探测研究[J]. 物探与化探, 2021, 45(5):1354-1358.
[11] Su B, Liu X L, Wei X B, et al. Detection of caves by ultra-high density resistivity method between wells[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1354-1358.
[12] 张敬一, 陈智芳. 旁孔透射波法确定桩底深度方法对比研究[J]. 地下空间与工程学报, 2018, 14(5):1331-1337.
[12] Zhang J Y, Chen Z F. Comparative study on the method of determining the depth of pile bottom by side hole transmission wave method[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(5): 1331-1337.
[13] 胡富彭, 欧元超, 付茂如. 不同充填介质下的溶洞跨孔电阻率CT探查数值模拟[J]. 中国岩溶, 2019, 38(5):766-773.
[13] Hu F P, Ou C C, Fu M R. Numerical simulation of CT exploration of karst cave cross-hole resistivity under different filling media[J]. China Karst, 2019, 38(5): 766-773.
[14] 周峰, 屈伟, 陈杰. 岩溶地区端承桩复合桩基的工程实践[J]. 地下空间与工程学报, 2016, 12(2):489-495.
[14] Zhou F, Qu W, Chen J. Engineering practice of end-bearing pile composite pile foundation in karst area[J]. Chinese Journal of Underground Space and Engineering, 2016, 12(2): 489-495.
[15] 曹权, 项伟, 贾海梁, 等. 跨孔超高密度电阻率法在球状风化花岗岩体探测中的应用[J]. 工程地质学报, 2013(5):60-65.
[15] Cao Q, Xiang W, Jia H L, et al. Application of cross-hole ultra-high density resistivity method in the detection of spherical weathered granite bodies[J]. Journal of Engineering Geology, 2013(5): 60-65.
[16] 岳建华, 刘志新. 井—地三维电阻率成像技术[J]. 地球物理学进展, 2005(2):407-411.
[16] Yue J H, Liu Z X. Well-ground three-dimensional resistivity imaging technology[J]. Progress in Geophysics, 2005(2): 407-411.
[17] 巩天才, 杨强, 黄木田, 等. 连拱隧道施工工序对既有建筑桩基的影响分析[J]. 地下空间与工程学报, 2019, 15(4):1172-1179.
[17] Gong T C, Yang Q, Huang M T, et al. Analysis of the influence of the construction process of the double-arch tunnel on the pile foundation of the existing building[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(4): 1172-1179.
[18] 张文俊, 李术才, 苏茂鑫, 等. 基于井间电阻率成像的城市地铁溶洞探测方法[J]. 山东大学学报:工学版, 2014, 44(3):75-82.
[18] Zhang W J, Li S C, Su M X, et al. Urban subway cave detection method based on cross-well resistivity imaging[J]. Journal of Shandong University:Engineering Science Edition, 2014, 44(3): 75-82.
[19] 黄新民. 盾构隧道下穿既有桥桩工程的保护方案研究[J]. 地下空间与工程学报, 2012, 8(3):557-561,636.
[19] Huang X M. Study on the protection scheme of the shield tunnel underneath the existing bridge piles[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(3): 557-561,636.
[1] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[2] 肖世鹏, 熊高君, 袁梦雨, 毛明秋, 王胜艺, 韦增涛. 黏声波高阶傅里叶有限差分法参数优化成像[J]. 物探与化探, 2022, 46(5): 1207-1213.
[3] 苏林帅, 蔡明, 郑占树, 徐宝宝, 罗居森, 胡燕杰, 张荆宇. 井眼扩径对水平井声波测井响应影响的数值模拟[J]. 物探与化探, 2022, 46(2): 467-473.
[4] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[5] 肖妍姗, 周正华, 苏杰, 魏鑫. 地表水平正反敲击激振下孔法剪切波速测试理论依据讨论[J]. 物探与化探, 2021, 45(5): 1288-1294.
[6] 苏鹏, 杨进. 时移电阻率反演模拟研究[J]. 物探与化探, 2021, 45(1): 159-164.
[7] 武建平, 张超, 陈剑平, 杨玺, 裴运军, 周庆东. 广域电磁法三维有限单元法模拟研究[J]. 物探与化探, 2020, 44(5): 1066-1072.
[8] 胡文革, 邹宁, 李丹丹, 黄知娟, 雷健, 郭宇航, 潘保芝. 断溶体油藏油源深度对井温分布影响的数值模拟[J]. 物探与化探, 2020, 44(4): 748-755.
[9] 甘团杰, 陈剑平, 杨玺, 周庆东, 曾亮. 海底电缆电磁场分布模拟与分析[J]. 物探与化探, 2020, 44(3): 550-558.
[10] 李卓岱, 张怀强, 卢炜煌, 刘进洋, 颜苗苗. 宽能域γ能谱测井系统结构参数优化设计研究[J]. 物探与化探, 2019, 43(6): 1291-1296.
[11] 刘黎, 章成广, 蔡明, 何洋, 滑玉琎, 刘玉. 裂缝对井眼声波的传播影响规律研究[J]. 物探与化探, 2019, 43(6): 1333-1340.
[12] 王玉和, 崔增斌, 李春朋. 基于物探结果分析采动对急倾斜煤层底板突水影响[J]. 物探与化探, 2019, 43(6): 1399-1403.
[13] 张雪昂, 杨志超, 魏雄. 水层多角度裂缝介质中子测井响应数值模拟[J]. 物探与化探, 2018, 42(6): 1221-1227.
[14] 易洪春. 地—井瞬变电磁响应特征研究[J]. 物探与化探, 2018, 42(5): 970-976.
[15] 冯牧群, 刘得军, 潘琦, 冯硕, 刘佳宁. 基于磁异常的平行管线数值模拟[J]. 物探与化探, 2018, 42(2): 405-411.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com