Please wait a minute...
E-mail Alert Rss
 
物探与化探  2024, Vol. 48 Issue (1): 281-286    DOI: 10.11720/wtyht.2024.2602
  工程勘察 本期目录 | 过刊浏览 | 高级检索 |
基于三维电阻率法的水电工程隧道地质条件探查
黄瑶()
南宁理工学院 土木与工程学院, 广西 桂林 541006
Exploring geological conditions for tunnel construction in hydropower engineering using a 3D resistivity method
HUANG Yao()
Nanning College of Technology School of Civil Engineering, Guilin 541006, China
全文: PDF(2923 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

为开展水电工程隧道施工地质条件的探查与研究,基于三维电阻率技术构建了隧道地质条件的计算模型,采用数值模拟获得隧道模型的三维电性分布特征;将该技术应用于云南某水资源配置工程现场探查,经钻孔验证,获得了良好的探查效果。研究结果表明三维电阻率法对水电工程隧道的施工地质条件探查具有好的适用性,能够准确判断地层层厚,圈定岩溶空洞的大小、位置及充填物性质。通过探测研究获得的定量、定性信息,为隧道施工管理、信息化建设和防灾提供了可靠的依据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄瑶
关键词 三维电阻率法隧道施工岩溶数值模拟    
Abstract

To explore the geological conditions for the tunnel construction in hydropower engineering, this study built a calculation model for tunnel geological conditions using a 3D resistivity method. Through numerical simulations, this study determined the 3D resistivity distribution of the tunnel model. Then, the model was applied to the field exploration of a water resource allocation project in Yunnan, yielding satisfactory exploration results, as verified through drilling. The findings suggest that the 3D resistivity method can be effectively applied to the exploration of geological conditions for tunnel construction in hydropower engineering by accurately determining formation thicknesses, as well as the sizes, locations, and filling characteristics of karst cavities. The quantitative and qualitative data obtained from exploration in this study lay a reliable foundation for the management, informatization, and disaster prevention of tunnel construction.

Key words3D resistivity method    tunnel construction    karst    numerical simulation
收稿日期: 2022-12-09      修回日期: 2023-03-27      出版日期: 2024-02-20
ZTFLH:  P631.1  
基金资助:广西高校中青年教师科研基础能力提升项目(2019KY1052)
作者简介: 黄瑶(1988-),女,副教授,主要从事结构工程方面的教学与研究工作。Email:huangyao12309@outlook.com
引用本文:   
黄瑶. 基于三维电阻率法的水电工程隧道地质条件探查[J]. 物探与化探, 2024, 48(1): 281-286.
HUANG Yao. Exploring geological conditions for tunnel construction in hydropower engineering using a 3D resistivity method. Geophysical and Geochemical Exploration, 2024, 48(1): 281-286.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2024.2602      或      https://www.wutanyuhuatan.com/CN/Y2024/V48/I1/281
Fig.1  数值模型示意
Fig.2  模拟结果
Fig.3  工区测线布置
Fig.4  三维电阻率反演结果
Fig.5  高阻异常体的三维图示
Fig.6  L4线的反演电阻率断面及解释成果
Fig.7  D1柱状图及典型数字岩心图
[1] 张勇, 张子新, 华安增. TSP超前地质预报在公路隧道中的应用[J]. 西部探矿工程, 2001, 13(5):71-72.
[1] Zhang Y, Zhang Z X, Hua A Z. Application of TSP advanced geological prediction in highway tunnel[J]. West-china Exploration Engineering, 2001, 13(5):71-72.
[2] 蔡盛. 张吉怀铁路隧道超前预报技术应用研究[J]. 物探与化探, 2021, 45(5):1275-1280.
[2] Cai S. The research on the application of geological prediction technology to Zhangjihuai railway tunnel[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1275-1280.
[3] 钟世航, 王荣. 陆地声呐法探查中小溶洞、溶管效果好的原因[C]// 中国地球物理学会第22届年会论文集. 北京: 中国地球物理学会, 2006:265.
[3] Zhong S L, Wang R. Reasons for good effect of small and medium-sized caves and dissolved tubes by terrestrial sonar[C]// The Proceedings of 22th Annual Meeting of the Chinese Geophysical Society. Beijing: Chinese Geophysical Society, 2006:213.
[4] 薛国强, 李貅. 瞬变电磁隧道超前预报成像技术[J]. 地球物理学报, 2008, 51(3):894-900.
[4] Xue G Q, Li X. The technology of TEM tunnel prediction imaging[J]. Chinese Journal of Geophysics, 2008, 51(3):894-900.
[5] 邓国文, 王齐仁, 廖建平, 等. 隧道不良地质现象的探地雷达正演模拟与超前探测[J]. 物探与化探, 2015, 39(3):651-656.
[5] Deng G W, Wang Q R, Liao J P, et al. Forward modeling and advanced detection of radar in adverse geological phenomena tunnel[J]. Geophysical and Geochemical Exploration, 2015, 39(3):651-656.
[6] 李术才, 刘斌, 李树忱, 等. 基于激发极化法的隧道含水地质构造超前探测研究[J]. 岩石力学与工程学报, 2011, 30(7):1297-1309.
[6] Li S C, Liu B, Li S C, et al. Study of advanced detection for tunnel water-bearing geological structures with induced polarization method[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(7):1297-1309.
[7] 周文龙, 席超强, 胡泽安, 等. 利用并行电阻率法探测隧道施工地质条件[J]. 工程地球物理学报, 2016, 13(2):166-169.
[7] Zhou W L, Xi C Q, Hu Z A, et al. The application of parallel resistivity method to geological conditions detection of tunnel construction[J]. Chinese Journal of Engineering Geophysics, 2016, 13(2):166-169.
[8] 陆云祥, 陈华根, 陈建荣, 等. 高密度电阻率法在舟山市隧道勘察中的应用[J]. 地球物理学进展, 2010, 25(6):2174-2183.
[8] Lu Y X, Chen H G, Chen J R, et al. Application of the high-density resistivity method to survey tunnels in Zhoushan city[J]. Progress in Geophysics, 2010, 25(6):2174-2183.
[9] 蒋全科, 雷宛, 黄霄寒, 等. 应用综合电阻率法勘察隐伏断层[J]. 成都理工大学学报:自然科学版, 2016, 43(3):378-384.
[9] Jiang Q K, Lei W, Huang X H, et al. An application of prospecting concealed fault with multi-resistivity method[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2016, 43(3):378-384.
[10] 刘树才, 刘志新, 姜志海, 等. 矿井直流电法三维正演计算的若干问题[J]. 物探与化探, 2004, 28(2):170-172,176.
[10] Liu S C, Liu Z X, Jiang Z H, et al. Some problems in 3d forward simulation of mine direct current method[J]. Geophysical and Geochemical Exploration, 2004, 28(2):170-172,176.
[11] Ruan B Y, Xiong B. A finite element modeling of 3-D resistivity sounding with continuous conductivity[J]. Chinese Journal of Geophysics, 2002, 45(1):124-131.
doi: 10.1002/cjg2.v45.1
[12] 戴世坤, 凌嘉宣, 陈轻蕊, 等. 各向异性介质空间—波数混合域直流电阻率法三维数值模拟研究[J]. 地球物理学报, 2022, 65(7):2729-2740.
[12] Dai S K, Ling J X, Chen Q R, et al. Three dimensional DC anisotropic resistivity modeling in a mixed space-wavenumber domain[J]. Chinese Journal of Geophysics, 2022, 65(7):2729-2740.
[13] 罗登贵, 刘江平, 王京, 等. 活动断层高密度电法响应特征与应用研究[J]. 地球物理学进展, 2014, 29(4):1920-1925.
[13] Luo D G, Liu J P, Wang J, et al. Study on the response characteristics and application of high density resistivity method of active fault[J]. Progress in Geophysics, 2014, 29(4):1920-1925.
[14] 李忠平. 基于高密度电法温纳装置的三维电阻率反演应用[J]. 地球物理学进展, 2020, 35(3):970-975.
[14] Li Z P. Application of 3-D resistivity inversion based on Winner device of high density electricity method[J]. Progress in Geophysics, 2020, 35(3):970-975.
[15] 王志鹏, 刘江平, 易磊.2D、 3D高密度电法探测断层效果及其应用[J]. 科学技术与工程, 2019, 19(25):75-82.
[15] Wang Z P, Liu J P, Yi L. Effect and application of 2D and 3D high density resistivity method for fault detection[J]. Science Technology and Engineering, 2019, 19(25):75-82.
[16] 朱瑞, 李朝辉, 时向阳, 等. 三维高密度电法在隐伏断层探测中的应用[J]. 人民黄河, 2019, 41(11):106-109,143.
[16] Zhu R, Li Z H, Shi X Y, et al. Application of 3D electrical resistivity tomography to buried fault detection[J]. Yellow River, 2019, 41(11):106-109,143.
[17] 刘斌, 李术才, 聂利超, 等. 隧道含水构造直流电阻率法超前探测三维反演成像[J]. 岩土工程学报, 2012, 34(10):1866-1876.
[17] Liu B, Li S C, Nie L C, et al. Advanced detection of water-bearing geological structures in tunnels using 3D DC resistivity inversion tomography method[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10):1866-1876.
[18] 吴荣新, 刘盛东, 张平松. 双巷并行三维电法探测煤层工作面底板富水区[J]. 煤炭学报, 2010, 35(3):454-457.
[18] Wu R X, Liu S D, Zhang P S. The exploration of two-gateways parallel 3-D electrical technology for water-rich area within coal face floor[J]. Journal of China Coal Society, 2010, 35(3):454-457.
[19] 谭磊, 张平松, 吴荣新. 隐伏洞体并行电法探查试验研究[J]. 昆明理工大学学报:自然科学版, 2015, 40(2):38-43.
[19] Tan L, Zhang P S, Wu R X. Experimental study of parallel electrical imaging in concealed cave[J]. Journal of Kunming University of Science and Technology:Natural Science Edition, 2015, 40(2):38-43.
[20] 张欣, 赵明阶, 汪魁, 等. 电法三维成像技术在隧道岩溶探测中的应用[J]. 中国岩溶, 2016, 35(3):291-298.
[20] Zhang X, Zhao M J, Wang K, et al. Application of 3D electrical resistivity tomography to a tunnel in a Karst area[J]. Carsologica Sinica, 2016, 35(3):291-298.
[21] 张平松, 刘盛东, 吴荣新, 等. 采煤面覆岩变形与破坏立体电法动态测试[J]. 岩石力学与工程学报, 2009, 28(9):1870-1875.
[21] Zhang P S, Liu S D, Wu R X, et al. Dynamic detection of overburden deformation and failure in mining workface by 3d resistivity method[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(9):1870-1875.
[22] 吴荣新, 刘盛东, 张平松, 等. 地面钻孔并行三维电法探测煤矿灰岩导水通道[J]. 岩石力学与工程学报, 2010, 29(S2):3585-3589.
[22] Wu R X, Liu S D, Zhang P S, et al. Detection of limestone water-conducting channels in coal mine by parallel 3d electric method of surface boreholes[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(S2):3585-3589.
[23] Loke M H, Dahlin T. A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion[J]. Journal of Applied Geophysics, 2002, 49(3):149-162.
doi: 10.1016/S0926-9851(01)00106-9
[24] Loke M H, Barker R D. Practical techniques for 3D resistivity surveys and data inversion 1[J]. Geophysical Prospecting, 1996, 44(3):499-523.
doi: 10.1111/gpr.1996.44.issue-3
[25] 刘盛东, 吴荣新, 张平松, 等. 三维并行电法勘探技术与矿井水害探查[J]. 煤炭学报, 2009, 34(7):927-932.
[25] Liu S D, Wu R X, Zhang P S, et al. Three-dimensional parallel electric surveying and its applications in water disaster exploration in coal mines[J]. Journal of China Coal Society, 2009, 34(7):927-932.
[26] 任政勇, 汤井田. 基于局部加密非结构化网格的三维电阻率法有限元数值模拟[J]. 地球物理学报, 2009, 52(10):2627-2634.
[26] Ren Z Y, Tang J T. Finite element modeling of 3-D DC resistivity using locally refined unstructured meshes[J]. Chinese Journal of Geophysics, 2009, 52(10):2627-2634.
[27] 周文龙, 吴荣新, 肖玉林. 充水溶洞特征的高密度电阻率法反演分析研究[J]. 中国岩溶, 2016, 35(6):699-705.
[27] Zhou W L, Wu R X, Xiao Y L. Back analysis of high density resistivity method in the water-bearing Karst cave[J]. Carsologica Sinica, 2016, 35(6):699-705.
[28] 欧元超, 张平松, 李建宁, 等. 基于并行电法的重阳木根系空间分布探测试验研究[J]. 科学技术与工程, 2017, 17(10):131-135.
[28] Ou Y C, Zhang P S, Li J N, et al. Bischofia polycarpa root spatial distribution detection test research based on parallel electrical method[J]. Science Technology and Engineering, 2017, 17(10):131-135.
[1] 张雪昂, 杨志超, 李小燕, 董丽媛. 多孔隙度变化倾角裂缝型砂岩铀矿超热中子运移模拟[J]. 物探与化探, 2023, 47(6): 1547-1554.
[2] 周建兵, 罗锐恒, 贺昌坤, 潘晓东, 张绍敏, 彭聪. 文山小河尾水库岩溶含水渗漏通道的地球物理新证据[J]. 物探与化探, 2023, 47(3): 707-717.
[3] 王欲成, 王洪华, 苏鹏锦, 龚俊波, 席宇何. 地下供水管线渗漏的探地雷达模拟探测试验分析[J]. 物探与化探, 2023, 47(3): 794-803.
[4] 覃剑文, 姜晓腾, 谢贵城, 孙汉武, 何流, 孙怀凤. 基于高密度电法的城市复杂环境岩溶探查研究——以贵港市北环新村为例[J]. 物探与化探, 2023, 47(2): 530-539.
[5] 余长恒, 郑健, 张旭林, 周昊, 王安平, 刘磊, 李易. 川南地区页岩气井平台钻前工程物探集成技术[J]. 物探与化探, 2023, 47(1): 99-109.
[6] 张健, 冯旭亮, 岳想平. 综合物探方法在隐伏岩溶探测中的应用[J]. 物探与化探, 2022, 46(6): 1403-1410.
[7] 肖世鹏, 熊高君, 袁梦雨, 毛明秋, 王胜艺, 韦增涛. 黏声波高阶傅里叶有限差分法参数优化成像[J]. 物探与化探, 2022, 46(5): 1207-1213.
[8] 柴伦炜. 井间超高密度电法探测基桩的模拟及应用[J]. 物探与化探, 2022, 46(5): 1283-1288.
[9] 罗卫锋, 胡志方, 甘伏平, 张庆玉, 康海霞, 张云枭. 南方碳酸盐岩地区页岩气钻探井位选址中的综合物探方法应用[J]. 物探与化探, 2022, 46(4): 824-829.
[10] 苏林帅, 蔡明, 郑占树, 徐宝宝, 罗居森, 胡燕杰, 张荆宇. 井眼扩径对水平井声波测井响应影响的数值模拟[J]. 物探与化探, 2022, 46(2): 467-473.
[11] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[12] 张春来, 杨慧, 黄芬, 曹建华. 广西马山县岩溶区土壤硒含量分布及影响因素研究[J]. 物探与化探, 2021, 45(6): 1497-1503.
[13] 蔡盛. 张吉怀铁路隧道超前预报技术应用研究[J]. 物探与化探, 2021, 45(5): 1275-1280.
[14] 肖妍姗, 周正华, 苏杰, 魏鑫. 地表水平正反敲击激振下孔法剪切波速测试理论依据讨论[J]. 物探与化探, 2021, 45(5): 1288-1294.
[15] 李谭伟, 李振兴, 葛延明, 邬远明. 综合物探方法在株洲湘江大桥勘察中的应用[J]. 物探与化探, 2021, 45(3): 785-792.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com